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Abstract

Background: Adaptive designs offer added flexibility in the execution of clinical trials, including the possibilities of
allocating more patients to the treatments that turned out more successful, and early stopping due to either declared
success or futility. Commonly applied adaptive designs, such as group sequential methods, are based on the
frequentist paradigm and on ideas from statistical significance testing. Interim checks during the trial will have the
effect of inflating the Type 1 error rate, or, if this rate is controlled and kept fixed, lowering the power.

Results: The purpose of the paper is to demonstrate the usefulness of the Bayesian approach in the design and in
the actual running of randomized clinical trials during phase II and III. This approach is based on comparing the
performance of the different treatment arms in terms of the respective joint posterior probabilities evaluated
sequentially from the accruing outcome data, and then taking a control action if such posterior probabilities fall below
a pre-specified critical threshold value. Two types of actions are considered: treatment allocation, putting on hold at
least temporarily further accrual of patients to a treatment arm, and treatment selection, removing an arm from the
trial permanently. The main development in the paper is in terms of binary outcomes, but extensions for handling
time-to-event data, including data from vaccine trials, are also discussed. The performance of the proposed
methodology is tested in extensive simulation experiments, with numerical results and graphical illustrations
documented in a Supplement to the main text. As a companion to this paper, an implementation of the methods is
provided in the form of a freely available R package ’barts’.

Conclusion: The proposed methods for trial design provide an attractive alternative to their frequentist counterparts.

Keywords: Superiority trial, Phase II, Phase III, Adaptive design, Likelihood principle, Posterior inference, Decision rule,
Frequentist performance, Binary data, Time-to-event data, Vaccine efficacy trial

Introduction
From the earliest contributions to the present day, the
statistical methodology for designing and executing clin-
ical trials has been dominated by frequentist ideas, most
notably, on testing a precise hypothesis of “no effect dif-
ference” against an alternative, using a fixed sample size,
and applying a pre-specified significance level to control
for Type 1 error, as a means to guard against false positives
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in long term. An important drawback of this basic form
of the standard methodology is that the design does not
include the possibility of interim analyses during the trial.
Particularly in exploratory studies during phase II aimed
at finding effective treatments from among a number of
experimental candidates it is natural look for extended
designs that allow the execution of the trial to be modified
based on the results from interim analyses. For exam-
ple, such results could provide reasons for terminating the
accrual of additional patients to some treatments for lack
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of efficacy or, if the opposite is true, for allocating more
patients to the treatments that turned outmore successful.
Allowing for earlier dissemination of such findings may
then also benefit the patient population at large.
These motivations have led to the development of a

whole spectrum of adaptive trial designs, and of cor-
responding methods for the statistical analysis of such
data. An authoritative presentation of group sequential
methods is provided in the monograph [1]. More general
reviews of adaptive clinical trial designs, from the perspec-
tive of classical inference, can be found in, e.g., Chow and
Chang [2], Mahajan and Gupta [3], Chow [4], Chang and
Balser [5], Pallmann et al. [6] and Atkinson and Biswas [7].
While such adaptive designs allow for greater flexibility
in the running of actual trials, their assessment is usually
based on selected frequentist performance measures. In
the standard version, interim analyses are planned before
the trial is started, and need then to be accounted for,
due to the consequent multiple testing, in computing the
probability of Type 1 error. Although such rigid form of
planning can be relaxed when employing the so-called
alpha spending functions (e.g., Pocock [8], O’Brien and
Fleming [9], Demets and Lan [10]), looking into the data
before reaching the pre-planned end of the trial carries
a cost either in terms of an inflated probability of Type
1 error or, if that is fixed, in a reduced power of the test
to detect meaningful differences between the considered
treatments.
These classical approaches in the design and execu-

tion of clinical trials have been challenged from both
foundational and practical perspectives. Important early
contributions include, e.g., Thompson [11], Flühler et al.
[12], Berry [13], Spiegelhalter et al. [14], Berger and Berry
[15], Spiegelhalter et al. [16] and Thall and Simon [17]; for
a brief historical account and a large number of references,
see Grieve [18]. Comprehensive expositions of the topic
are provided in the monographs Spiegelhalter et al. [19],
Berry et al. [20] and Yuan et al. [21].
The key argument here is the change of focus: instead

of guarding against false positives in a series of trials in
long term, the main aim is to utilize the full informa-
tion potential in the observed data from the ongoing trial
itself. Then, looking into the data in interim analyses is
not viewed as something incurring a cost, but rather, as
providing an opportunity to act more wisely. The foun-
dational arguments enabling this change are provided by
the adoption of the likelihood principle, e.g., Berger and
Wolpert [22].
In practice, this also implies a change of the inferen-

tial paradigm, from frequentist into Bayesian. In Bayesian
inference, the conditional (posterior) distribution for
unknown model parameters is being updated based on
the available data, via updates of the corresponding like-
lihood. In a clinical trial, it is even possible to contin-

uously monitor the outcome data as they are observed,
and thereby utilize such data in a fully adaptive fashion
during the execution of the trial. The advantages of this
approach are summarized neatly in the short review paper
Berry [23], in Berry [24], Lee and Chu [25], and more
recently, in Yin et al. [26], Ruberg et al. [27] and Giovagnoli
[28]. Importantly, the posterior probabilities provide intu-
itively meaningful and directly interpretable answers to
questions concerning the mutual comparison of differ-
ent treatments, given the available evidence, and do so
without needing reference to concepts such as sampling
distribution of a test statistic under given hypothetical
circumstances.
Much of the recent literature on adaptive methods in

clinical trials falls into two categories: adaptive random-
ization (AR) designs, also called response adaptive ran-
domization (RAR), and multi-arm multi-stage (MAMS)
designs. In AR, the patients are randomized to the dif-
ferent treatment arms sequentially, with probabilities
updated from the preceding outcome data either contin-
uously or at the times of pre-planned interim analyses.
For reviews on AR designs, see Chow and Chang [2] and
Robertson et al. [29]. Villar et al. [30] contains a useful
review of the theoretical background, connecting the the-
ory of the optimal design of clinical trials with that of
multi-armed bandit problems. Of particular interest to us
are papers dealing with Bayesian versions of AR, where the
randomization probabilities are updated directly by apply-
ing Bayes’ rule, e.g., Trippa et al. [31], Wathen and Thall
[32], Wathen and Thall [33], Viele et al. [34], Viele et al.
[35] and Bassi et al. [36].
MAMS designs, on the other hand, aim at selecting

the best treatments, or even the single best if there is
one, of several that are tested in a multi-arm trial. This is
often done indirectly by applying pre-specified stopping
boundaries, to determine whether a considered treatment
should be dropped. Recent contributions to such designs
includeWason and Jaki [37],Wason and Trippa [38], Jacob
et al. [39], Wathen and Thall [32], Yu et al. [40], Ryan et al.
[33] and Ryan et al. [35].
Unfortunately, general results on optimal strategies are

largely lacking and their application in practice often
infeasible because of computational complexity; however,
see Press [41] and Yu et al. [40]. Recently, simulation based
approximations have been used for applying Bayesian
decision theory in the clinical trials context, e.g., Müller et
al. [42], Yuan et al. [21], Alban et al. [43] and Bassi et al.
[36].
Here we consider adaptive designs mainly from the per-

spective of multi-arm phase II clinical trials, in which one
or more experimental treatments are compared to a con-
trol. However, the same ideas can be applied, essentially
without change, in confirmatory phase III trials, where
usually only a single experimental treatment is compared
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to a control, but the planned size of the trial is larger.
In both situations, treatment allocation of individual trial
participants is assumed to take place according to a fixed
block randomization, albeit with an important twist: The
performance of each treatment arm is assessed after every
measured outcome in terms of the posterior distribution
of a corresponding model parameter. Different treatments
arms are then compared to each other according to pre-
defined criteria. If a treatment arm is found to be inferior
in such a comparison to the others, it can be closed off
either temporarily or permanently from further accrual.
We consider first, in The case of Bernoulli outcomes

section, the simple situation in which the outcomes are
binary, and they can be observed soon after the treatment
has been delivered. In Extensions for handling delayed
outcome data section, the approach is extended to cover
situations in which either binary outcomes are measured
after a fixed time lag from the treatment, or the data con-
sist of time-to-event measurements, with the possibility of
right censoring. This section includes also some notes on
vaccine efficacy trials. The paper concludes with a discus-
sion in Discussion section. A Supplement accompanied
with the main text reports results from extensive simula-
tion experiments, which follow closely the settings of two
examples in Villar et al. [30] but apply the adaptive meth-
ods introduced in The case of Bernoulli outcomes section.
The presentation is to a large extent comparative and
expository. As a companion to this paper, we provide an
implementation of the proposed method in the form of
a freely available R package called barts, Marttila et al.
[44], that facilitates the simulation of clinical trials with
adaptive treatment allocation and selection.

The case of Bernoulli outcomes
An adaptive method for treatment allocation: rule 1
As in Villar et al. [30] and Jacob et al. [39] and numerous
other papers, we consider first the ‘prototype’ example of
a trial with binary outcomes and two types of treatments,
one type representing a control or reference treatment
indexed by 0, and K experimental treatments indexed by
k, 1 ≤ k ≤ K . Motivated by a conditional exchange-
ability postulate between trial participants (with condi-
tioning corresponding to their allocation to the different
treatment arms), independent Bernoulli outcomes can in
this case be assumed for all treatments, with respective
response rates θ0 and θ1, θ2, . . . , θK considered as model
parameters. We write θ = (θ0, θ1, . . . θK ) and use, for
clarity, boldface notation θk when the parameters are
unknown and considered as random variables. Denote
also, for later use, θ∨ = max{θ0, θ1, . . . , θK }.
We index the participants in their order of recruitment

to the trial by i, 1 ≤ i ≤ Nmax, where Nmax is an assumed
maximal size of the trial. If no such maximal size is spec-
ified, we choose Nmax to be infinite. In this prototype

version it is assumed that, for each i, the outcome Yi from
the treatment of patient i is observed soon after the treat-
ment has been delivered. This assumption simplifies the
consideration of adaptive designs, as the rule applied for
deciding the treatment given to each participant can then
directly account for information on such earlier outcomes.
The meaning of ‘soon’ here should be understood in a rel-
ative sense to the accrual of participants to the trial. If the
considered medical condition is rare in the background
population, accrual will usually be slow with relatively
long times between the arrivals. Then this requirement of
outcome information being available when the next par-
ticipant arrives may apply even if ‘soon’ is not literally
true in chronological time. Extensions of this simple sit-
uation are considered in Extensions for handling delayed
outcome data section.
We assume that, before starting the trial, a sequential

block randomization to the treatment arms 0, 1, ...,K has
been performed. We index by n ≥ 1 the positions on
that list, calling n list index, and denote by r(n) the corre-
sponding treatment arm. Thus, we have a fixed sequence
r = ((r(1), r(2), ..., r(K+1)), (r(K+2), r(K+3), ..., r(2(K+
1)), ...) of randomized blocks of length K + 1, where
the blocks are independent uniformly distributed random
permutations of the treatment arm indexes 0, 1, ...,K .
Allocation of the participants to the different treatment

arms is now assumed to follow this list, but with the pos-
sibility of skipping a treatment arm in case it has been
determined to be in the dormant state for the considered
value of n. This leads to a balanced design in the sense
that, as long as no treatment arms have been skipped by
the time of considering list index n, the numbers of par-
ticipants allocated to different treatments can differ from
each other by at most 1, and they are equal when n is a
multiple of K + 1.
Denote by Ik,n the binary indicator variable of arm k

being in active state at list index value n, n ≥ 0, 0 ≤ k ≤ K ,
and let In = (I0,n, I1,n, ..., IK ,n) be the corresponding activ-
ity state vector. The values of these vectors are determined
in an inductive manner to be specified later.
By inspection we find that, at the time a value n ≥ 1 of

the list index is considered, altogether

N(n) =
n∑

m=1
Ir(m),m−1 (1)

trial participants have so far arrived and been allocated to
some treatment. Clearly N(n) ≤ n. Let now the sequence{
N−1(i); i ≥ 1

}
be defined recursively by

N−1(1)=1;
N−1(i)=min

{
n > N−1(i − 1) : Ir(n),n−1 = 1

}
, i > 1. (2)

Then N−1(i) is the value of the list index n at which par-
ticipant i is assigned to a treatment, while Ai = r(N−1(i))
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is the index of the corresponding treatment arm. Having
postulated independent Bernoulli outcomes with treat-
ment arm specific parameters θk , 0 ≤ k ≤ K , we then get
that Yi is distributed according to Bernoulli(θr(N−1(i))).
The distinction between active and dormant states is

that no trial participants are allocated, at a value n of the
list index, to a treatment arm r(n) if it is in the dormant
state. Generally speaking, treatments whose performance
in the trial has been poor, in a relative sense to the others,
are more likely to be transferred into the dormant sate.
However, with more data, there may later turn out to be
sufficient evidence for such a trial arm to be returned back
to the active state.
For n ≥ 1, the activity states In will be determined in an

inductive manner during the trial, and will then depend,
according to criteria specified below, on the earlier treat-
ment allocations and on the corresponding observed out-
comes. The data Dn that have accrued from the trial when
it has proceeded up to list index value n consist of the val-
ues of the state indicators Ik,m−1, 0 ≤ k ≤ K , 1 ≤ m ≤ n,
and of treatments Ai and outcomes Yi for i ≤ N(n).
To explain the algorithm, suppose that initially, for list

index value n = 0, all treatment arms are active so that
I0 = (I0,0, I1,0, ..., IK ,0) = (1, 1, ..., 1). More generally, their
activity states can be determined from the prior of θ . The
first participant recruited to the trial, indexed by i = 1, is
allocated to arm r(1) and then given the respective treat-
ment A(1) = r(1). The outcome Y1 is then measured
and included, as part, in the data D1. After this, the value
of the activity vector I0 is updated into I1 as follows: If
r(1) = k is an experimental treatment arm, we let Ik,1 = 0
if Pπ (θk = θ∨

∣∣D1) < ε, and otherwise Ik,1 = 1. Similarly,
if r(1) = 0 is the control arm, we let I0,1 = 0 if Pπ (θ0+δ ≥
θ∨

∣∣D1) < ε, and otherwise I0,1 = 1. In a 2-arm trial obvi-
ously Pπ (θ0 + δ ≥ θ∨|D1) = Pπ (θ0 + δ ≥ θ1|D1) and
Pπ (θ1 = θ∨|D1) = Pπ (θ1 ≥ θ0|D1).
Here the threshold values ε > 0 and δ ≥ 0 are selected

design parameters of the algorithm. A smaller value of ε

reflects then a more conservative attitude towards moving
a treatment arm into the dormant state. The value of δ can
be viewed as specifying the minimal important difference
(MID) or minimal clinically important difference (MCID)
in the trial; if positive, it provides some extra protection to
the control arm from being moved into the dormant state.
The general step of the induction follows the same pat-

tern: Consider a list index n ≥ 1. If r(n) = k is an
experimental treatment arm, we let Ik,n = 0 if Pπ (θk =
θ∨

∣∣Dn) < ε, and otherwise Ik,n = 1. Similarly, if r(n) = 0
is the control arm, we let I0,n = 0 if Pπ (θ0+δ ≥ θ∨

∣∣Dn) <

ε, and otherwise I0,n = 1. The earlier activity state vector
In−1 has thereby been updated to a new value In. After this,
the value of the list index is increased by 1, from n to n+1.
Again, in a 2-arm trial, Pπ (θ0+δ ≥ θ∨|Dn) = Pπ (θ0+δ ≥
θ1|Dn) and Pπ (θ1 = θ∨|Dn) = Pπ (θ1 ≥ θ0|Dn).

A pseudocode of this algorithm, called BARTA (for
Bayesian adaptive rule for treatment allocation), is pro-
vided in Section A of the Supplement.
As a byproduct, successive applications of BARTA give

us an explicit expression for the likelihood L (θ |Dn) =
Ln(θ), n ≥ 1, arising from observing data Dn. According
to this rule, the likelihood expression L (θ |Dn) is updated
only at values of n at which Ir(n),n = 1, and is then per-
formed by multiplying the previous value L (θ |Dn−1) by
the factor θ

YN(n)

r(n)

(
1 − θr(n)

)1−YN(n) . By repeatedly applying
the chain multiplication rule for conditional probabilities,
we get that

L (θ |Dn) =
n∏

m=1
θ
Ir(m),mYN(m)

r(m)

(
1 − θr(m)

)Ir(m),m(1−YN(m))

=
K∏

k=0
θ
Nk,1(n)

k (1 − θk)
Nk,0(n) .

(3)

The right hand side expression is obtained by re-arranging
the terms and denoting by

Nk,1(n) =
n∑

m=1
Ik,m1{YN(m)=1},

Nk, 0(n) =
n∑

m=1
Ik,m1{YN(m)=0}, 0 ≤ k ≤ K , n ≥ 1,

(4)

respectively, the number of successful and failed outcomes
from treatment k when considering list index values up to
n. Of intrinsic importance in this derivation is that, when
conditioning sequentially at n on the data Dn, the crite-
ria according to which the values of the indicators Ik,n
are updated to Ik,n+1 do not depend on the parameter θ .
As a consequence, these updates do not contribute to the
likelihood terms that would depend on θ . Different for-
mulations of this result can be found in many places, e.g.,
Villar et al. [30].
As a consequence, we can change the focus from the

full data {Dn, n ≥ 1}, indexed according to the original
list indexes used for randomization, to “condensed” data
{D∗

i , i ≥ 1} indexed according to the order in which the
participants were treated. We denote by

Sk(i) = max
{
Nk,1(n) : N(n) ≤ i

}
,

Fk(i) = max
{
Nk,0(n) : N(n) ≤ i

}
, 0 ≤ k ≤ K ,

(5)

respectively, the number of successful and failed outcomes
from treatment k when considering the first i participants.
Let

S(i) =
K∑

k=0
Sk(i), F(i) =

K∑

k=0
Fk(i) (6)

be the corresponding total number of successes and of
failures, across all treatment arms.
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Following the usual practice in similar contexts, we
assume that the unknown parameter values θ0, θ1, . . . , θK
have been assigned independent Beta-priors, with
Beta(θk|αk ,βk) for treatment arm k, where αk and βk
are separately chosen hyperparameters. The choice of
appropriate values of these hyperparameters (e.g., Thall
and Simon [17]) is always context specific, and is not
discussed here further. Then, due to the well-known con-
jugacy property of the Beta-priors and the Bernoulli-type
likelihood (3), the posterior p

(
θk|D∗

k,i

)
for θk , corre-

sponding to data D∗
i , has the form of Beta-distribution

with its parameters updated directly from the data:

p
(
θk|D∗

i,k
) = Beta (θk|αk + Sk(i),βk + Fk(i)) , i ≥ 1,
k = 0, 1, . . . ,K .

(7)

This, together with the product form of the likeli-
hood (3) and the assumed independence of the priors π ,
allows then for an easy computation of the joint poste-
rior distribution for (θ0, θ1, . . . , θK ) for any i. The density
pπ

(
θ0, θ1, . . . , θK |D∗

i,k

)
becomes the product ofK+1 Beta-

densities. For example, posterior probabilities of the form
Pπ

(
θk = θ∨

∣∣Dn
)
, or posterior distributions for pairwise

differences of the type θk −θ0 or θk −θ l, can be computed
numerically, in practice either by numerical integration
as in Jacob et al. [39], or by performing Monte Carlo
sampling from this distribution; see also Zaslavsky [45].
In our numerical examples in Extensions for handling
delayed outcome data section we have applied this latter
possibility.
While application of BARTA may at least temporar-

ily inactivate some less successful treatment arms and
thereby close them off from further accrual, this clo-
sure need not be final. As long as a treatment arm is
in the dormant state, and given that the priors for dif-
ferent treatments have been assumed to be independent,
the posterior for the corresponding parameter θk remains
fixed. In contrast, with the accrual of participants to active
treatment arms still continuing, the posteriors for their
parameters can be expected to become less and less dis-
persed. As a consequence, returns from dormant to active
state tend to become increasingly rare.
BARTA has much in common with the adaptive ran-

domization (AR) methods considered in the literature,
briefly reviewed in the Introduction. The similarity to
BARTA is particularly close to the Bayesian versions of
AR, where such adaptive updating is performed by a direct
application of Bayes’ rule. The idea of employing a sin-
gle initial block randomization r = ((r(1), r(2), ..., r(K +
1)), (r(K + 2), r(K + 3), ..., r(2(K + 1)), ...), together with
considering the treatment arms to be momentarily either
active or dormant, appears to be novel, however. As a
result, once r and the operating characteristics ε and δ

have been fixed, no further ’coin tossing’ is performed

during the trial since each treatment allocation of a new
patient is fully determined by r and the posterior probabil-
ities computed from the preceding outcome data. In prin-
ciple, the list r could be even made available in advance
to all parties concerned; if this is not done, it will nev-
ertheless be easy to check afterwards that the selected
allocations were consistent with the design.
Note also that, in BARTA, all currently active treatment

arms in a block are considered symmetrically, with exactly
one patient allocated to each active treatment; after this
has been done, the algorithm proceeds to considering the
next permutation of the K + 1 treatments, etc. Unless
this is not regulated differently by the prior, fully balanced
block randomization of all K + 1 treatments, reminiscent
to a burn-in, is applied during the early part of the trial,
until there is one arm that is made dormant.
To compare, most AR-designs suggested in the litera-

ture update the randomization probabilities only at the
times of a few pre-planned interim analyses, whereas in
the prototype version of BARTA, the posterior proba-
bilities for determining the activity states are computed
after every new measured outcome. If such a continu-
ous monitoring scheme is difficult to employ in practice,
for example, for logistic reasons, it can in principle be
replaced by any more appropriate non-informative stop-
ping rule. However, the results in Viele et al. [35] suggest
that, in AR designs, more frequent checks and updates
are advantageous from the perspective of several different
performance measures, and the same is likely to hold for
BARTA as well.
Thompson’s rule. We restrict the numerical compar-

ison of BARTA to a single AR design, by considering
the historically oldest, classical Thompson’s rule ([11], see
also, e.g., Thall et al. [46], Villar et al. [30]). In its standard
version, Thompson’s rule randomizes new patients to dif-
ferent treatment arms k, 0 ≤ k ≤ K , directly according
to the posterior probabilities Pπ

(
θk = θ∨

∣∣Dn
)
, updating

the values of these probabilities as described above. Frac-
tional versions of Thompson’s rule use probability weights
for this purpose, based on powers

(
Pπ

(
θk = θ∨

∣∣Dn
))κ ,

with 0 ≤ κ ≤ 1, normalized into probabilities by dividing
such terms by their sum over different values of k. Thus,
for κ = 0, the randomization is symmetric to all K + 1
treatments, and its adaptive control mechanism becomes
stronger with increasing κ . The results from these com-
parative simulation experiments are given in Sections B, C
and D of the Supplement.

An adaptive method for treatment selection: BARTS
While an open end recipe such as BARTA or Thomp-
son’s algorithmmay seem attractive, for example, from the
perspective of drawing increasingly accurate inferences
on the response parameters, practical considerations will
often justify incorporation of rules for more definitive
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selection of some treatments and elimination of others.
This is the case if the continued availability of more than
one experimental treatment alternative at a later point in
time is judged to be impracticable, as when entering the
study into phase III. Another reason is that incorpora-
tion of such decision rules enables us to make more direct
comparisons to trial designs utilizing classical hypothesis
testing ideas.
With this in mind, we complement BARTA with an

optional possibility to conclusively terminate the accrual
of additional participants to the less successful treatment
arms. The consequent algorithm BARTS (for Bayesian
adaptive rule for treatment selection), is provided in the
form of a pseudocode in Section A of the Supplement.
The treatment allocation procedure is identical to that in
BARTA, and makes a treatment arm dormant if its perfor-
mance, according to pre-specified criteria, is assessed to
be poor when compared to the current best. BARTS does
the same, but will actually drop a treatment arm perma-
nently if such judgement holds with respect to an even
stricter criterion. BARTS can therefore be said to be an
adaptation of corresponding ideas and definitions in, e.g.,
Thall and Wathen [47], Berry et al. [20], Xie et al. [48],
Jacob et al. [39] and Wathen and Thall [32]. In the com-
monly adopted terminology of adaptive designs, it can be
said to combine elements from different versions of AR
and MAMS designs.
After every new observed outcome, the algorithm of

BARTS determines the current state of each treatment
arm, choosing between the three possible options: active,
dormant, or dropped. All moves between these states are
possible except that the dropped state is absorbing: once
a treatment arm has been dropped, it will stay. If an arm
is in dormant state, it is at least momentarily closed from
further patient accrual.
Next, we explain how BARTS works; for the exact

definition of this algorithm, see the pseudocode in the
Supplement.
The posterior probability Pπ

(
θk ≥ θlow

∣∣Dn
)

for an
experimental arm k expresses how likely it is, given
the currently available data, that its response rate θk
exceeds a pre-specified level θlow of minimum required
treatment response rate (MRT), e.g., Xie et al. [48]. The
first criterion in BARTS then says that if this proba-
bility is below a selected threshold value ε1, treatment
k is dropped from the trial. For the control arm, the
corresponding comparison is based on the posterior
probability Pπ

(
θ0 + δ ≥ θlow

∣∣Dn
)
, thereby involving an

extra safety margin δ against accidental removal. The
value of ε1 can then be said to represent an accept-
able risk level of error when concluding that {θk ≥
θlow} or {θ0 + δ ≥ θlow} would not be true. This
part of BARTS will obviously not be active if either
θlow = 0 or ε1 = 0.

The second criterion in BARTS makes a comparison
of the response rate of a treatment and that of the best
treatment in the trial. Both values are unknown, and the
comparison is made in terms of the posterior proba-

bilities Pπ

(
θk = max

	∈T
θ	

∣∣Dn

)
for the experimental arms

and Pπ

(
θ0 + δ ≥ max

	∈T
θ	

∣∣Dn

)
for the control. Here T ⊂

{0, 1, ...,K} is the set of treatment arms left in the trial
at time n. The composition of T is determined in an
inductive manner, starting from T = {0, 1, ...,K} at n =
1. A treatment is dropped from the trial if the corre-
sponding posterior probability falls below the selected
threshold level ε2. Thus, for small ε2, the decision to drop
an experimental treatment k is made if, in view of the

currently available data Dn, the event
{
θk = max

	∈T
θ	

}
is

true only with probability close to 0, with ε2 representing
the selected risk level. The control arm is protected even
more strongly from inadvertent removal from the trial if a
positive safety margin δ is employed. The comparison to
experimental arms becomes symmetric if δ = 0, whereas
a sufficiently large value for δ would make it impossi-
ble to drop the control arm. This entire mechanism of
eliminating treatments based on mutual comparisons is
inactivated by letting ε2 = 0.
For later use, we denote by nk,last the largest value of the

list index for which treatment arm k is still left in the trial,
0 ≤ k ≤ K , and by Nk,last = N(nk,last) the index of the last
patient who got treatment k.
The third criterion of BARTS copies BARTA: An exper-

imental treatment arm k ∈ T is made dormant if
Pπ

(
θk = max

	∈T
θ	

∣∣Dn

)
< ε, and the control arm if

Pπ

(
θ0 + δ ≥ max

	∈T
θ	

∣∣Dn

)
< ε, where ε is a selected

threshold. For this part of BARTS to function in a non-
trivial way, we need to choose ε > ε1 and ε > ε2. If
either ε = ε1 or ε = ε2, then the possibility of moving
a treatment arm to the dormant state is ruled out, and if
ε1 = ε2 = 0, then BARTS is easily seen to collapse into the
simpler rule BARTA. Finally, if also ε = 0, then treatment
allocation will follow directly the original block random-
ization, which was assumed to be symmetric between all
treatment arms, and no treatments are dropped before
reaching Nmax.
The selection of appropriate threshold values δ and θlow

in BARTS should be based on substantive contextual argu-
ments in the trial. If a positive value for δ is specified,
then, as already mentioned in the context of BARTA, this
is commonly viewed as the minimal clinically important
difference (MCID) in the trial. Employing such a positive
threshold value when comparing the control to the exper-
imental treatments reflects the idea that the design should
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be more conservative towards moving the control arm to
the dormant state, let alone dropping it from the trial for
good.
Once selected, the design parameters ε, ε1 and ε2 in

applying BARTS, and then deciding to either drop the
treatment or putting it into the dormant state, can be
interpreted directly as upper bounds for the risk that this
decision was in fact unwarranted. By risk is here meant
the posterior probability of error, each time conditioned
on the current data actually observed. Suppose, for exam-
ple, that a finite value for nk,last has been established due to
Pπ

(
θk ≥ θlow

∣∣Dnk,last
)

< ε1. Further accrual of trial partic-
ipants to treatment arm k is then stopped after the patient
indexed by Nk,last because the response rate θk from that
arm is judged, with only a small probability≤ ε1, given the
data, to be above the MRT level θlow.
If all experimental treatments have been dropped as a

result of applying BARTS, the trial ends with a negative
result, futility, e.g. Thall and Wathen [47]. On the other
hand, if the control arm has been dropped, at least one of
the experimental arms was deemed better than the con-
trol, which is a positive finding. In case more than two
experimental arms were left at that time, the trial design
may allow for a continued application of BARTS, with
the goal of ultimately identifying the one with the highest
response rate.
As remarked earlier, the application of BARTS is

optional. If it is not enforced, BARTA is open ended
and will only control the allocation of new partici-
pants to the different treatments. Then, if the trial size
Nmax has been specified and fixed in advance, and
regardless of whether BARTA was previously employed
or not, the posterior probabilities Pπ

(
θk ≥ θlow|D∗

Nmax

)
,

Pπ

(
θ0 + δ ≥ θ∨|D∗

Nmax

)
and Pπ

(
θk = θ∨|D∗

Nmax

)
can be

computed routinely after all outcome data D∗
Nmax

have
been observed, to provide the final assessment of the
results from the trial.
The above version of BARTS is intended to be used in

superiority trials, where the goal is to select, if possible, the
best treatment among those K + 1 considered in the trial.
It is another matter whether the phrase ’dropping a treat-
ment arm’ should then be understood literally or not. For
example, in a 2-arm trial, one is supposed to keep track
on the posterior probabilities of the form Pπ (θ0 + δ ≥
θ∨|Dn) = Pπ (θ0 + δ ≥ θ1|Dn) and Pπ (θ1 = θ∨|Dn) =
Pπ (θ1 ≥ θ0|Dn), and then drop an arm if either of them
falls below the selected threshold value ε2. In reality, drop-
ping the control may only mean that the experimental arm
is selected for further study, perhaps in phase III. As a
reviewer of this paper has pointed out, what is proposed
in BARTS is not a drop-the-losers type approach, as the
latter, often used in group-sequential selection, involves
treatment ranking, e.g., Gerber, Gsponer, et al. [49].

This terminology is even less fitting if BARTS is mod-
ified to be appropriate for non-inferiority or equivalence
trials, e.g. Lesaffre [50]. For example, in a 2-arm trial
for the former purpose, one would be led to consider-
ing, for some δ > 0, posterior probabilities of the form
Pπ (θ0 − δ ≥ θ1|Dn), and then conclude non-inferiority if
such probabilities would fall below a selected ε2.
Finally, one should note that, while BARTA is compat-

ible with the likelihood principle, BARTS has an element
which violates it. This is because, in multi-arm trials with
K > 1, when considered at times n at which some treat-
ment arms have already been dropped, the definition of
the maximal response parameter value θV = max

	∈T
θ	

ignores those indexed in {0, 1, ...,K} \ T. Sequential elim-
ination of treatments, as embodied in BARTS, although
it has an obvious practical appeal in running a clinical
trial, it also renders properties such as standard Bayesian
consistency inapplicable.
A frequentist perspective. A different perspective to

the application of BARTS is offered by the classical fre-
quentist theory of statistical hypothesis testing. While the
main point of this paper is to argue in favor of reasoning
directly based on posterior inferences, this may not be suf-
ficient to satisfy stake holders external to the study itself,
including the relevant regulatory authorities in question,
which may be concerned about frequentist measures such
as the overall Type 1 error rate at a pre-specified signifi-
cance level (Chow and Chang [2]).
From a frequentist point of view, the posterior prob-

abilities Pπ (θ0 + δ ≥ θ∨|Dn) and Pπ (θk = θ∨|Dn),
via their dependence on the data Dn, can be viewed as
test statistics in respective sequential testing problems,
with BARTS defining the stopping boundaries. In the case
K = 1, they correspond to considering two overlapping
hypotheses (e.g., Richards [51]), null hypothesis H0 : θ1 ≤
θ0 + δ and its alternative H1 : θ1 ≥ θ0. For K ≥ 1,
the null hypothesis becomes H0 : θ∨ ≤ θ0 + δ, and
the alternative H1 : θ∨ ≥ θ0. The posterior probabilities
Pπ (θ0 + δ ≥ θ∨|Dn) can then be used as test statistics in
testing H0, and Pπ (θ∨ ≥ θ0|Dn) for testing H1. Similar
remarks would hold if, as remarked above, BARTS were
modified to be used in a non-inferiority of equivalence
trial.
The size of the test depends on the hypothesized “true”

values of the response parameters θ = (θ0, θ1, . . . , θK ), on
the selected threshold values δ, θlow, ε, ε1, ε2 and, if spec-
ified in advance, on the maximal size Nmax of the trial.
For clarity, we denote such a hypothesized distribution
generating the data byQ, distinct from the mixture distri-
bution Pπ used, after being conditioned on current data,
in applying BARTA and BARTS.
Frequentist measures such as true and false positive and

negative rates, characterizing the performance of a test,
can be computed numerically to a good approximation by
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performing a sufficiently large number of forward simula-
tions from the selected Q and then averaging the sampled
values. A more extensive consideration of such frequen-
tist measures is here deferred to a Supplement, which
contains a large number of figures and tables from simula-
tions run under different parameter settings. Two types of
experiments are considered, one concerned with a 2-arm
and the other with a 4-arm trial.
To give just one example of the many frequentist mea-

sures considered in the Supplement, we reproduce here
Fig. S3, in Fig. 1. It shows, in the top part, the cumulative

distribution functions (CDFs) of N1(200), the number of
patients, of the first 200 allocated by BARTA to the experi-
mental treatment, in a 2-arm trial when varying the values
of the design parameters ε and δ and considering two
different data generating models, Qnull and Qalt . The bot-
tom part makes similar comparisons for S(200), the total
number of successes from both treatments combined.
Also shown are the CDFs of these variables when adap-
tive treatment allocation of patients was applied by using
Thompson’s rule with different values of the fractional
exponent κ .

Fig. 1 Effect of the choice of the design parameters ε and δ in BARTA on the number of patients allocated to the experimental treatment and on the
total number of treatment successes. Cumulative distribution functions of N1(200) (top) and S(200) (bottom) are shown, based on 5000 simulated
data sets, underQnull with true parameter values θ0 = θ1 = 0.3 andQalt with values θ0 = 0.3, θ1 = 0.5. Three combinations of the design
parameters were used: (a) ε = 0.1, δ = 0.1, (b) ε = 0.05, δ = 0.1, (c) ε = 0.2, δ = 0.05. In addition, (d) represents a completely symmetric treatment
allocation. For comparison we also plot the corresponding CDF under the alternative hypothesis obtained by using fractional Thompson’s rule with
respective parameters κ = 0.25, 0.5, 0.75 and 1
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Perhaps of most interest here is to note, from the top
part of Fig. 1, how the application of BARTA, and par-
ticularly under Qnull in which case the treatment arms
have the same true response rate, leads to often allocat-
ing exactly half of the patients to both treatment arms;
this happens in trial runs during which the dormant state
had not been entered even once. For Thompson’s rule,
although the distribution of N1(200) under Qnull is sym-
metric, it has a large variance, signalling corresponding
instability in treatment allocation. For additional com-
ments on Fig. 1, see the Supplement.
Finally, one may note that such frequentist considera-

tions are of interest essentially only at the design stage
when no outcome data are yet available and a trial design
needs to be selected and approved. When the trial is then
run, it is natural to utilize, at each time n, the currently
available data Dn and the consequent posterior probabil-
ities such as Pπ (θ0 + δ ≥ θ∨|Dn), Pπ (θk = θ∨|Dn) and
Pπ (θk ≥ θlow|Dn). Illustrations of this can be found in
Figs. S1 and S7 in the Supplement. The same holds also
when declaring the final results from a trial that was car-
ried out. In this context it may be useful to recall the well
known result from general decision theory: For any prior,
the smallest Bayes risk is achieved by minimizing “point-
wise” the expected loss with respect to the posterior. In
other words, a decision rule which is optimal locally, for
each observed sample path, will be optimal also globally,
on average.

Extensions for handling delayed outcome data
Data of the kind considered in The case of Bernoulli out-
comes section, where binary outcomes are determined
and observed soon after the treatment is delivered, may
be rare in practical applications such as drug develop-
ment. More likely, it takes some time until a response to
a treatment can measured in a useful manner. For exam-
ple, the status of a cancer patient could be determined
onemonth after the treatment was given. Incorporation of
such a delay into themodel is not technically very difficult,
but it necessitates explicit introduction of the recruitment
or arrival process, in continuous time, of the patients to
the trial. A somewhat different problem arises if the out-
come itself is a measurement of time, such as time from
treatment to relapse or to death in a cancer trial, or to
infection in a vaccine efficacy study. When such informa-
tion would be needed for adaptive treatment allocation,
part of the data are typically right censored. Both types
of extensions of the basic Bernoulli model in The case of
Bernoulli outcomes section are considered briefly below.

Fixed delay from treatment to binary outcome
We now consider a model, where a binary outcome is sys-
tematically measured after a fixed time period has elapsed
from the time at which the patient in question received the

treatment. Modelling such a situation, rather obviously,
requires that the model is based on a continuous time
parameter.
Let, therefore, t > 0 be a continuous time parameter,

and denote by U1 < U2 < . . . < Ui < . . . the arrival
times of the patients to the trial, again using i = 1, 2, . . . to
index the participants.We then assume that the treatment
is always given immediately upon arrival, and that the out-
come Yi is measured at time Vi = Ui + d, where d > 0 is
fixed as part of the design. Let N(t) = ∑

i≥1 1{Ui≤t}, t > 0,
be the counting process of arrivals. At time t, outcome
measurements are available from only those patients who
arrived and were treated before time t − d. Therefore, the
adaptive rule for assigning a treatment to a participant
arriving at time t can utilize only the data

Dt = {Ui,Ai,Ci (t) ,Ci (t)Yi : i ≤ N(t)},

where the indicator Ci (t) = 1{Ui<t−d} signals that Yi has
been measured by time t.
With a minor change from (4), let

Nk,1 (t) =
N(t)∑

i=1
Ci (t) 1{Ai=k,Yi=1},

Nk0 (t) =
N(t)∑

i=1
Ci (t) 1{Ai=k,Yi=0}, 0 ≤ k ≤ K , 0 < t ≤ Tmax.

(8)

As before, we assume that the arrival process is not
informative about the model parameters, that the partic-
ipants are conditionally exchangeable given their respec-
tive treatment allocations, and that the allocation rule is
the same as in The case of Bernoulli outcomes section.
The main distinction between the model with instanta-
neous response times and the present one with delayed
measured outcomes is that, in the former case, once the
outcome on an arriving patient becomes known, there is
no additional information in the data until the next patient
arrives and is treated. In the present situation, however,
during such a time period some other patients, who had
arrived earlier, may complete the required duration d from
treatment to measured outcome and thereby provide new
information to the data that are available. That informa-
tion can then be utilized when deciding on the treatment
of the next arriving patient.
By inspection we find that the basic product form of the

likelihood expression (3) can be retained in this case.More
concretely, the only change needed in the algorithms of
BARTA and BARTS is that, instead of Ln(θ) ← Ln−1(θ) ×
θ
YN(n)

r(n)

(
1 − θr(n)

)1−YN(n) , the inductive step for updating
the likelihood becomes
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Ln(θ) ← Ln−1(θ)

K∏

k=0
θ
Nk,1(UN(n))−Nk,1(UN(n)−1)
k

(1 − θk)
Nk,0(UN(n))−Nk,0(UN(n)−1) . (9)

The case of time-to-event data
Time-to-event data can arise in several different ways. For
example, the times from treatment to relapse or death are
often used as primary endpoints in cancer trials. Below
we show how BARTA and BARTS need to be modified to
apply for such data.
Let Ui be the time of treatment and Vi the time of

response for patient i, and let Xi = Vi − Ui. Chang-
ing the notation slightly, we now denote by N(t) =∑

i≥1 1{Ui≤t}, t > 0, the process counting the arrivals to
the trial. If the data are collected at time t, and Ui ≤ t and
Vi > t hold for patient i, the response time Xi will be right
censored. Observed in the data are then the times Yi (t) =
[(Vi ∧ t) − Ui]+ and the indicators Ci (t) = 1{Vi≤t} =
1{Xi=Yi(t)}.
Suppose now that the original response times Xi aris-

ing from treatment k, i.e., those for which Ai = k,
are independent and distributed according to some dis-
tribution F(x|θk) with respective parameter value θk >

0, k = 0, 1, . . . ,K . Denote the corresponding densities
by f (x|θk). As above, we assume that the arrival pro-
cess is not informative about the model parameters, and
that the participants are conditionally exchangeable given
their respective treatment allocations. Then the likelihood
expression corresponding to data

Dk,t = {Ui,Ai,Yi (t) ,Ci (t) : i ≤ N(t),Ai = k} ,
collected from treatment arm k up to time t, has the
familiar form

L
(
θk |Dk,t

) =
N(t)∏

i=1
f (Xi|θk)Ci(t)1{Ai=k} (1 − F(Yi (t) |θk))(1−Ci(t))1{Ai=k} .

(10)

Such data are in the survival analysis literature com-
monly referred to as data with staggered entry. Due to the
assumed conditional independence of the response times
across the different treatment arms, given the respective
parameters θk , the combined data

Dt =
K⋃

k=0
Dk,t = {Ui,Ai,Yi (t) ,Ci (t) : i ≤ N(t)}

give rise to the product form likelihood

L (θ |Dt) =
K∏

k=0
L

(
θk|Dk,t

)
, (11)

where θ = (θ0, θ1, . . . , θK ). Upon specifying a prior for θ ,
the posterior probabilities corresponding to the data Dt
can then be computed and utilized in BARTA or BARTS.

Remarks. It is well known that, in Bayesian infer-
ence, Gamma-distributions are conjugate priors to the
likelihood arising from exponentially distributed survival
or duration data, with θk representing the correspond-
ing intensity parameters. This holds also when such
data are right censored, in which case the likelihood
(10) corresponding to Dk,t has the Poisson form, with∑N(t)

i=1 Ci (t) 1{Ai=k} being the number of measured posi-
tive outcomes and

∑N(t)
i=1 Yi (t) 1{Ai=k} the corresponding

Total Time on Test (TTT) statistic. Assuming independent
Gamma(θk | αk ,βk)-priors for the respective treatment
arms k = 0, 1, . . . ,K , the posterior for θk corresponding
to data Dk,t becomes

p
(
θk |Dk,t

)

= Gamma
(

θk | αk +
N(t)∑

i=1
Ci (t) 1{Ai=k},βk +

N(t)∑

i=1
Yi (t) 1{Ai=k}

)
,

(12)

and the joint posterior p (θ | Dt) is the product distribu-
tion of these independent marginals.

When considering the application of BARTA or BARTS
in this exponential response time model, the natu-
ral target would often be to decrease, rather than
increase, the value of the intensity parameter corre-
sponding to an experimental treatment in the trial.
Moreover, for measuring the degree of such poten-
tial improvements, use of hazard ratios, or relative
risks, seems often more appropriate than of absolute
differences. Criteria such as Pπ

(
θk ≥ θlow

∣∣Dn
)

< ε1

and Pπ

(
θ0 + δ ≥ max

	∈T
θ	

∣∣Dn

)
< ε2 applied previously

in BARTS should then be replaced by corresponding
requirements of the form Pπ

(
θk ≤ θhigh

∣∣Dt
)

< ε1 and

Pπ

(
ρθ0 ≤ min

	∈T
θ	

∣∣Dt

)
< ε2, where ρ < 1 is a given

safety margin protecting the control arm from inadvertent
dropping. Writing ρ = exp {−δ} and using ηk = − log θk
as model parameters brings us back to the absolute scale,
with the last inequality becoming the requirement η0+δ ≥
max
	∈T

η	.

Notes on application to vaccine trials
An important and timely special case of time-to-event
data are data coming from large scale phase III vaccine
trials. When a newly developed vaccine candidate has
reached the stage when it is tested in humans for effi-
cacy, the trial participants are usually healthy individuals
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and the control treatment is either placebo or some exist-
ing vaccine that has been already approved for wider use.
In such trials adaptive treatment allocation is less likely
to be an issue, whereas it would be important to arrive
at some reasonably definitive conclusion about efficacy
already before reaching the planned study endpoint Nmax.
For this reason, in the recent trials for testing COVID-
19 candidate vaccines in humans, the design has allowed
for from two to five ‘looks‘ into the data before trial
completion, usually defined as times at which some pre-
specified number of infections have been observed. To
our knowledge, most of these trials have applied frequen-
tist group sequential methods for testing, adjusting the
targeted significance level by suitably defined spending
functions. This standard practice was followed in spite of
that, arguably, in trials for experimental vaccines such as
the COVID-19 candidates, for which phase II had been
already successfully completed, Type 1 errors could be
considered less worrisome than Type 2 errors.
Entertaining the idea that such vaccine trials had been

designed by using the Bayesian framework as presented in
The case of time-to-event data, this task could have been
accomplished by applying BARTS and thereby selecting
suitable values for its design parameters ρ, θhigh, ε1, ε2 and
Nmax, letting finally ε = ε2 to inactivate the separately
defined adaptive mechanism for treatment allocation. For
example, considering the case of a single experimental
vaccine, the value ρ = 0.4 would signify the target of sixty
percent decrease in the value of the intensity parameter θ1
compared to the placebo control θ0, with a corresponding
reduction in the expected number of infected individuals
among those vaccinated.
The trial could then be run, and it would stop with

declared success if a posterior probability Pπ

(
ρθ0 <

θ1
∣∣D∗

i
)

< ε2 were obtained for some i ≤ Nmax. On the
other hand, futility would be declared if either Pπ

(
θ1 ≤

θhigh
∣∣D∗

i
)

< ε1 or Pπ

(
ρθ0 ≥ θ1

∣∣D∗
i
)

< ε2 were established
for such i. In either case, the monitoring of these probabil-
ities could in principle be done in an open book form, and
not just in a few ‘looks‘ made at pre-planned check points.
A somewhat different approach tomodeling and analyz-

ing vaccine trial data can be outlined as follows. Suppose
that the design is fixed by allocating, at time t = 0, n1
individuals to the vaccine group and n0 individuals to
the placebo group. Denote by 0 < T1,1 < T1,2 < ...
the times at which the individuals in the former group
become infected and by 0 < T0,1 < T0,2 < ... the
corresponding times in the latter group. Expressed in
terms of counting processes, N1(t) = ∑

m≥1 1{T1,m≤t} and
N0(t) = ∑

m≥1 1{T1,m≤t} count the number of infections
up to time t in these two groups. We then assume that
infections occur at respective rates (n1−N1(t−))λ1(t) and
(n0 − N0(t−))λ0(t), where λ1(t) and λ0(t) are unknown
functions of the follow-up time t. In practice, n1 and n0

are large, of the order 10.000 or more, while N1(t) and
N0(t) can during the observation interval be at most a
few hundred. Therefore, {N1(t); t ≥ 0} and {N0(t); t ≥ 0}
can be approximated quite well by Poisson processes with
respective intensities n1λ1(t) and n0λ0(t).
Suppose that these processes are (conditionally) inde-

pendent given their intensities. Then the likelihood corre-
sponding to the data Dt = {N0(s),N1(s); s ≤ t}, combined
from both groups and up to time t, gets the familiar
Poisson-form expression

L(λ0, λ1|Dt)=
1∏

k=0
exp

{
−

∫ t

0
nkλk(s)ds

} ∏

m≤Nk(t)
nkλk(Tk,m).

(13)

Assuming that the processes {T0,m; t ≥ 1} and {T1,m; t ≥
1} do not have exact ties, we now consider their super-
position {0 < T1 < T2 < ...} and the corresponding
counting process N(t) = N0(t) + N1(t) = ∑

m≥1 1{Tm≤t},
which then has intensity n0λ0(t) + n1λ1(t). In what fol-
lows, for the purposes of statistical inference, this super-
position is decomposed back into its components. For
this, we define a sequence {δ(Tm);m ≥ 1} of indica-
tors, letting {δ(Tm) = 1} if {N0(Tm) − N0(Tm−) = 1}.
Expressed in concrete terms, the event {δ(Tm) = 1}
occurs if the mth individual in the trial who was recorded
as being infected happens to belong to the placebo group,
and {δ(Tm) = 0} if to the vaccine group. It is well
known that the conditional probabilities of these events,
given λ0(.), λ1(.) and {N(Tm) − N(Tm−) = 1}, are equal
respectively to n0λ0(Tm)(n0λ0(Tm) + n1λ1(Tm))−1 and
n1λ1(Tm)(n0λ0(Tm) + n1λ1(Tm))−1.
Estimation of the function λ0(.), describing the infec-

tion pressure in the non-vaccinated population, may be
possible by utilizing data sources that are external to the
trial, but estimation of λ1(.) would be hard. This problem
can be circumvented if we are ready to impose a pro-
portionality assumption, according to which, although the
rates at which infections occur in the vaccine and placebo
groups generally vary in time, their ratio is a constant
ρ > 0. Expressed in symbols, we assume then that λ1(t) =
ρλ0(t), t ≥ 0. The smaller the value of ρ, the better pro-
tected, according to this model, the vaccinated individuals
are. The value 1 − ρ is what is commonly called vaccine
efficacy at reducing infection susceptibility, abbreviated as
VES (e.g., Halloran et al. [52]).
The postulated proportionality property appears to be

reasonable if all trial participants are vaccinated approx-
imately at the same time, in which case t refers to time
from vaccination, and if both groups, due to randomiza-
tion, can be assumed to be exposed to approximately the
same infection pressure. If the trial participants have been
recruited from different geographical regions with highly
varying levels of infection pressure, a stratified analysis
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based on a common vaccine efficacy value might still be
possible. However, if vaccination takes place over a longer
time period, it becomes difficult to differentiate from each
other the effects of infection pressure, varying in the pop-
ulation with calendar time, and that of individual level
susceptiblity, which is likely to depend on the build-up
of the immune response and thereby on the time from
vaccination.
A different matter, which has received much attention

recently in connection of COVID-19 vaccine trials, is the
dependence of ρ on age, due to the immune response in
the older age groups generally developing more slowly.
Stratification of the analyses by using some age threshold
has been applied, but the selected thresholds have var-
ied. This is a problem for statistical analysis as long as
the numbers of infected individuals in some age groups
remain low.
Supposing now a common value for ρ, there are two

alternative approaches to be selected from: Either (i) con-
sidering joint inferences on the pair (λ0(.), ρ), using the
“full” likelihood (13) for this purpose and introducing a
separate model for a description of λ0(.), or (ii) following a
path well known from the context of the Cox proportional
hazards model and employing a corresponding partial
likelihood expression (e.g., Yip and Chen [53]). In a strat-
ified analysis, the (partial) likelihood expressions would
become products across the considered strata. Here we
consider briefly the approach based on partial likelihood.
A comparative assessment of these approaches is beyond
the scope of this presentation.
By inserting the assumed form λ1(.) = ρλ0(.) of the

intensity λ1(.) into (13), it can be written, after some
re-arrangement and cancellation of terms, in the form

L(λ0, ρ|Dt) = exp
{
−(n0 + n1ρ)

∫ t

0
λ0(s)ds

}
(n0 + n1ρ)N(t)

∏

m≤N(t)
λ0(Tm)

×
∏

m≤N(t)

(
n0

n0 + n1ρ

)δ(Tm)( n1ρ
n0 + n1ρ

)1−δ(Tm)

.

The latter product in this expression simplifies further
into

Lpart(ρ|Dt) =
(

n0
n0 + n1ρ

) ∑

m≤N(t)
δ(Tm)( n1ρ

n0 + n1ρ

) ∑

m≤N(t)
(1−δ(Tm))

= θN0(t)(1 − θ)N(t)−N0(t),

(14)

where we have denoted θ = n0(n0 + n1ρ)−1. This is
the sought-after partial likelihood and, parameterized in
this way, it has the familiar Binomial form. The word
partial signifies the fact that the parts in the “full” like-
lihood that were omitted in the derivation of (14) also
contain the unknown model parameter ρ. We now pro-
ceed by employing the approximation where the partial
likelihood is treated as if it were the “full”. On specifying a

Beta( . | α,β)-prior for θ , and using the conjugacy prop-
erty of the Beta-Binomial distribution family, we would
get the posterior p(θ | Dt) = Beta(θ | α + N0(t),β +
N(t) − N0(t)), and further the posterior for ρ by noting
that ρ = n0(1 − θ)/n1θ .
However, a Beta-prior may not be fully appropriate for

this particular application. More naturally we could pos-
tulate, for example, the Uniform(0, 1) prior for ρ. It would
correspond to the assumption that infectivity in the vac-
cine group cannot be larger than in the placebo group,
but all values of vaccine efficacy between 0 and 100 per-
cent are a priori equally likely. This would entail for θ

a prior density, which is no longer of Beta-form. With
the conjugacy property lacking in this case, the posterior
can nevertheless be computed easily by applying Markov
Chain Monte Carlo sampling.
While adaptive treatment allocation appears to be less

of an issue in vaccine trials, there will be more inter-
est in how, and when, results from such trials could
be appropriately reported. At times such as the current
SARS-CoV-2 pandemic, there is much pressure towards
making the results from vaccine trials available as soon
as a pre-specified level of certainty can be assured. Again,
consistent with the likelihood principle, all monitoring of
posterior probabilities could be done in an open book
form, and not just in a few ’looks’ at pre-planned check
points. For example, the trial could be run, and it could
stop with declared success at time t if the posterior proba-
bility Pπ (VES ≥ ve∗|Dt) > 1 − ε1 were obtained, with ve∗
a pre-specified minimal target value and ε1 having a small
value such as 0.05 or 0.01. A similar criterion could be set
up for declaring futility.
To give an example from a real study, Moderna, Inc.

announced on November 30, 2020 (Moderna Inc. [54])
a primary efficacy analysis of their phase III COVID-
19 Vaccine Candidate. The announcement, based on a
randomized, 1:1 placebo-controlled study of 30.000 par-
ticipants, reported 185 infections in the placebo group
and 11 in the vaccine group, leading to the point estimate
11/185 = 0.059 of ρ and thereby efficacy estimate 0.941.
We computed the posterior density p(ρ|Dt) of ρ, using
these data N0(t) = 185 and N1(t) = 11 and assuming
the uniform prior for ρ as described above. The result,
together with the 95 percent HPDI (0.030, 0.105), is shown
in Fig. 2. The corresponding HPDI for VES = 1−ρ is then
(0.895, 0.970).

Remarks. A practical advantage of the Poisson pro-
cess approximation entertained above is that only the
numbers N0(t) and N1(t) are needed for computing
the posterior of ρ at time t. If n0 and n1 are not
large enough to justify such an approximation, statisti-
cal inference based on partial likelihood is still possi-
ble, but it then necessitates monitoring of the sizes of
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Fig. 2 Posterior density of ρ based on Moderna, Inc. COVID-19
primary efficacy data, with posterior mode at 0.0595 and 95% HPD
interval (0.030, 0.105)

the two risk sets. The exact times of infection are not
required, but the ordering in which members of either
the placebo or of the vaccine groups become infected
needs to be known. As in the case of the Cox pro-
portional hazards model, the partial likelihood expression
is then somewhat more involved and the computations
more slow.

In the above approach and analysis we have assumed
that the risk set sizes are reduced only due to the trial par-
ticipants becoming infected. This may not be so, as there
may be various other reasons why they may be lost from
follow-up. If the resulting right censoring concerns a large
proportion of the participants, this has to be accounted
for in the analysis. It does not create a conceptually diffi-
cult problem, but it requires that the sizes of the risk sets,
both in the vaccine and the placebo groups, are known
at the times at which new infections are registered. The
simple power form expression (14) for partial likelihood is
then not valid any more, and needs to be replaced by the
product

Lpart(ρ|Dt) =
∏

Tm≤t

(
R0,Tm

R0,Tm + R1,Tmρ

)δ(Tm)( R1,Tmρ

R0,Tm + R1,Tmρ

)1−δ(Tm)

,

(15)

where R0,Tm and R1,Tm are the sizes of the two risk sets
at time Tm. It is, in fact, a simple form of the famil-
iar expression used for the Cox proportional hazards
model, connected to the latter by the transformation ρ =
exp {−β}.
Currently, several vaccines against COVID-19 have

been successfully tested in placebo controlled Phase III
trials and, somewhat depending on the country, have then
been approved by the relevant regulatory authorities for
wider use in their respective population. In addition to the

original efficacy trials, there are now several studies on the
population level effectiveness of COVID-19 vaccines (e.g.,
Dagan et al. [55], Vasileiou et al. [56]). On the other hand,
in the present situation in which several vaccines that are
demonstrably efficacious against both infection and the
more serious forms of COVID-19 disease are available, it
may be difficult to find support, for a number of different
reasons, to additional large-scale placebo controlled trials
for testing new candidate vaccines, cf. Krause et al. [57].
A possible alternative to such testing would be to use

one or more of these existing vaccines as controls, and
then make a comparative study. Such a design presents
two major challenges, however. The first difficulty is
demonstrated clearly by the Moderna study described
briefly above: Of the approximately 15.000 individuals in
the vaccine group only 11 were infected during the trial.
If the candidate vaccine has at all comparable efficacy,
as would naturally be desirable, the number of infected
individuals in the vaccine group of a similar size, and
assuming a comparable infection pressure in the study
population, could not be expected to be much larger.
With such small frequencies from both treatment arms
in the trial, it would not be possible to arrive at a suffi-
ciently firm conclusion concerning the desired target of
superiority or non-inferiority, and this would be the case
regardless of the statistical paradigm that were applied for
such purpose.
To overcome this problem, it would therefore be almost

mandatory to seek regulatory approval to a design in
which healthy volunteers, some vaccinated by the can-
didate and some by an already approved vaccine, say
Vaccine*, used as a control treatment, are exposed to the
virus under a carefully specified protocol. The possibility
of a human challenge design, albeit with placebo controls,
was already discussed at the time when no efficacious vac-
cine was available (WHO [58], Eyal et al. [59], Richards
[60]), and it is still considered relevant now (Eyal and Lip-
sitch [61]). One could anticipate that in a challenge trial,
naturally depending on the level of viral exposure that
would be applied, a much smaller number of participants
would be needed for reaching a statistically valid conclu-
sion on comparability. If desired, such a design could be
extended to involve more than a single candidate and/or
control vaccine. Note that adaptive sequential recruitment
and Bayesian decision making, as exemplified by BARTS,
would find here their natural place: It would not be nec-
essary to fix the group sizes in advance; the trial could
be run with newly recruited individuals until the desired
level 1−ε1 of certainty, according to the updated posterior
probabilities, has been reached.
A second issue arising in the context of such a design

concerns statistical modeling and inference in a situation
in which information comes from different data sources:
While the design may lead to an efficacy estimate where
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the candidate vaccine is compared to another in rou-
tine use, this estimate cannot be readily converted to a
corresponding VES-estimate, where the candidate vac-
cine is compared to placebo. For practical consideration,
this latter estimate could be the one of most interest.
An approximate solution to this problem could be pro-
vided by assuming that the relative VES-efficacy measures
obtained from different trials, viz. an ’old’ trial for test-
ing Vaccine* vs. placebo, and the ’new’ trial for testing
the candidate vaccine vs. Vaccine*, act multiplicatively on
each other, which would correspond to the structure of
the Cox proportional hazards model. This would then
yield a synthetic VES-estimate for comparing the candi-
date vaccine to placebo, with a corresponding posterior
derived by applying Bayesian inferential tools providing
an uncertainty quantification. The relevance of this idea
of combining estimates from different trials needs to be
given careful scrutiny, however, and in particular since the
dominant virus variant may have changed in between.

Discussion
Clinical trials are an instrument for making informed
decisions. In phase II trials, the usual goal is to make
a comparative evaluation on the success rates of one or
more experimental treatments to a standard or control,
and in multi-arm trials, also to each other. More success-
ful treatments among the considered alternatives, if found,
can then be selected for further study, possibly in phase III.
With this as the stated goal for a trial, the conclusions

should obviously be drawn as fast as possible, but not
jumping ahead of the evidence provided by the acquired
data. Both aspects can be accounted for by applying a
suitable adaptive design, allowing for a continuous moni-
toring of the outcome data, and then utilizing in the exe-
cution of the trial the information that the data contain.
Still, there is always the antagonism Exploration versus
Exploitation: From the perspective of an individual patient
in the trial, under postulated exchangeability, the optimal
choice of treatment would be to receive the one with the
largest current posterior mean of the success rate, as this
would correspond to the highest predictive probability of
treatment success. However, as demonstrated in Villar et
al. [30], this Current Belief (CB) strategy leads to a very
low probability of ultimately detecting the best treatment
arm among the considered alternatives and would there-
fore be a poor choice when considering the overall aims of
the trial.
Finding an appropriate balance between these two com-

peting interests is a core issue in the design and execution
of clinical trials, and can realistically be made only in each
concrete context. For example, in trials involving medical
conditions such as uncomplicated urinary infections, or
acute ear infections in children, use of balanced non-
adaptive 1:1 randomization to both symptomatic

treatment and antibiotics groups appears fully reason-
able. A very different example is provided by the famous
ECMO trial on the use of the potentially life-saving
technique of extracorporeal membrane oxygenation in
treating newborn infants with severe respiratory failure
(e.g., Bartlett et al. [62], Wolfson [63]). While statisti-
cians advising clinical researchers have the responsibility
of making available the best methods in their tool kit,
there may well be overriding logistic, medical or ethical
arguments which determine the final choice of the trial
design. It has been even suggested that randomized clini-
cal trials as such can present a scientific/ethical dilemma
for clinical investigators, see Royall [64].
Bayesian inferential methods are naturally suited to

sequential decision making over time. In the present con-
text, this involves deciding at each time point whether
to continue accrual of more participants to the trial or
to stop, either temporarily or permanently, and if such
accrual is continued, selecting the treatment arm to which
the next arriving participant is allocated. The current joint
posterior distribution of the success parameters captures
then the essential information in the data that is needed
for such decisions.
The posterior probabilities used for formulating the

BARTS algorithm, when considered as functions of the
accumulated data Dn, can be viewed as test statistics in
sequential tests of null hypotheses against correspond-
ing alternatives. This link between the Bayesian and the
frequentist inferential approaches makes it possible to
compute, for the selected design parameters, the values of
traditional performance criteria such as false positive rate
and power. In the present approach, specifying a particu-
lar value for the trial size has no real theoretical bearing,
and would serve mainly as an instrument for resource
planning. Instead, the emphasis in the design is on mak-
ing an appropriate choice of its parameters, the ε’s and δ,
which control the execution of the trial, and on the direct
consideration of posterior probabilities of events of the
form {θk = θ∨} and {θ0 + δ ≥ θ∨} when monitoring
outcome data from the trial.
An important difference to the methods based on clas-

sical hypothesis testing is that posterior probabilities,
being conditioned on the observed data, are directly inter-
pretable and meaningful concepts as such, without ref-
erence to their quantile value in a sampling distribution
conditioned on the null. This is true regardless of whether
the trial design applies adaptive treatment allocation and
selection while the trial is in progress, or whether only a
final posterior analysis is performed when an initially pre-
scribed number of trial participants have been treated and
their outcomes observed.
Large differences between the success parameters, if

present, will often be detected early without need to wait
until reaching a planned maximal trial size. On the other
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hand, if the joint posterior stems from an interim analysis,
it forms a principled basis for predicting, in the form the
consequent posterior predictive distribution, what may
happen in the future if the trial is continued (e.g., Spiegel-
halter et al. [14], Yin et al. [65], Hobbs et al. [66]). Note,
however, that future outcomes are uncertain even in the
fictitious situation in which the true values of the success
parameters were known. Therefore, from the perspective
of decision making, the predictive distribution involves
only “more uncertainty” than the posterior, not less.
Another advantage of the direct consideration of poste-

rior probabilities is that the joint posterior of the success
parameters may contain useful empirical evidence for
further study even when no firm final conclusion from
the trial has been made. This is in contrast to classical
hypothesis testing, where, unless the observed signifi-
cance level is below the selected α-level so that the stated
null hypothesis is rejected, the conclusion from the trial
remains hanging inmid-air, without providingmuch guid-
ance on whether some parts of the study would perhaps
deserve further experimentation and consequent closer
assessment.
The standard paradigm of null hypothesis signifi-

cance testing (NHST), and particularly the version where
the observed p-value is compared mechanistically to a
selected α-level such as 0.05, have been criticised increas-
ingly sharply in the recent statistical literature (e.g.,
Wasserstein and Lazar [67], Greenland et al. [68]). In spite
of this, the corresponding strong emphasis on controlling
the frequentist Type 1 error rate at a pre-specified fixed
level has been largely adopted in the Bayesian clinical tri-
als literature as well (e.g., Shi, Yin, et al. [69], Stallard et
al. [70]). These error rates are conditional probabilities,
evaluated from a sampling distribution under an assumed
null hypothesisQnull and in practice computed during the
design stage when no actual outcome data from the trial
are yet available. In contrast, in the Bayesian clinical trials
methodology as outlined here, error control against false
positives is performed continuously while the trial is run
by applying bounds of the form Pπ

(
θ0+δ ≥ θ∨

∣∣D∗
i
)

< ε2,
where the considered posterior probabilities are condi-
tioned on the currently available trial data D∗

i . For this
reason, in our view, calibration of Bayesian trial designs
on a selected fixed frequentist Type 1 error rate (e.g.,
Thall et al. [46]) does not form a natural basis for com-
paring such designs. More generally, the role of testing a
null hypothesis and the consequent emphasis on Type 1
error rate should not enjoy primacy over other relevant
criteria in drawing concrete conclusions from a clinical
trial (Greenland [71]). Even posterior inferences alone
are not sufficient for rational decision making in such a
context, and should therefore optimally be combined with
appropriately selected utility functions (e.g., D.V. Lindley
in Grieve et al. [72]).

If the trial is continued into phase III, this can be
done in a seamless fashion by using the joint posterior
of the selected treatments from phase II as the prior
for phase III. In particular, if some treatment arms have
been dropped during phase II, the trial can be contin-
ued into phase III as if the selected remaining treatments
had been the only ones present from the very beginning.
Recall, however, from the remarks made in The case of
Bernoulli outcomes section that such treatment elimina-
tion, as encoded into BARTS, contains a violation of the
likelihood principle.
If BARTS is employed in phase III, and considering

that phase III trials are commonly targeted at providing
confirmatory evidence on the safety and efficacy of the
new experimental treatment against the current standard
treatment used as a control, it may be a reasonable idea
to lower the threshold values ε1 and ε2 from their levels
used in phase II, and thereby apply stricter criteria for final
approval.
No statistical method is uniformly superior to others

on all accounts. Important criticisms against the use of
adaptive randomization in clinical trials have been pre-
sented, e.g., in Thall et al. [46] and Wathen and Thall
[32]. In Thall et al. [46], computer simulations were used
to compare adaptive patient allocation based on Thomp-
son’s rule (Thompson [11], Villar et al. [30]) in its original
and fractional forms, in a two-arm 200-patient clinical
trial, to an equally randomized group sequential design.
Themain argument against using methods applying adap-
tive randomization was their potential instability, that is,
there was, in the authors’ view, unacceptably large (fre-
quentist) Q-probability of allocating more patients to the
inferior treatment arm, the opposite of the intended effect.
Although these simulations were restricted to Thompson’s
rule, the criticism in Thall et al. [46] was directed more
generally towards applying adaptive randomization and
would therefore in principle apply to our rules BARTA and
BARTS as well. The results from our simulation experi-
ments, shown in graphical form in Figs. 1, S4, S10 and
S11 in the Supplement, do not support such a firm neg-
ative conclusion, however. This holds provided that the
deviations from balance in the opposite directions are
not weighted completely differently, and particularly so
if the possibility of actually dropping a treatment arm is
deferred to a somewhat later time from the beginning of
the trial. A precautionary approach to the design, from a
frequentist perspective, could apply a sandwich structure,
starting with a symmetric burn-in, followed by an adaptive
treatment allocation realized by BARTA or Thompson’s
rule, and finally coupling in BARTS for actual treatment
selection.
Another criticism presented in Thall et al. [46] was that,

for trial data collected from a trial applying adaptive ran-
domization, the considered tests had lower power than
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in the case of equal randomization, provided that the
tests were calibrated to have the same Type 1 error rate.
This question is discussed in subsections B.1.3 and D of
the Supplement. In these experiments, adaptive treatment
allocation methods based on BARTA designs (a) and (b),
and on Thompson’s rule with fractional power κ = 0.25,
demonstrated frequentist performance quite comparable
to what was observed when applying the fully symmetric
block randomization design (d).
All adaptive methods favoring treatment arms with rel-

atively more successes in the past will inevitably introduce
some degree of bias in the estimation of the respective
success parameters, see Bauer and Köhne [73] and Villar
et al. [30]. A comprehensive review of the topic is provided
in Robertson et al. [74]. We have only considered this
matter briefly in the simulation experiments described in
the Supplement, and instead emphasized the, in our view,
more important aspect of the mutual comparison of the
performance of different treatment arms in the trial. All
biases in these experiments were relatively small and in
the same direction, downward, and are therefore unlikely
to have had a strong influence on the conclusions that
were drawn.
Our main focus has been on trials with binary out-

come data, where individual outcomes could be measured
soon after the treatment was delivered. More complicated
data situations were outlined in Extensions for handling
delayed outcome data. The important case of normally
distributed outcome data was by-passed here; there is a
large body of literature relating to it, e.g., Spiegelhalter et
al. [16], Gsponer et al. [75] andGerber, Gsponer, et al. [49].
A complication with the normal distribution is that, unless
the variance is known to a good approximation already
from before, there are two free parameters to be estimated
for each treatment. If a suitable yardstick at the start is
missing, many observations are needed before it becomes
possible to separate the statistical variability of the out-
come measures from true differences in the treatment
effects.
In principle, the logic behind BARTA and BARTS

remains valid and these rules can be applied for different
types of outcome data, requiring only the ability to update
the posterior distributions of the model parameters of
interest when more data become available. The computa-
tion of the posteriors is naturally much less involved if the
prior and the likelihood are conjugate to each other. Vague
priors, or models containing more than a single parame-
ter to be updated, will necessarily require more outcome
data before adaptive actions based on BARTA or BARTS
can kick in.
If such updating is not done systematically after each

individual outcome is measured, for example, for logis-
tic reasons, but less frequently in batches, BARTA and
BARTS can still be used in interim analyses at the times

at which the batches are completed. The same holds if
updating is done at regularly spaced points in time. Such
thinning of the data sequence has the effect that some of
the actions that would have been otherwise implied by
BARTA or BARTS are then postponed to a later time or
even omitted. In designing a concrete trial, one then needs
to find an appropriate balance between, on one hand, the
costs saved in logistics and computation, and on the other,
the resulting loss of information and the effect this may
have to the quality of the inferences that can be drawn.
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