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A B S T R A C T   

Landslides are one of the natural phenomena with more negative impacts on landscape, natural 
resources, and human health worldwide. Andean geomorphology, urbanization, poverty, and 
inequality make it more vulnerable to landslides. This research focuses on understanding 
explanatory landslide factors and promoting quantitative susceptibility mapping. Both tasks 
supply valuable knowledge for the Andean region, focusing on territorial planning and risk 
management support. This work addresses the following questions using the province of Azuay- 
Ecuador as a study area: (i) How do EFA and LR assess the significance of landslide occurrence 
factors? (ii) Which are the most significant landslide occurrence factors for susceptibility analysis 
in an Andean context? (iii) What is the landslide susceptibility map for the study area? The 
methodological framework uses quantitative techniques to describe landslide behavior. EFA and 
LR models are based on a historical inventory of 665 records. Both identified NDVI, NDWI, 
altitude, fault density, road density, and PC2 as the most significant factors. The latter factor 
represents the standard deviation, maximum value of precipitation, and rainfall in the wet season 
(January, February, and March). The EFA model was built from 7 latent factors, which explained 
55% of the accumulated variance, with a medium item complexity of 1.5, a RMSR of 0.02, and a 
TLI of 0.89. This technique also identified TWI, fault distance, plane curvature, and road distance 
as important factors. LR’s model, with AIC of 964.63, residual deviance of 924.63, AUC of 0.92, 
accuracy of 0.84, and Kappa of 0.68, also shows statistical significance for slope, roads density, 
geology, and land cover factors. This research encompasses a time-series analysis of NDVI, NDWI, 
and precipitation, including vegetation and weather dynamism for landslide occurrence. Finally, 
this methodological framework replaces traditional qualitative models based on expert knowl
edge, for quantitative approaches for the study area and the Andean region.   
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1. Introduction 

Landslides caused 4.9% of all-natural disasters and 1.3% of fatalities worldwide between 1990 and 2015 [1]. According to the 
World Meteorological Organization [2], landslides are responsible for 10% of disasters in South America and 12% of human deaths. 
This percentage increases to 23% if the entire South Pacific region is considered [3]. 

The Andean sub-region in South America lies on Nazca, South American, and Caribbean tectonic plates. It extends from Chile in the 
south to Colombia and Venezuela in the north, in western South America. This sub-region is marked by the Andes mountain range, the 
most relevant mountain massif in the geomorphological context. It is also located along the Pacific Ring of Fire, known for its high 
seismic and volcanic activity [4]. The stability of the high slope of the Andean mountains is reduced in areas with active faults and high 
precipitations. These areas occur at tropical and subtropical latitudes due to extreme rainfalls [5,6] (above the 90th, 95th, and 99th 
percentiles) and changes in weather patterns resulting from climate change [7]. Moreover, anthropic activities caused by inadequate 
urbanization processes, high poverty levels, inequality, and environmental degradation put the Andean sub-region at high-risk for 
landslides and other hazards [8,9]. 

The province of Azuay in Ecuador includes areas below 100 m. a.s.l. (Camilo Ponce Enriquez) to areas exceeding 2500 m. a.s.l 
(Cuenca) with a wide heterogeneity of climates and vegetation. It is a representative sample of the Andean subregion. Landslides are 
significant for their human and material implications in this province. On March 29, 1993, approximately 72 people were killed by a 
rockslide in La Josefina [10]. In Guarumales, an active landslide has also endangered the Molinos Hydroelectric Plant, where 
approximately 250 persons live [11]. Multiple landslides have occurred on the Cuenca-Molleturo-Naranjal road. Consequently, it has 
been temporarily closed on several occasions. This road connects Cuenca—the central city in Azuay— with Guayaquil —the main port 
of Ecuador— [12]. Lastly, alluvium occurred in Sayausí on March 27, 2022, when streams clogged after a heavy rainfall of approx
imately 30 mm/h. Over 400 people were left homeless, and a minimum of four died [13]. 

Landslide susceptibility analysis is considered an essential tool for territorial zoning, as it assists land use planners and policy
makers in achieving territorial sustainability and resilience [14,15]. Predicting future landslide areas will help to design safe human 
settlements and monitor high-susceptibility places [16]. Landslide susceptibility modeling assumes that future landslides will be more 
likely to occur under similar conditions than previous events. These conditions will vary according to the scale of analysis, charac
teristics of the sampling site, landslide shape and location, and mechanisms contributing to the fault. The model’s accuracy depends on 
the amount and quality of information (number and quality of factors), among other aspects, such as the reliability of the landslide 
inventory [17]. Redundant and irrelevant factors will reduce predictive accuracy [18]. In this context, identifying relevant factors for 
landslide susceptibility modeling is one of the most critical and challenging tasks due to the lack of universal guidelines for its selection 
[19], the wide variety of landslides, and the particular characteristics of the study area. Previous to the application of the modeling 
algorithm, the identification of explanatory factors is relevant. It is based on literature review, expert knowledge, availability of in
formation, and data exploration [20]. Some examples of data exploration techniques are Logistic Regression (LR) [21–23], heuristics 
based on expert opinion [24, 25], Discriminant Analysis [26], Markov Chain [18], machine learning techniques [27], and Exploratory 
Factor Analysis (EFA). EFA is a statistical technique that aggregates interrelated variables to form fundamental factors for landslide 
processes. Some of the listed techniques to analyze adequate explicative factors have also been used as modeling algorithms. 

LR has attractive features for landslide susceptibility modeling, such as (i) allowing to predict affected and non-affected areas; (ii) 
the use of independent input factors of any type (nominal, numerical, or categorical); (iii) lack of assumptions on the statistical dis
tribution of factors (i.e., normal distribution); (iv) low computational demand. Furthermore, Nhu et al. [28] pointed out that LR 
outperformed other algorithms such as Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine; while Pham and 
Prakash [29] place LR above Fisher’s Linear Discriminate Analysis. 

The Andean region has deficiencies in susceptibility analyses due to a lack of detailed technical information from landslide in
ventories despite having risk management policies [8]. These shortcomings come from insufficient budgets for information acquisi
tion, resulting in outdated equipment, poor maintenance, and a lack of training for technical staff [30]. Furthermore, most studies of 
landslide susceptibility on a regional scale in Ecuador have used qualitative (semi-quantitative or heuristic) methodologies such as 
Analytical Hierarchy Process [31]. Although this methodology is widely used worldwide [32–36], it relies on experts’ opinions to 
assign weight to each landslide factor, which influences its selection, comparison, and prioritization. The experts’ judgment is based on 
their professional experience and knowledge of the area, among other aspects [37]. The uncertainty derived from these opinions 
constitutes the most critical limitation of qualitative modeling. Therefore, its results are somewhat subjective. As a response, quan
titative frameworks with statistical techniques are objective. According to Shano et al. [26], these methods include LR [16, 38]; 
deterministic [39,40]; probabilistic, and artificial intelligence algorithms [41,42]. 

The authors pretend to answer the following questions based on the described scientific and practical issues: (i) How do LR and EFA 
evaluate the significance of landslide occurrence factors? LR has been widely used for landslide susceptibility mapping, as it allows 
identifying significant factors related to landslides [43–45]. However, EFA, as a multicriteria technique, has not been exploited for 
Landslide factor analysis as in other areas [46,47]. According to the literature review, only a study was found done by Barančoková 
et al. [48] in the same line. (ii) Which are the most significant landslide occurrence factors for susceptibility analysis in an Andean 
context? A time series analysis of precipitation, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water 
Index (NDWI) will introduce the dynamic development characteristics of landslide susceptibility. Besides, this procedure helps to 
eliminate atmospheric effects such as disturbance caused by clouds and outliers or missing data from single-date images (iii) What is 
the landslide susceptibility map for the study area? According to the authors’ knowledge, few local quantitative approaches to 
landslide susceptibility maps in Ecuador [49,50]. Most landslide susceptibility studies have used qualitative methodologies on a 
regional scale despite the subjectivity limitation discussed above. The present study contemplates the province of Azuay in Ecuador. It 
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will provide technical inputs and assist municipal governments and planners to better manage the territory by reducing fatal landslide 
consequences. 

2. Data and methodology 

This research evaluates landslide explanatory factors. It was done using a multivariate analysis through EFA and LR. Both methods 
allow for obtaining a statistical model that best describes the landslide behavior in the Andean region. The primary input for the 
analysis is a training set with landslide occurrence and non-occurrence locations characterized according to 16 factors. These factors 
are consistent with previous research in similar areas for susceptibility mapping using data-driven techniques such as those developed 
by Vorpahl et al. [22]. Finally, we obtained a landslide susceptibility map to identify the spatial probability of occurrence from the 
LR-optimized model. The summarized procedure is shown in Fig. 1. 

2.1. Case study 

The province of Azuay is located in the south of Ecuador’s inter-Andean region (Fig. 2 (a)). Around 50% of its territory comprises 
cold peaks of mountain ranges with inherited paleo-glacial forms and external water runoff covered by pyroclastic material, ash, and 
lapilli. The study area consists primarily of steep slopes between 25% and 50% and precipices with slopes greater than 70% in Cañar 
and Naranjal-Pagua subbasins. Since 2015, the study area has had 723 mining concessions, including metallic, non-metallic, com
binations of both, and construction materials. Landslides represent 39,545 ha; creeping landslides, subsidence, and settlement 9798 
ha; debris and mudflows 676.57 ha; while alluvial material next to rivers represents 16,855 ha, regarding mass movements [51]. 

The geology is complex in the study area, as shown in Fig. 2(b). The lithology comprises metasediments dating back to the late 
Paleozoic and was affected by a Triassic orogeny. The Pallatanga Unit is part of an ophiolitic sequence accreted against the margin of 
the South American continent during the middle to late Cretaceous. The suture line for this accretion in the area is marked by the 
Bulubulu fault, which separates a belt of metamorphic rocks southeast from the Pallatanga Unit to the northwest. The Yunguilla 
formation of the Maestrichtian age was partially deposited upon the Pallatanga Unit—the Macuchi Formation, which represents an 
island arc developed in the Early Tertiary. At the same time, the siliciclastic sequence of the Angamarca Group laid down in a forearc- 
marginal sea which separated the island arc from the continental margin. The Macuchi Arc deformed the Angamarca Group and 
Macuchi Formation in the Late Eocene. Continental volcanism of the Saraguro Group began in the ocean, deposited on metamorphic 
rocks and basalts of the Pallatanga Unit. Volcanic activity and periods of erosion and deformation continued during the Early Miocene. 
These events formed the Ocaña Formation, Chulo Unit, Filo Cajas Unit, Tomebamba Unit, Chanlud Formation, and Río Blanco For
mation. During the Miocene, east-west tensional forces formed intramountainous basins to the east, where fluvial sediments of the 
Ayancay Group and the Turi Formation were deposited. A large-scale pyroclastic event produced the Tarqui Formation. 

2.2. Landslide occurrence factors 

2.2.1. Geology - lithology 
Geology provided information on the diversity of outcropping rock units (lithology) covered by fine soil. Depending on its type, 

each rock will belong to a different petrogenetic environment and will vary in composition, engineering properties, and stability 
characteristics. These variations impact the landslide’s frequency and size [52]. The geology map was generalized to a scale of 1:100, 
000. It comes from regional and Ecuadorian geological maps (1:1′000,000) and maps of the Cordillera Occidental 2–3◦ S and 3–4◦ S 
(1:200,000, with an in-detail survey at 1:50,000 scale). This factor was classified into five categories according to its favorability of 
causing landslides (Table 1). 

Fig. 1. Methodology flowchart.  
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2.2.2. Faults 
The existing geological lineaments, structures, and faults were derived from regional geological maps at a 1:100,000 scale. Two 

factors are derived: distance and density. The former factor was computed through the Euclidean Distance to the nearest fault and the 
latter was obtained by computing a Kernel Density function with a search radius according to Eq. (1). It represents two standard 
deviations (σ) from the median of the distances between inventory points and fault lines (μ). 

dk= 2 σ + μ (1)  

2.2.3. Morphology 
The morphology characterization was based on a digital elevation model (DEM) originally at 3 m spatial resolution (raster format). 

The slope, profile, and plane curvature, Topographic Wetness Index (TWI), and Stream Power Index (SPI) were derived from it. The 
strength of shear stresses associated with gravity and driving forces increases as the slope angle does [54]. According to Fanos and 
Pradhan (2019) [55], rockfall is related to slopes from 45◦ to 75◦, surface landslides with angles from 23◦ to 43◦, and debris flows with 
angles from 15◦ to 25◦. 

Profile and plane curvatures are slope changes based on second-degree altitude derivatives [56]. The profile curvature contributes 
to erosion and sedimentation. Negative values indicate convex curvature and water flow acceleration, while positive values indicate 
concave curvature and water flow deceleration [57]. The plane curvature allows for predicting whether a fluid will converge (negative 
values), diverge (positive values), or behave linearly (values near zero) [58]. Soil erosion will be more significant on concave slopes 
because water accumulates as it flows down the slope [59]. Curve analysis has been widely applied for landslide zoning [60, 61]. 

TWI has been used as a landslide explicative factor to assess the structural connectivity of the water network. Besides marking 
potential surface runoff pathways, TWI high values are also helpful for identifying hydrological sinks [62]. Water seeps into the subsoil 
or evaporates within hydrological sinks. It causes accumulation processes that alter soil material conditions and promote the occur
rence of landslides. Eq. (2) shows how TWI is computed, where SCA is the flow accumulation area per unit contour width. This factor 
shows the tendency to receive water. β is the slope in radians, representing the tendency to drain water [63]. 

Fig. 2. Study area. (a) Location Map; (b) Geological Map.  

Table 1 
Favorability of geology for landslide occurrence.  

Lithology Categories Favorability 

Volcanic rocks (basalts, gabbros, andesite) healthy metamorphic rocks. Low 1 
Pyroclastic rocks, lavas, breccias, sedimentary rocks, and moderately altered metamorphic rocks. Moderated 2 
Pyroclastic flows, tuffs, altered intrusives, slightly altered sedimentary rocks, and altered metamorphic rocks. Medium 3 
Pyroclastic soils, strongly altered and fractured rocks. High 4 
Superficial deposits, colluvial, alluvial, alluvial fan, porphyritic rocks (subvolcanic), andesitic porphyries. Very high 5 

Source: Based on the classification of [53]. 
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TWI = lnln
(

SCA
tantan β

)

(2) 

SPI can be used to determine the amount of soil loss or erosive power caused by streamflow. This index can predict net erosion in 
areas of convergence and flow acceleration (convex profile curvature and tangential concavity), as well as net disposal in areas of 
decreasing flow velocity (concave profile curvature) [64]. Eq. (3) was used for its calculation, where A∗

s is the catchment area and β is 
the local slope gradient in degrees. The calculation is based on the assumption that discharge is proportional to the catchment area 
[65]. Generally, low or flat slopes facilitate flooding processes, therefore, have the topographic potential for sediment accumulation. 
These slopes have a negative SPI value. Positive values indicate steep slopes that contribute significantly to soil erosion and 
degradation. 

SPI =A∗
s tantan β (3)  

2.2.4. Land cover 
This study obtained the land cover map from secondary sources (Provincial Government of Azuay and Universidad del Azuay). It is 

a vector layer at a scale of 1:5000. This factor has been categorized into eight classes: water, forest, wasteland, other covers, no in
formation, agricultural land, shrub and herbaceous vegetation, and anthropic zones. 

2.2.5. Spectral indexes 
The NDVI facilitates the differentiation of vegetation types (e.g., landslide terraces) and provides information of the photosyn

thetically active biomass. The index was computed using Eq. (4). Higher positive values indicate more vigorous or denser vegetation 
cover. In contrast, negative values indicate water and snow, while values close to zero indicate bare soil [66]. NDWI, on the other hand, 
is sensitive to water changes in land cover and is a soil condition indicator [67]. This index was computed using Eq. (5), where negative 
values indicate dry areas and positive values indicate wet areas and vegetation with higher moisture levels. Both equations are 
calculated based on satellite images and their spectral bands, where NIR is the abbreviation for Near Infrared Band. RED and GREEN 
refer to bands in the visible spectrum that represent the colors of their name. 

NDVI =
NIR − RED
NIR + RED

(4)  

NDWI =
GREEN − NIR
GREEN + NIR

(5) 

This research calculates these spectral indices using Sentinel-2 (A and B) time series at a spatial and temporal resolution of 10 m and 
5 days, respectively. Sentinel-2′s band 8 is NIR with a central wavelength of 842 nm; RED (band 4) and GREEN (band 3) have their 
central wavelength at 665 nm and 560 nm, respectively. 

In total, 1649 Sentinel 2 A and B images were automatically downloaded using the Sen2r package. The study area is covered by 4 
tiles (17 MPS, 17 MQS, 17 MQT, 17 MPT) from the five-year period from 2016 to 2020. The images were preferentially acquired at 
level 2 A, while those only available at level 1-C were atmospherically corrected. These indices values range between − 1 and 1. 
However, for this research, it was calculated in bytes. These values are re-scaled from 0 to 200; the non-data values take 255. Then, the 
values are changed to 100, multiplied by 100, and truncated to 200. All steps of this process were carried out using the “sen2cor” 
module in R from the European Space Agency [68]. A time series analysis was performed using 1649 NDVI and NDWI images to 
calculate a composite image for each index [69]. Composite images are more explanatory than a single image from a specific date. It 
highlights vegetation growth information by eliminating background noise caused by weather and other factors [70]. Authors such as 
Behling et al. [71] used the mean as the base statistic to build the composite, while Cao et al. [72] and Lan et al. [73] used the 
maximum. This research used the median (to avoid outliers’ influence) to have an index for each month. Subsequently, it computed the 
average of all of them [74], resulting in one NDVI and one NDWI for the entire five-year period. 

2.2.6. Roads 
The Provincial Government of Azuay provided the road network at a scale of 1:25,000. Two factors were derived from roads, 

distance, and density, using analogous procedures to those of section 2.2.2. 

2.2.7. Precipitation 
Daily time-series data between 1985 and 2020 were obtained from 45 weather stations located in the Azuay province and sur

rounding watersheds. This information was provided by the National Institute of Meteorology and Hydrology, and the Municipal 
Public Company of Telecommunications, Drinking Water, Sewerage and Sanitation of Cuenca. Climatological data must be accurate 
and complete for temporal analysis. However, these data have errors due to the technique and type of instrument used for their 
acquisition. It implies the need for a homogenization process. It was done through the R package “climatol”, which implements 
Standard Normal Homogeneity Test (SNHT) for its homogenization [75]. 

Precipitation statistics such as means, standard deviations, and extreme data (maxima, 99th percentile, and 95th percentile) were 
derived from the homogenized daily and monthly data series. These statistics were computed for the complete series and the dry and 
rainy seasons, representing 31 precipitation variables. According to Tang et al. [23], the principal component analysis (PCA) reduced 
this large number of variables. This statistical technique, extensively described by Bro and Smilde [76], linearly transforms an original 
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set of variables into another set of uncorrelated variables. The amount of variance explained in each principal component (PC) defines 
the order of these new variables. In the framework of this research, Kaiser’s rule [77] was followed to choose the number of significant 
PCs, according to which PCs with an eigenvalue greater than one were chosen [78]. The selected PCs were added as new variables to 
the landslide inventory, replacing the 31 precipitation statistics computed from the homogenized series. 

Homogenous spatial resolution for all raster layers is required for map algebra and modeling. All factors were rasterized and re- 
sampled to 10 m spatial resolution considering the grid of Sentinel-2 images. Geological and precipitation factors were upsampling 
to have higher resolution images than its inputs. On the other hand, the inverse process was done with downsampling for DEM and land 
cover layers. The consequent data loss is not representative due to the factor’s spatial variability. 

2.3. Inventory 

Data-driven susceptibility models start with an inventory of occurrences. These historical records can be obtained through (i) visual 
photo interpretation of aerial photographs or satellite images [79], (ii) secondary sources [52], (iii) object-based image analysis [80], 
(iv) damage assessment through field inspection [81], and (v) synthetic aperture radar interferometry [82,83]. 

National Risk and Emergency Management Service and the Geological and Energy Research Institute provided an inventory of the 
landslide locations for the study area. The former institution reported 173 points from 2016 to 2020. This dataset was compiled based 
on reported landslide emergencies, being relatively new. The latter institution elaborated an inventory considering studies, consul
tancies, and field reports from the ‘70s, ‘80s, and ’90s, reporting 492 points (e.g., PRECUPA, DINAGE). Both datasets were merged into 
a unique database to build the occurrence sample. 

Samples representing positive and negative occurrences are needed to analyze the significance of the factor related to landslides 
and to build predictive models. The study area was divided into affected and non-affected areas to obtain the non-occurrence samples. 
The affected area was defined based on a buffer from occurrence points. The buffer influence distance corresponded to two standard 
deviations of the median of the minimum distances between each occurrence point. The median was used as a central trend measure 
because of the non-normality of the distance distribution. The remaining area corresponded to the non-affected zone. 589 random 
points were extracted from the latter area, maintaining the proportionality between occurrence points versus the affected area and 
non-occurrence points versus the non-affected area. Occurrence points were labeled with 1, and non-occurrence points were labeled 
with 0. 

2.4. Exploratory factorial analysis (EFA) 

EFA probes correlative relationships between manifest factors and models these relationships with one or more latent factors [84]. 
Its purpose is to generate hypotheses rather than to validate any existing one a-priori [85]. This method can be further described in 
Watkins (2018) [86] EFA considers essential parameters such as: (i) the optimal number of factors to retain, computed through Kaiser 
[77], scree test [87], and parallel analysis [88], among other techniques; (ii) the rotation of factors, which can be orthogonal (e.g., 
varimax and quartimax), or oblique (e.g., Direct Oblimin, Promax). Orthogonal rotations are used with uncorrelated factors or when a 
general factor is expected. In contrast, oblique ones allow some correlation [89]. Based on the above, this research used the Promax 
rotation as the most used within the oblique rotations. 

The conformation of latent variables is given by grouping observed variables with the highest Factor Loading (FL). According to this 
value, there is a minor contribution with FL > |0.3|, a significant contribution with FL >|0.5|, and a relevant contribution with FL >| 
0.7|. All those FL < |0.3| will be non-significant. On the other hand, the total variance of each variable will be explained through 
communality, uniqueness, and error. The communality (h2) is the variance explained by the total of the computed factors. An h2 
greater than 0.6 is recommended with sample sizes less than 100 observations, and an h2 greater than 0.5 with sample sizes greater 
than 100 observations. Uniqueness refers to the variance explained by the same variable, which does not depend on other variables. 
Finally, there is the random error. 

2.5. Logistic Regression (LR) 

LR is one of the most reliable approaches for evaluating landslide susceptibility and optimizing the model using the most significant 
factors [45, 90]. The factor labeling with 1 for occurrence and 0 for non-occurrence locations is considered the categorical-binary 
dependent variable. The independent variables are morphological, environmental, and anthropic factors. They can be numerical or 
categorical [91]. The LR model was calculated through Eq. (6), where y represents the dependent variable, xi is the i-th explanatory 
variable, β0 is a constant, βi is the i-th coefficient of the regression, and e is the error [92]. The probability of occurrence of the event 
instead was represented through Eq. (7) using maximum likelihood estimation. 

logit(y)= β0 + β1x1 + β2x2 + ⋯ + βixi + e (6)  

p=
e(β0+β1x1+β2x2+⋯+βixi)

1 + e(β0+β1x1+β2x2+⋯+βixi)
(7)  
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2.6. Models validation 

The statistical validation for EFA was based on: (i) the cumulative variance explained by the extracted factors, which must be 
greater than half of the total variance (0.5) [93]; (ii) the Root Mean Square of the Residuals (RMSR), where the lowest value was sought 
(<0.08: reasonable fit and <0.05: perfect fit) [94]; (iii) the Tucker Lewis Index (TLI), which looks for values closest to 1. Values greater 
than 0.90 represent acceptable fit [95], while values greater than 0.95 represent excellent fits [96]. These threshold values refer to 
confirmatory factor analysis, being more flexible for EFA. 

The selection and optimization of factors are usually made stepwise in LR [97]. It adds factors one by one and tests their significance 
by the f or t-test. The Akaike Information Criterion (AIC) developed by Akaike [98] was applied in this research. This criterion 
evaluates how well the model fits the observed data by penalizing the complexity of the model. The most suitable model will be the one 
with the smallest AIC value. A detailed description of AIC can be found in Liao et al. [99]. The stepAIC function in R tries various 
combinations of the explanatory variables and stops when the AIC no longer decreases [100]. 

Spatially-distributed data could present spatial autocorrelation or lack of statistical independence. It causes an overestimation of 
the predictive power of models. K-fold cross-validation reduces the predictive model’s bias and thus helps avoid overfitting [101]. This 
method consists of spliting the data into k subsets of nearly equal size. The model is estimated from k-1 subsets because the subset left 
out is used to validate the model. This process is repeated k times [102]. K will depend on the amount of data, which in practice uses 5 
or 10 [97, 102, 103]. In this study, 10 folds were used. Thus, the total efficiency of the model corresponds to the average of each 
iteration error [104]. 

Accuracy, Kappa, Sensitivity, and Specificity statistics were calculated through the confusion matrix. It is a fundamental term to 
campare predicted values with real values to calculate Accuracy [105]. Accuracy represents the ratio of correctly classified samples in 
the landslide inventory according to Eq. (8). Kappa coefficient is interpreted as a measure of agreement beyond chance compared to 
the maximum possible beyond chance agreement [106]. It is calculated with Eq. (9). Values lower than 0 represent a poor agreement, 
from 0 to 0.2, a slight agreement, from 0.21 to 0.4 fair, 0.41 to 0.6 moderate, 0.61 to 0.8 substantial and 0.81 to 1 almost perfect [107]. 
Sensitivity is the True Positive rate or the probability that a positive observation is classified as positiv. It is calculated according to Eq. 
(10), and Specificity is the True Negative Rate, or the probability that a negative observation is classified as negative, calculated with 
Eq. (11) [108]. These four metrics are based on the number of true positives (TP), true negatives (TN), false positives (FP), and false 
negatives (FN). A good model must contain a high percentage of TP and TN because they represent the number of hits between 
predicted and actual values. In contrast, the model error is presented in the FP and FN percentage, representing overestimations and 
underestimations, respectively [109]. In this context, all four metrics must be closer to one. 

Accuracy=
(TP + TN)

(TP + TN + FP + FN)
(8)  

Kappa=
(TP + TN) − [(TP + FN)(TP + FP) + (FP + FN)(FN + TN)]/(TP + FP + FN + TN)

(TP + FP + FN + TN) − [(TP + FN)(TP + FP) + (FP + FN)(FN + TN)]/(TP + FP + FN + TN)
(9)  

Sensitivity=
(TP)

(TP + FN)
(10)  

Specificity=
(TN)

(TN + FP)
(11) 

On the other hand, curve ROC is one of the most efficient methods to evaluate the performance of predictive models. The area under 
the ROC curve (AUC) describes its ability to accurately predict the occurrences and non-occurrence of the landslide [110,111], 
considering TPR and False Positive Rate (FPR) [112]. AUC is calculated from Eq. (12), where P is the number of records with landslides 
presence, and N is the number of records with landslides absence. The result is expressed in values ranging from 0 to 1. The range 0.9–1 
represents an excellent performance; 0.8–0.9 is an excellent performance; 0.7–0.8 is a good performance; 0.6–0.7 is an average 
performance; 0.5–0.6 is a fair performance; and below 0.5 represents a poor performance [113]. 

AAUC=
∑

TP +
∑TP

P
+ N (12)  

3. Results 

3.1. EFA 

PC1 explained (above a |0.20|) the monthly and daily means of 36 years and the rainy season, the daily maximum of the dry season, 
the monthly 95th percentile, and the precipitation of April and May. PC2 (also with eigenvalues above |0.20|) explained the monthly 
precipitation of January, February, and March, the daily and monthly maximum values of the rainy season, the maximum of the 
complete time series, and the daily and monthly standard deviations in the rainy season. 

Bartlett’s test of sphericity (X2 = 7517.19, p-value = 0, df = 136) and the Kaiser-Meyer-Olkin test (KMO = 0.54) were significant 
for the training set, allowing EFA analysis. Two of the 23 methods used to identify the number of relevant factors (Parallel Analysis, 
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Kaiser Criterion) determined seven factors for reliable EFA modeling. It is based on the premise of getting the model that best fits 
reality rather than the perfect one (because it does not exist). In this framework and according to Table 2, the latent factor ML1 explains 
the factors NDVI and NDWI, so it was named the Vegetation Factor. ML4 has higher factor loadings for road distance, density, and for 
the landslide classifier, so it was named the Anthropic Factor. TWI, slope, and SPI represent ML3; it was named Morphological Factor. 
ML2 represents only altitude. ML5 is represented by fault density and distance, called the Geological Factor. ML6 is represented by 
plane and profile curvatures, called the Terrain Curvature Factor. Finally, ML7 represents PC1 and PC2 of the precipitation, 
denominated the Climatic Factor. 

In summary, the EFA model for landslide occurrence identified a relevant contribution of the NDVI, NDWI, TWI, Altitude, and PC2 
with h2 greater than 0.7; a significant contribution of roads (distance and density), faults (distance and density), and plane curvature, 
with h2 higher than 0.5; a minimal contribution from the categorical factor landslide classifier, slope, and profile curvature, with h2 
greater than 0.3. Finally, SPI, land cover, PC1, and geology do not significantly contribute to the model because they present h2 lower 
than 0.3. This seven-factor model explains 55% of the accumulated variance, with a mean element complexity of 1.5, an RMSR of 0.02 
(<0.08), and a TLI equal to 0.89. 

3.2. LR 

The complete LR model with all the factors (Model A) is expressed in Eq. (13), and the optimized model (Model B) under AIC 
stepwise procedure is fully described in Table 3. The latter model dropped Profile and plane curvatures, SPI, TWI, Road Distance, and 
PC1 factors to simplify it. The significance of each controlling factors was given using the Z statistic and its corresponding p-value. 
Wald Statistic has the same purpose, and its P-value P (X2) is closely similar to Pr (z). Model B directly correlates the probability of 
landslide occurrence with interceptor, altitude, slope, faults distance, and density. On the other hand, there is an inverse relationship 
with road density, NDVI, NDWI, and PC2. Concerning the land cover with agricultural land as the control group, forests, areas without 
information, shrub, and herbaceous vegetation could be more prone to landslides than agricultural land. Regarding lithology, igneous, 
sedimentary, and moderately altered metamorphic rocks are more significant for landslides than superficial deposits, colluvial, al
luvial, alluvial fan, porphyritic rocks (subvolcanic), and andesitic porphyries. 

Table 2 
Factor loadings of the observed factors in the latent factors.  

Factors MLa1 MLa4 MLa3 MLa2 MLa5 MLa6 MLa7 h2b 

NDVIc − 0.98 − 0.12 − 0.02 − 0.02 − 0.02 0.03 − 0.1 1 
NDWId 0.95 0.19 0.05 − 0.11 − 0.02 − 0.02 0.07 0.95 
Road distance − 0.08 − 0.7 − 0.02 0.06 − 0.06 − 0.04 0.05 0.51 
Road density 0.11 0.69 0.04 − 0.08 0.07 0.03 0.2 0.54 
Landslide classifier 0.08 0.64 0.06 − 0.06 0.04 0.02 − 0.08 0.44 
TWIe 0.02 0.08 0.97 − 0.03 0 0.21 0.04 1 
Slope − 0.16 − 0.3 − 0.47 − 0.03 − 0.15 0.16 − 0.21 0.43 
SPIf − 0.01 − 0.02 0.35 − 0.03 0.01 0.12 − 0.06 0.14 
Altitude − 0.03 − 0.1 − 0.01 0.85 0.09 0.01 0.07 0.75 
Land Cover − 0.03 − 0.13 − 0.05 0.28 0 − 0.01 0.09 0.11 
Fault density 0.03 − 0.16 − 0.05 0.01 − 0.77 0 − 0.01 0.62 
Fault distance 0.02 − 0.03 0.01 0.07 0.7 0.02 0.2 0.54 
Plane curvature 0.03 − 0.01 − 0.26 − 0.04 0.03 − 0.68 − 0.05 0.53 
Profile curvature − 0.01 0.05 0.04 − 0.03 0.02 0.61 − 0.03 0.38 
PC2g 0.03 0.33 0.07 0.66 0.04 0 − 0.66 1 
PC1h 0.08 0.01 0.01 0.09 0.1 0.01 0.41 0.2 
Geology 0.03 0.16 0.03 0.18 0.22 − 0.04 0.28 0.19  

a Latent Factors. 
b Communality. 
c Normalized Difference Vegetation Index. 
d Normalized Difference Water Index. 
e Topographic Wetness Index. 
f Stream Power Index. 
g Principal Component number 2. 
h Principal Component number 1. 
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Table 3 
Optimized LR model for landslide susceptibility.   

Estimate Std. Error z value Pr(>|z|)b WaldTest (X2) P(X2)  

(Intercept) 2.97E+01 6.25E+00 4.754 2.00E-06 2.26E+01  *** 
Altitude 3.79E-04 1.51E-04 2.519 0.011767 6.35E+00 0.011892 * 
Slope 2.85E-02 7.70E-03 3.706 0.000211 1.37E+01 0.000220 *** 
Fault distance 6.19E-05 4.23E-05 1.463 0.143389 2.14E+00 0.143640  
Fault density 1.56E+03 4.82E+02 3.23 0.001237 1.04E+01 0.001269 ** 
Road density − 2.45E+03 2.28E+02 − 10.745 <2E-16 1.15E+02 <2.22E-16 *** 
NDVIc − 1.23E-01 2.72E-02 − 4.518 6.25E-06 2.04E+01 6.85E-06 *** 
NDWId − 1.92E-01 3.99E-02 − 4.797 1.61E-06 2.30E+01 1.81E-06 *** 
PC2e − 1.13E-01 4.56E-02 − 2.466 0.01365 6.08E+00 0.013786 * 
Geology: low − 8.33E-01 9.24E-01 − 0.901 0.367705 8.11E-01 0.367880  
Geology:moderated − 3.06E+00 7.17E-01 − 4.263 2.01E-05 1.82E+01 2.17E-05 *** 
Geology:medium − 2.40E+00 6.98E-01 − 3.432 0.000599 1.18E+01 0.000618 *** 
Geology:high 1.67E+00 1.04E+00 1.602 0.109049 2.57E+00 0.109300  
LandCover:water − 1.27E+01 8.86E+02 − 0.014 0.988607 2.04E-04 0.988610  
LandCover:forest 8.63E-01 3.10E-01 2.783 0.00538 7.75E+00 0.005462 ** 
LandCover:wasteland 3.93E-02 4.72E-01 0.083 0.933608 6.94E-03 0.933620  
LandCover:other-covers − 1.57E+01 2.40E+03 − 0.007 0.99477 4.30E-05 0.994770  
LandCover:no-information 3.46E+00 4.55E-01 7.613 2.69E-14 5.80E+01 5.32E-14 *** 
LandCover:shrub-and-herbaceous-vegetation 8.60E-01 2.10E-01 4.099 4.16E-05 1.68E+01 4.43E-05 *** 
LandCover:anthropic zones − 1.06E+01 5.69E+02 − 0.019 0.985136 3.47E-04 0.98514  

*Significancia codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ″ 1. 
a Standard Error,b probability, c Normalized Difference Vegetation Index, d Normalized Difference Water Index, ePrincipal Component number 2. 

Fig. 3. Landslide susceptibility map from LR modeling.  
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2.92E+ 01 + 3.49E − 04 altitude + 2.68E − 02 slope – 3.06E − 02 profile curvature – 2.14E − 02 plane curvature + 6.54E

− 05 fault distance + 1.60E + 03 fault density + 9.11E − 06 SPI – 3.86E − 02 TWI + 4.07E − 05 road distance − 2.30E

+ 03 road density − 1.23E − 01 NDVI − 1.92E − 01 NDWI + 1.11E − 02 PC1 − 9.38E − 02 PC2 − 7.29E − 01 geology

: low − 3.01E + 00 geology : moderated − 2.34E + 00 geology : medium + 1.72E + 00 geology : high − 1.22E + 01 LandCover

: water + 8.55E − 01 LandCover : forest + 9.66E − 02 LandCover : wasteland − 1.58E + 01 LandCover

: other − covers + 3.53E + 00 LandCover : no − information + 8.47E − 01 LandCover

: shrub − and − herbaceous − vegetation − 1.06E + 01 LandCover : anthropic − zones
(13) 

The landslide susceptibility map shown in Fig. 3 was extracted through Model B. It is classified into 4 categories, divided into equal 
ranges from very low susceptibility for those areas with a probability of 0%–25%, low susceptibility for areas from 25% to 50%, high 
susceptibility from 50% to 75%, and very high from 75% to 100%. It can be observed that the probability increases in the glacial valley, 
in the foothills of the Andes mountain range, with a trend that goes from southwest to northeast. It means that the most active 
landslides are found to the east of the study area, and the activity decreases to the west. This pattern corresponds to lithology and 
geological faults. The most susceptible geological units are found along the Andes mountain range, such as metamorphic and sedi
mentary rocks, pyroclastic flows, and intrusive, altered, and fractured rocks belonging to the Turi, La Paz, Saraguro, and Ayancay 
geological formations. The areas mostly affected by this phenomenon are located in the cantons of Cuenca (Turi, Santa María del 
Vergel, Asunción, Sigsig, Paccha, Lourdes, San Pedro de Llacao, La Unión de Llacao, La Merced, Los Trigales, Gusho, Nulti, Chaul
labamba, Pacay, Ricaurte, Sinincay, Octavio Cordero, Santa Ana, San José de Balzay), Santa Isabel, San Fernando, Pucará, Girón, Oña, 
Nabón (Rosas, Tamboloma, Bellavista sectors), Sigsig, Gualaceo, Paute (Guaraynac sector), Sevilla de Oro, and Gapal (Jadán and 
Pumayunga). 

3.3. Validation LR models 

The confusion matrices of Models A and B are summarized in Table 4. The difference in Accuracy, Kappa, Sensitivity, and Spec
ificity is small, as the AUC. The latter has a difference of 0.1%, as shown in Fig. 4, where Fig. 4(a) represents the ROC curve for Model A, 
and Fig. 4(b) illustrates the ROC curve for Model B. However, Model A has an AIC of 974.56 and a Residual Deviance of 922.56, while 
Model B has an AIC of 964.63 and Residual deviance of 924.63. The higher the AIC, the more complex the model. With slight dif
ferences in performance, Model B is more parsimonious than Model A, and the dropped factors (Profile and plane curvatures, SPI, TWI, 
Road Distance, and PC1) do not demonstrate to be significant. 

4. Discussion 

The knowledge about the spatial and temporal distribution of landslides, captured through landslide inventories, is essential to 
identifying the evolution of the landscape and its relationships with human activities and land management. It becomes a critical tool 
for estimating the probability of occurrence through susceptibility maps, necessary for establishing land use policies [9] and risk 
assessment. Volume, area extent, velocity, material, and kinematics often allow the identification of landslide behavior and the 
associated hazard [114]. A weak risk management system represents a significant limitation in developing countries. It is caused by 
insufficient scientific knowledge about the phenomenon, inefficient communication and information dissemination processes, and 
political-cultural barriers [115]. In addition, other studies have reported a lack of baseline information, which has been replaced by 
remote sensing techniques [116]. 

In this research, two models have been used to determine the importance of morphological, environmental, and anthropic factors in 
landslide occurrence. Thus, EFA and LR have coincided in the importance of NDVI, NDWI, fault and road density, altitude, and PC2. 
This last factor reflects precipitation in the wet season months of January, February, and March, extreme precipitation, and the 
dispersion of precipitation values around the mean. This result agrees with Zhang et al. [117], who stated that mountainous regions 
with complex geology, factors such as: elevation, precipitation, and vegetation are the most important factors in the occurrence of 
landslides. In this context, it is also important to note that, unlike LR, EFA did not select categorical factors (geology and land cover) as 
relevant. 

Table 4 
Confusion matrix of LR models.   

Prediction  

Landslides Non-landslides 

Modelo A Observation Landslides 547 95 Sensitivity = 0.86 
Non-landslides 93 495 Specificity = 0.84 

Accuracy = 0.85; Kappa = 0.69 
Modelo B Observation Landslides 545 97 Sensitivity = 0.85 

Non-landslides 93 495 Specificity = 0.84 
Accuracy = 0.85; Kappa = 0.69  
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NDVI, as a vegetation indicator, is one of the most significant indices for identifying landslide footprints or susceptibility maps 
[118,119]. The lower the NDVI value representing bare soil, anthropic zones, water bodies, or sparse vegetation (e.g., wasteland), the 
higher the probability of landslide for the study area. The vegetation canopy can act as a natural umbrella, reducing the amount of 
water for infiltration and evapotranspiration processes. However, under extreme precipitation events, the umbrella effect disappears 
due to canopy saturation, impacting slope stabilization [120]. Spiekermann [121] developed a model to represent trees’ hydrological 
and mechanical influence on slopes, understanding that each vegetation type has different stabilizing effects. For instance, Guo et al. 
[122] show that grass favors landslides under rainy conditions. Despite this, Miandad et al. [123] state that using NDVI coupled with 
morphological factors helps to improve the overall model accuracy. In addition, this index becomes a key factor for the analysis of land 
recovery after a landslide [124]. 

This study shows the importance of NDWI for the characterization of landslide occurrence. It is consistent with Zhang et al. [125], 
Maqsoom et al. [126], and Nguyen et al. [20]. The water infiltrates when soil moisture uptake exceeds its water-holding capacity, 
resulting in subsurface runoff. In addition, soil particles expand with long-duration rainfall and swell, which reduces the inter-particle 
gap. This result —regarding the implications of water fluctuations in their study area— agrees with Hua et al. [127]. High NDWI values 
may also result from areas with higher precipitation regimes. However, the results of the present investigation show that the lower the 
NDWI value, the higher the probability of landslide occurrence. It is attributed to the fact that the lowest NDWI values for the study 
area are reflected in agricultural lands, shrubs, and herbaceous vegetation, which are sensitive to this type of phenomenon. It is 
observed that some researchers, such as Wang et al. [128], eliminate this factor from their study due to its high correlation with NDVI. 

In mountainous areas with contrasting climatic patterns, such as the Azuay province in Ecuador, landslide history is highly related 
to rainfall storms [129,130], especially with large-scale fluctuations and extreme rainfall [3]. The study results determined a higher 
landslide probability when there is a higher rainfall standard deviation, higher precipitation in the wet season (January to March), and 
a higher maximum rainfall (due to their inverse relationship in the PC technique). Therefore, Orejuela and Toulkeridis [31] give 
greater weight to precipitation in their study of susceptibility in central Ecuador. However, according to Jesus et al. [131], ground
water rather than precipitation is more critical to triggering a landslide. Groundwater destabilizes the slope, reduces strength, changes 
density, and generates pore pressures. Therefore, monitoring and hydrometeorological forecasting conditions would allow timely risk 
management by cross-checking with information on landslides in vulnerable areas. Short-duration rainfall causes more significant 
water infiltration into the soil, while more extended rainfalls cause soil saturation; both events favor landslide occurrence. Chousianitis 
et al. [132] showed that slope failure scenario change in different seasons, highlighting that rainfall’s effect on slope stability depends 
on the season of their occurrence. Studies conducted by Soto et al. [133] in the Loja-Ecuador basin show that rainfall with values of 
90%–145% above average cause the studied landslides. This area is also located in the Ecuadorian Andes, sharing similar charac
teristics with the province of Azuay. 

On the other hand, the geological factor is represented by three variables, faults distance, faults density, and geology. However, 
EFA does not indicate the importance of geology because the explained h2 is minimal (0.2). Despite this, geology is well known as one 
of the most important factors for landslides in Andean areas [4,133] since it is directly related to landslide frequency and size [52]. 
Soils formed by young sediments containing poorly consolidated rocks, exposed sheared rocks, and soft or weak rocks covered by hard 
rocks are susceptible to this phenomenon [92,134]. LR confirms that igneous, sedimentary, moderately altered metamorphic rocks 
greatly influence the occurrence of landslides (p-value <0.001), both by the type of existing material and the geological structures. 
However, geology is not always the most significant factor in other mountainous areas, Pham et al. [111] showed that slope, road 
distance, and rainfall are the most important factors. 

EFA and LR agree that the faults’ presence could be an important factor in the occurrence of landslides. They produce stresses and 
induce deformations due to water flowing through the fractured rocks, producing chemical weathering, scouring, and thus, erosion. In 
this way, they cause a variation in stability, rock strength, and soil texture [135]. Faults or geological structures appearing in the 

Fig. 4. ROC curves of LR models. (a) Model A with all factors; (b) Model B optimized.  

S.L. Cobos-Mora et al.                                                                                                                                                                                                



Heliyon 9 (2023) e20170

12

province of Azuay have preferential northeast-southwest and, to a lesser extent, northwest-southeast directions, as shown in Fig. 2(b). 
The three-dimensional geometry of the rock units and the geological faults’ orientation allows for quantifying the formations’ depth 
and volume. Therefore, the higher the density of faults, the greater the probability of landslide occurrence; the exact relationship is 
found with the fault’s distance. However, the latter does not show statistical significance in LR. This behavior may occur because 
geological faults cross the entire study area. 

Another highly significant factor (according to LR but not to EFA) is the quantitative description of the slope relief. It is commonly 
observed that a slope becomes progressively unstable as its gradient increases [134]. Therefore, LR states that the steeper the slope, the 
greater the probability of a landslide. This behavior agrees with Aditian et al. [136], Çellek et al. [137], and Guo et al. [138]. The study 
area presents slopes between 25◦ and 50◦, which according to Van Zuidam classification [139] are steep and very steep slopes. 
However, the landslide susceptibility does not increase only with the slope degree increment. It must be coupled with other factors 
such as gravity, water content, soil structure, potential erosion, hydrological and geomorphological processes, vegetation type and 
density, and geological formation discontinuity [137,140]. The slope is not the most influential factor in all territorial contexts [141]. 
It is shown by Tang et al. [23], who conclude a slope relevance only for rockfall and not for all mass movement types. Altitude is 
another analyzed factor within the geomorphology, considered an essential piece for landslide prediction and recognition [142], as it is 
affected by geological tectonics. This research shows that the higher the altitude, the greater the probability of landslide occurrence in 
the study area. It is due to the strong association between altitude, vegetation cover, and geological formations. However, it contrasts 
with Sun et al. [143] and Das et al. [144], where a negative correlation with altitude is stated. They focus on the fact that high areas are 
dominated by resistant to weathering rocks. 

In addition to the factors mentioned above, there is also anthropic action, mainly due to road construction, especially when roads 
are built on steep slopes using weak constructive standards [145]. The statistical significance of road distance and density provided by 
this research is consistent with the realities of developing countries. Such is the case of Brenning et al. [146], who established an 
increment of more than one order of magnitude in landslide probability for areas closer to paved interurban roads in the Andes of 
southern Ecuador. Moreover, McAdoo et al. [147] show that in Nepal, the probability is twice as much as in areas with poorly con
structed road infrastructure. Road construction destabilizes slopes, modifies the original topography of the terrain, physically alters the 
landscape, changes the slope hydrology, and adds unstable materials along the roadside [148]. This infrastructure allows sediment 
transport and water accumulation in areas with abundant precipitation. Therefore, the drainage system and proper management 
become indispensable to ensuring road network sustainability. 

Land cover is a highly dynamic factor due to human intervention and climate [149]. There is a slope modification (cuts in the 
slopes), changes in drainage systems, and deforestation (product of civil works construction), among other effects, when the land cover 
is altered. This alteration causes landslides [150], especially in Ecuadorian and Andean realities shown by Zimmermann and Elsenbeer 
[151] and Guns and Vanacker [152]. Landslide susceptibility can decrease with changes in land cover [153]. It would be the case from 
bare soil or grassland to cultivated land or from shrubland to forest, which favors slope stability [154]. A study applied to an Andean 
region in Colombia also reported that the existence of a forest decreases the probability of landslide occurrence [155,156]. 

5. Conclusion 

Landslide occurrence and its relationship with the environment (factors) is a complex multilevel system that must be understood 
before taking any action in territorial planning and risk management. Altitude, fault density, vegetation indexes (NDVI and NDWI), 
and precipitation were relevant for Azuay’s landslide susceptibility models built by both EFA and LR methodologies. Regarding 
precipitation, maximum rainfall in the wet season was highlighted, as it quickly saturates the soil. Further, EFA highlighted the 
importance of terrain morphology through a significant contribution of TWI and plane curvature. The anthropic influence is repre
sented by road density and distance and geological faults distance. On the other hand, the LR model disagrees with EFA regarding 
terrain morphology by selecting slope as a significant factor. Unlike EFA, LR was more prone to select categorical factors such as 
geology and land cover. 

The EFA model used 7 latent factors, which explained 55% of the accumulated variance, with a medium item complexity of 1.5, an 
RMSR of 0.02, and a TLI equal to 0.89. An AIC of 964.63, Residual deviance of 924.63, AUC of 0.92, an accuracy of 0.84, and a Kappa 
index of 0.68 were obtained in the case of LR. 

NDVI, NDWI, and precipitation were used within a time-series analysis, which provides more comprehensive information than data 
from a single date. Those factors include vegetation and weather dynamism, which are directly related to landslide occurrence as 
triggering factors. This multi-temporal analysis is archived thanks to remote sensing information based on satellite images of medium 
spatial resolution, and daily data from weather stations. 

The importance of the provided results resides in the identification of critical factors in the occurrence of landslides under an 
Andean context and the generation of a landslide susceptibility model through quantitative analysis on a regional scale for the study 
area. This methodological framework replaces traditional heuristic models based on expert knowledge. From our point of view, very 
few studies have been carried out in Ecuador for landslide susceptibility, and none of them focus on factor selection. In this context, this 
study contributes to state-of-the-art, covering geographical areas rarely explored but widely affected by landslides. The factors selected 
in the study can be extrapolated to other Andean cities in South America, such as La Paz, Cusco, Quito, and Bogota. However, they need 
to be calibrated with local inventories. 

Some limitations that could be addressed in future research are (i) considering the typology of landslide (e.g., flow-like, rotational, 
planar, soil creep, rockfalls): since each landslide type could have different conditioning and triggering factors associated with them. 
(ii) Exploring new algorithms for landslide susceptibility models, such as machine learning techniques. 
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