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We conducted a Monte Carlo evaluation of the dosimetric impact of the polysulfone 
cap used with the Fletcher-Williamson (FW) colpostat for 192Ir high-dose rate and 
pulsed-dose rate intracavitary brachytherapy. Polysulfone caps with diameters of 
30 mm, 25 mm, 20 mm, and 16 mm (mini-ovoid) were simulated, and the absorbed 
dose rate in surrounding water was calculated and compared to the dose rate cal-
culated for a bare 192Ir source in water. The dose perturbation depended on the 
cap diameter, distance away from the cap surface, and angular position around the 
cap. The largest dose rate reductions were found to be where the cap is thickest, in 
the general direction of the tumor bed. The range of perturbation mainly from the 
polysulfone cap over all depths and cap diameters was +2.8% (dose enhancement) 
to -6.8% (dose reduction); this perturbation is separate from the well-documented 
attenuation of the rectal and bladder tungsten shields of the colpostat. Based on the 
impact of the polysulfone cape, the FW colpostat cap’s material composition should 
be modified to reduce this dosimetric effect, or brachytherapy treatment planning 
dose algorithms should be improved to account for this perturbation.  

PACS numbers: 87.10.Rt 87.53.-j 87.53.Bn 87.53.Jw
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I. IntroDuctIon

Intracavitary brachytherapy is a standard treatment for loco-regionally advanced cervical can-
cers, with a majority of patients receiving both external beam radiotherapy and intracavitary 
brachytherapy.(1-3) Modern intracavitary brachytherapy practice typically uses high-dose rate 
(HDR) or pulsed-dose rate (PDR) techniques with afterloading technology. For example, both 
Nucletron HDR and PDR brachytherapy systems (Nucletron Corporation, Veenendaal, The 
Netherlands) use a pair of Fletcher-Williamson (FW) colpostats and an intrauterine tandem to 
facilitate the delivery of radiation from an 192Ir source via an afterloader. The colpostats serve 
to deliver a prescribed dose of radiation to diseased tissue while concurrently displacing healthy 
tissue away from the radioactive source. Colpostats can be adjusted in size to accommodate a 
range of patient anatomy, which is achieved by using a variety of cap sizes of between 16 and 
30 mm in diameter. These caps are composed of polysulfone, but do not completely fill the 
colpostat and thereby also include air cavities. 

Commercial brachytherapy treatment planning systems utilizing American Association of 
Physicists in Medicine Task Group 43 parameters(4,5) assume that the radioactive source is 
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surrounded by homogeneous water. While this may be a reasonable assumption for tissue, it 
may lead to erroneous dose calculations when colpostats with polysulfone caps are used, as 
polysulfone has a higher density than water and air has a much lower density.

Ye et al.(6) found that applicators composed of materials of nonunity density could impact 
the dose predicted by the treatment planning system. They reported the attenuating effects of 
a stainless steel uterine tube applicator and vaginal cylinder applicators consisting of uterine 
tubes surrounded by polysulfone sleeves of 20 mm and 40 mm in diameter. They found that 
a 5% improvement in accuracy of dose delivered to the patient using an 192Ir HDR vaginal 
cylinder could be achieved by compensating for the attenuation of the applicator system during 
treatment planning system calculations.(6) Ye et al. also found that the composition of an ap-
plicator may perturb the dose distribution. However, their work did not examine perturbations 
associated with FW colpostats, which could be substantial, given the size of some colpostats. 
This, along with the ubiquitous use of such colpostats, requires that a dosimetric examination 
be conducted.

The current study is an evaluation of the impact on the dose of polysulfone caps in Fletcher-
Williamson colpostats as compared to the dose predicted by a water-equivalent environment.

 
II. MAtErIALS AnD MEtHoDS

A. 192Ir source and Fletcher-Williamson colpostats model descriptions
Figure 1 depicts a central cut of the FW colpostat and the mHDR v2 192Ir source centered in the 
colpostat. The active length and diameter of the 192Ir source are 3.6 mm and 0.65 mm (mHDR 
v2), respectively. The iridium core of the source is encapsulated in an AISI 316L stainless steel 
cylinder with a rounded tip. Further details of the mHDR v2 source model can be found in the 
literature.(7-9)

The major components of the FW colpostat, as detailed by Price et al.,(9) are an AISI 316L 
stainless steel tube, a retaining screw, air within the colpostat and applicator tube, and rectal 
and bladder shields (modeled as Densimet 17). Separate polysulfone cap models were created 
for each of the three cap sizes used clinically at our institution (20 mm, 25 mm, and 30 mm 
diameters) (Fig. 2). The density of polysulfone is stated by the vendor as ρ = 1.24 g cm-3.  
However, Ye et al. reported a range of values for polysulfone density from 1.24 g cm-3 to 
1.6 g cm-3, and measured a density of ρ = 1.40 g cm-3. In our laboratory, we measured the density 
of polysulfone to be ρ = 1.38 g cm-3 and this value was used for all Monte Carlo simulations. 
The polysulfone composition was modeled as 50.5% carbon, 34.5% hydrogen, 10.0% oxygen, 
and 5.0% sulphur (by weight).(9)  

In addition to the FW models described above, we constructed a MC model of Nucletron’s 
minicolpostat intracavitary brachytherapy applicator. This applicator is 16 mm in diameter and 
does not contain intercolpostat shields. The dimensions of the minicolpostat polysulfone cap 
are shown in Fig. 3.

For all MC simulations, the HDR/PDR 192Ir source was centered within, and with respect 
to, the long axis of the stainless steel applicator tube. To preserve backscatter, the colpostat was 
placed at the center of a water sphere with a diameter of 30 cm.(7,10)  
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Fig. 1. Components of the Nucletron Fletcher-Williamson high-dose rate (HDR) and pulsed-dose rate (PDR) colpostat.  
Shown is a plane cut along the colpostat long axis with the intercolpostat shields (rectal shield [left], bladder shield [right]), 
the polysulfone cap, and the iridium-192 (192Ir) HDR/PDR source. 

Fig. 2. Components of the Nucletron Fletcher-Williamson high-dose rate (HDR) and pulsed-dose rate (PDR) colpostat.  
Shown is a plane cut along the transverse cross-section through plane AAI. The simulation angles of α = 0˚ and α = 135˚ 
for the standard Fletcher-Williamson caps (a) and α = 0˚ and α 90˚ for the minicolpostat cap (b) are defined.
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B.   Monte carlo simulations
The current study used a previously validated Monte Carlo model (MCNPX version 2.6a(11) 
of the Nucletron HDR/PDR 192Ir source and Fletcher-Williamson (FW) colpostat.(9) Photon 
transport was simulated in the models using the Evaluated Nuclear Data File (ENDF/B-VI) 
library. The dose to water around a single colpostat was estimated by tallying the photon kerma 
rate. This rate, calculated based on a track-length estimate of the photon flux, has been shown 
to be a reasonable approximation of dose.(7-9) Photons were tracked to an energy of 1 keV. The 
192Ir spectrum, reported by Glasgow and Dillman(12) and used in the literature,(7,9) was used to 
perform all Monte Carlo simulations.

MCNPX kerma tallies were done in one cylindrical plane whose origin coincided with the 
midpoint of the long axis of the HDR/PDR 192Ir source. The cylindrical plane had a thickness 
of 2 mm, extended outward radially 9 cm, and was divided into voxels defined by ∆α  = 5˚ and 
XXDr = 1 mm. The 0˚ angle was defined as shown in Fig. 2, and all reported distances were 
relative to the outer edge of the polysulfone cap. All MC simulations were run with 2 × 109 
histories. The dose rate per photon calculated by the MC simulations was converted to dose 
rate per hour (cGy h-1), following the methodology described by Price et al.(13)  

Fig. 3. Dimensions of the Nucletron minicolpostat polysulfone cap (16 mm diameter) used for the Monte Carlo 
 simulations.
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The dose rate per hour was calculated for the HDR/PDR 192Ir source in a single colpostat 
with different polysulfone cap diameters (30 mm, 25 mm, 20 mm, and 16 mm [minicolpostat]). 
The dose rate per hour was also calculated by the Monte Carlo model for a bare mHDR v2 
source in pure water for comparison. This comparison reflects the true dose rate as compared 
to that predicted by the treatment planning system using TG-43 formalism along the bisecting 
axis of the colpostat. The expanded uncertainty of these calculations was ± 1.2% for k = 2, 
approximating the 95% confidence interval.(14)  

 
III. rESuLtS & DIScuSSIon

Figures 4-7 display the percent absolute dose rate difference for a HDR/PDR 192Ir source 
centered within a minicolpostat, 20 mm, 25 mm, or 30 mm polysulfone cap relative to dose 
rate from a bare source in water. The plots are shown for 0.1 cm, 1 cm, 3 cm, and 5 cm radial 
distance away from the surface of the polysulfone cap.  

For the minicolpostat (Fig. 4), the dose perturbation was relatively uniform, being approxi-
mately 2.5% less than the dose from the bare source in water regardless of angle or distance from 
the colpostat surface. The dose is reduced because of the higher density of polysulfone relative 
to water, and is uniform with angle because of the structural uniformity of the cap (Fig. 3).

For the 20 mm, 25 mm, 30 mm diameter caps, a more substantial and less uniform pertur-
bation was observed (Figs. 5-7). Most dramatically, and for nearly 180°, the presence of the 
polysulfone cap reduced the dose relative to the dose from the bare source in water (negative 
percent difference). This dose perturbation was larger for larger caps, and was greatest at 
 approximately 135° (see Fig. 2). Both of these observations can be understood in terms of 
the thickness of polysulfone through which the photons must traverse, which is increased for 
larger caps and at approximately equal to 135°. In a clinical situation, this direction corresponds 
 approximately to the direction of the tumor bed, which is undesirable to underdose. In contrast, 
there were spans of α for which the inclusion of the polysulfone cap resulted in a higher dose 
than the standard TPS prediction using the source in water. This case developed because, in 
approximately half of the full-size polysulfone cap, air is the predominant component (Fig. 2). 
As air is less attenuative to radiation than water, there is actually more dose delivered than 

Fig. 4. Percent difference between dose rate predicted by MC modeling for an HDR/PDR 192Ir source with a minicolpostat 
polysulfone cap relative to the same source in water. 
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predicted by a conventional treatment planning system by 2–3%. Clinically, the location of this 
overdosing is most likely to be in the packing material that is placed within the vagina by the 
clinician to retain the position of the inserted applicator and displace the rectum and bladder 
away from the activity contained within the colpostats.

Figure 8 displays the dose rate perturbation as a function of distance from the cap surface 
at an angle of 135°. For all cap sizes except the mini-ovoids, there is a falloff in dose delivered 
with respect to depth.

Table 1 summarizes the largest and average calculated positive and negative percent dose 
differences. A positive percent dose difference means there is an increased dose when the 192Ir 
source is placed inside a colpostat relative to a bare 192Ir source in water, while a negative 

Fig. 5. Percent difference between dose rate predicted by Monte Carlo (MC) modeling for an HDR/PDR 192Ir source with 
a 20 mm polysulfone cap relative to the same source in water. 

Fig. 6. Percent difference between dose rate predicted by MC modeling for an HDR/PDR 192Ir source with a 25 mm 
polysulfone cap relative to the same source in water.
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 percent dose indicates a decreased dose. For all investigated cases, the largest reduction in dose 
was -6.8% at 4 cm depth when the 30 mm polysulfone cap was used.

The findings of this study provide an appreciation of the magnitude of the impact that poly-
sulfone caps have on dose delivered outside the cap relative to the approximations made by 
treatment planning systems. These dose perturbations were based on the impact of the polysul-
fone cap, stainless steel tube, and associated air pockets, and were not an evaluation of the impact 
of tungsten shields. Although these shields were included in the Monte Carlo model, the dose 
was evaluated only in a plane bisecting the center of the colpostat, and therefore the tungsten 
shields did not directly affect the dose distributions presented in the results of this study. 

This study did not evaluate the impact of the polysulfone caps on the dose in different planes, 
or consider the impact of multiple source dwell positions. Consequently, this work does not 

Fig. 7. Percent difference between dose rate predicted by MC modeling for an HDR/PDR 192Ir source with a 30 mm 
polysulfone cap relative to the same source in water. 

Fig. 8. Percent difference between dose rate predicted by MC modeling for an HDR/PDR 192Ir source with a minicolpostat 
polysulfone cap relative to the same source in water as a function of depth. 
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capture the variety of perturbations that would be associated with a clinical situation. How-
ever, this study identifies that these caps do indeed have an impact on the dose, and attention 
should be given to the dosimetric perturbations they could induce in clinical situations. This is 
particularly true as the dose perturbations are likely to be slightly larger in clinical situations. 
The current study examined the dose from gamma rays normally incident on the polysulfone 
cap (a source in the center of the colpostat). In clinical situations, the use of multiple dwell 
positions with result in gamma rays with oblique angles of incidence on the cap. Such oblique 
angles of incidence would correspond to longer path lengths through the polysulfone (or air) 
as compared to normal incidence, thereby increasing the effect of the perturbation. This effect 
was observed by Ye et al.(6) who found an increased perturbation of 0.6% (a 15% relative in-
crease) when considering nine 192Ir HDR source dwell positions within a heterogeneous vaginal 
cylinder applicator when compared to a single source dwell position.

The American Association of Physicists in Medicine Task Group 56 discusses in detail the 
sources of errors compromising dose delivery accuracy, which is divided into physical and 
clinical aspects.(15) Physically accurate dose delivery is achieved if the predicted dose and actual 
dose absorbed by the medium are equal at reference points in tissue. Several factors includ-
ing the accuracy of source strength, physics data of the source, and the influence of applicator 
attenuation are identified as main contributors to the physical uncertainty. It is expected that 
dose delivery accuracy on the order of 5–10% is achievable at distances of 1–5 cm for most 
brachytherapy sources.  Accounting for the polysulfone dose perturbation is therefore expected 
to improve the HDR/PDR dose delivery accuracy. 

Table 1. Percent difference for all polysulfone cap sizes and depths. The columns tabulating the average positive and 
negative percent differences are calculated by averaging all of the respective positive and negative percent differences 
with respect to polysulfone cap size.

 Cap Size Depth Largest Positive %∆	 Largest Negative %∆	 Average Positive %∆	 Average Negative %∆
 (mm) (cm) (%) (%) (%) (%)

 20 0.1 2.8 -3.8 1.6 -3.7
 20 1 2.7 -4.5 1.6 -3.7
 20 2 2.2 -4.8 1.3 -3.9
 20 3 1.8 -5.0 1.1 -4.1
 20 4 1.4 -5.1 0.8 -4.2
 20 5 1.1 -5.2 0.5 -4.3 
 20 6 0.9 -5.3 0.4 -3.9

 25 0.1 2.5 -4.5 1.3 -3.7
 25 1 2.1 -5.1 1.0 -4.2
 25 2 1.6 -5.4 0.7 -4.5
 25 3 1.2 -5.7 0.5 -4.7
 25 4 0.8 -5.9 0.3 -3.2
 25 5 0.7 -5.8 0.2 -2.7
 25 6 0.4 -6.0 0.2 -2.3 

 30 0.1 2.0 -5.1 0.8 -4.2
 30 1 1.6 -5.5 0.5 -4.7
 30 2 1.0 -6.0 0.4 -3.0
 30 3 0.4 -6.4 0.3 -2.6
 30 4 0.2 -6.8 0.1 -2.5
 30 5 0.2 -6.7 0.2 -2.6
 30 6 0.0 -6.7 0.0 -2.7

 mini 0.1 1.0 -3.1 0.0 -2.4
 mini 1 1.3 -3.3 0.0 -2.6
 mini 2 1.0 -3.2 0.0 -2.4
 mini 3 0.7 -3.3 0.0 -2.3
 mini 4 0.0 -3.6 0.0 -2.3
 mini 5 0.8 -3.8 0.0 -2.4
 mini 6 0.8 -3.7 0.0 -2.3
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IV. concLuSIonS

It was found that the structure and composition of the polysulfone cap in the FW colpostat could 
substantially perturb the dose delivered to the surrounding medium as compared to assuming 
the colpostat is water equivalent. This dosimetric impact could exceed 5% for the Monte Carlo 
study conducted here, and could readily be larger in clinical situations. These results suggest 
that the colpostat material and composition should be accounted for in patient dose calculations. 
This could be done by modifying the current FW HDR/PDR colpostat cap material to reduce 
this dosimetric error, or by improving brachytherapy TPS dose algorithms so they can account 
for the perturbation caused by this and other applicator structures. 
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