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Abstract: In this study, the health-promoting benefits of different fruits grown in Madeira Island,
namely lemon (Citrus limon var. eureka), tangerine (Citrus reticulata var. setubalense), pitanga (Eugenia
uniflora var. red), tomato (Solanum lycopersicum var. gordal) and uva-da-serra, an endemic blueberry
(Vaccinium padifolium Sm.), were investigated. The phenolic composition (total phenolics and total
flavonoids content) and antioxidant capacity (assessed through ABTS and DPPH assays) were
measured revealing a high phenolic potential for all fruits, except tomato, while uva-da-serra is
particularly rich in flavonoids. In relation to the antioxidant capacity, the highest values were
obtained for pitanga and uva-da-serra extracts. The bioactive potential was also assessed through
the ability of the extracts to inhibit digestive enzymes linked to diabetes (α-amylase, α- and β-
glucosidases) and hypertension (angiotensin-converting enzyme, ACE). The results obtained point
to a very high bioactive potential with the selected samples exhibiting very important ACE anti-
enzymatic capacities. A statistical analysis of the obtained data reveals a very strong correlation
between ABTS and TPC, and a strong contribution of the fruit polyphenols for enzyme inhibition,
and thus, presenting high antihypertensive and antidiabetic capacities. Overall, the results obtained
clearly show a high bioactive potential of the selected fruits that should be further studied, in terms
of specific phenolic composition. Moreover, these results strongly support the valorisation of pitanga
seeds usually discarded as a waste, and uva-da-serra, an endemic and wild bush, as potential
bioresources of bioactive compounds with impact in human diet.
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1. Introduction

It is widely-known that the consumption of fruits and vegetable elicit health protection
against different diseases. According to Aune et al. [1], between 5.6 and 7.8 million prema-
ture deaths occurring worldwide in 2013, were attributable to a low fruit, and vegetable
intake (lower than 500 and 800 g/day), respectively. In this context, Cheung et al. [2]
pointed that most of these mortality risks, mainly those related to cardiovascular disease,
chronic diseases, and cancer, could be reduced by regular and varied consumption of fruit
and vegetables. These protective effects are largely attributed to secondary metabolites in-
cluding polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins,
among others, present in fruits and vegetables [3] exhibiting antioxidant, antiatherogenic,
anti-inflammatory, antimicrobial, and cardioprotective effects [4]. These bioactive com-
pounds are mostly produced by plants to cope with different challenges particularly those
related to adverse environmental conditions (hydric stress, high temperatures and humid-
ity levels). In this sense, Madeira Island has very challenging climate conditions, with
very hot and humid conditions all over the year, high thermic variations and pronounced
slopes which correlate with the high bioactive potential and complex volatile compositions
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exhibited by fruits growing in Madeira Island in comparison with same varieties from other
geographical regions. Previously, we have shown that tomato (Solanum lycopersicum L.)
from Gordal variety grown in Madeira Island presented higher tocopherols content when
compared with other varieties commonly consumed like Campari, Roma and cherry [5]. In
addition, recently, Detopoulou et al. [6] underlined the relevance of tocopherols, as vitamin
E, on the proper functioning of the immune system, acting as an antioxidant in the context
of the importance of phytochemicals of the Mediterranean diet against COVID-19 effects.
Similarly, polyphenols have been suggested as a therapeutic adjuvant in the treatment of
COVID-19 patients [7]. These classes of secondary metabolites with high nutraceutical
value are widely found in nature, including in citrus fruits. Among them, flavonoids have
been previously associated with a positive effect in the treatment of different diseases,
including arthritis, diabetes mellitus, cancer and neurodegenerative disorders, as well as
liver, kidney and heart diseases [8]. Overall, this protection, elicited by metabolites, pre-
senting in citrus fruits contributes to strengthening their general awareness of functional
foods [9]. For instance, lemon is very rich in a large variety of secondary metabolites,
mainly monoterpenes, which are used in nutraceutical and food industries [10]. Tangerines
are another widely consumed citrus fruit that contains a similar bioactive content profile
to lemon, namely in what concerns monoterpenes [9]. According to Figueira et al. [9,10],
both lemons and tangerines, grown in Madeira Island, were shown to have a very complex
volatile composition with some of identified VOCs being responsible for health benefits.
Tutunchi et al. [11] and Alberca et al. [12] reported the potential effects of naringenin, a
flavanone with antiviral and anti-inflammatory activities, as a promising treatment strategy
against COVID-19.

Vaccinium padifolium Sm. is an endemic blueberry tree from Madeira Island, locally
known as uveira-da-serra. Interest and consumption of its berries have increased in recent
years due to its very high nutritional value [13], related to the high content of phenolic
compounds [14,15].

Eugenia uniflora L. fruits, popularly known as “Suriname cherry” or “pitanga” is an
exotic fruit native from Brazil [16], but widely available in Madeira Island. Pitanga is
appreciated by consumers for its softness, aromatic and bittersweet flavour, and presents a
low lipid and caloric content and high amounts of phenolic compounds [17,18], carotenoids
and anthocyanins [19]. Several ethnomedical uses of E. uniflora have been documented, es-
pecially those related to leaves and oils extracts [20], which present in vitro antiproliferative
potential [21]. The leaves and fruits extracts have also shown stimulant, febrifuge, aromatic
and antidiarrheal characteristics [22], and pitanga juices, anti-inflammatory properties [23].
However, Pitanga seeds are usually discarded. Although, Oliveira et al. [24] reported on
the promising antioxidant potential requiring further studies to explore its different fields
of application.

In this context, this study aimed to evaluate the health-promoting proprieties of
fruits of regular consumption grown in Madeira Island, including the total phenolic and
flavonoid contents (TPC and TFC, respectively), antioxidant capacity (ABTS and DPPH
assays) and its ability to inhibit digestive enzymes linked to diabetes (α-amylase, α- and β-
glucosidase) and hypertension (angiotensin-converting enzyme). The fruits were selected
according to its high bioactive potential, previously reported, namely tomato (gordal
variety) [5,25], lemon (eureka variety) [10], tangerine (setubalense variety) [9], uva-da-
serra [15], and pitanga. Liquid-liquid-based ultrasound-assisted extraction (LLUSAE), an
efficient extraction procedure for vegetable matrices, previously optimized in our lab [25],
was used to obtain the extracts.

2. Materials and Methods
2.1. Chemicals and Materials

Angiotensin-converting enzyme (ACE, from human, 95%), hydrochloric acid (HCl,
ACS reagent, 37%), trisodium citrate dihydrate (C6H5Na3O7·2H2O, 99%), fluorescein, 2,2′-
azobis(2-methylpropionamidine) dihydrochloride (AAPH), sodium carbonate (Na2CO3),
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3,5-Dinitrosalicylic acid (DNS) color reagent, aluminium chloride (AlCl3), sodium nitrite
(NaNO2 ACS reagent, 97.0%), α- and β-glucosidase, α- and β-pNPG, and α-amylase were
acquired from Sigma-Aldrich (Buchs, Switzerland). Potassium phosphate dibasic trihydrate
(K2HPO4·3H2O) was acquired from Merck (Buchs, Switzerland), ethanol (EtOH, absolute
PA, 99.5%), potassium dihydrogen phosphate (KH2PO4, 99.5%), sodium chloride (NaCl,
99.8%), N-[3-(2-furyl)acryloyl]-Phe-Gly-Gly (FAPGG) and sodium hydroxide (NaOH) were
acquired from Panreac (Barcelona, Spain). Folin-Ciocalteu solution, 6-Hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid (trolox, 98%), and 2,2-Diphenyl-1-picrylhydrazyl
(DPPH) were acquired from Fluka (Munich, Germany). Acetonitrile (ACN) and methanol
(MeOH) (both HPLC grade, 99.99%) from Thermo Fisher Scientific (Loughborough, UK),
and PSA/C18/Mg2SO4 (25/25/150 mg, DisQuE) was purchased from Waters (Milford,
MA, USA). The ultrapure water used on the assays was obtain using an Ultrapure water pu-
rification system (Milli-Q® Direct 8 at 18 MW cm, 23 ◦C, Millipore Corporation, Burlington,
MA, USA).

2.2. Samples

Lemon samples (eureka variety), tangerine (setubalense variety) and tomato (gordal
variety) were selected randomly from a local market (Madeira Island), as purchased for
consumption (Figure 1). Red pitanga and uva-da-serra samples were randomly harvested
directly from trees in local productions in Madeira Island (Figure 1). After selection, five
hundred grams of the peels and juice from lemon and tangerines, the seeds and pulp from
pitanga and the whole tomato and uva-da-serra fruits were collected and immediately
stored under N2 (g) atmosphere at −80 ◦C. Then, with exception of the citrus juices, all
samples were lyophilized (Christ Alpha 1–2 LD plus freeze dryer, Osterode am Harz,
Germany), grounded to powder (IKA A11 basic analytical mill, Staufen, Germany) and
immediately stored under nitrogen at −80 ◦C, in several aliquots. All aliquots were used
only once to prevent sample degradation.
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Figure 1. Fruits under study: Pitanga (Eugenia uniflora variety red) seeds and pulp, uva-da-serra
(Vaccinium padifolium Sm.), tomato (Solanum lycopersicum variety gordal), lemon (Citrus limon variety
eureka) peels and juice and tangerine (Citrus reticulata variety setubalense) peels and juice.

2.3. Extraction

Sample extraction was performed according to the procedure previously optimized
for vegetable matrices by Figueira et al. [25]. Briefly, 50 mg of the lyophilized samples
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for each fruit were diluted with 9 mL of ACN:MeOH (4:1, v/v), sonicated (BRANSON
2510E-DTH, 100 W, 40 kHz, Danbury, CT, USA) for 30 min at 25 ◦C and centrifuged during
5 min (5000× g, Espresso Personal microcentrifuge, Thermo Scientific, Waltham, MA,
USA). Finally, the supernatant was collected, homogenized in the vortex, centrifuged again
(5 min, 5000× g), cleaned up with 180 mg of primary secondary amine (PSA)/C18/Mg2SO4
(1:1:6; w, w, w)/mL of sample extract (the sorbent was homogenized in the supernatant by
vortexing and centrifuged 5 min, 5000× g) and filtrated (0.2 µm) before analysis.

2.4. Evaluation of Bioactive Potential
2.4.1. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)

The TPC was determined using a modified Folin-Ciocalteu procedure. Briefly, fruit
extracts were diluted in water up to 1 mL final volume, added 100 µL of Folin-Ciocalteu
solution, 400 µL of Na2CO3 (20%), and 500 µL of water. After 1h, the electron transfer from
phenolic compounds is measured by UV-Vis at λ = 765 nm. TFC assay was performed
using the aluminium chloride colorimetric method. Briefly, fruits extracts were diluted in
methanol (70%) up to 1 mL final volume, added 60 µL of NaNO2 (5%) and rest 5 min in the
dark. Then, added 60 µL AlCl3 (10%), rest another 5 min before the addition of 400 µL of
NaOH (1 M), a 2-min rest and finally 480 µL of methanol (70%). The acid-stable complexes
formed by the AlCl3 with flavones and flavonols were measured at λ = 510 nm.

2.4.2. Total Antioxidant Capacity (TAC)

DPPH assay was performed according to Figueiraet al. [25]. Briefly, 500 µL methanol
was added to the fruit extracts, followed by 1 mL of free-radical 2,2-diphenyl-1-picrylhydrazyl
(DPPH) and stored 10 min in the dark, before UV-Vis analysis at λ = 515 nm (Lambda 25,
Perkin Elmer, Belgium) to measure the free-radical reduction. ABTS assay was adapted
from the procedure reported by Thaipong et al. [26]. Briefly, a stock solution of 2,29-
azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS, 7.3 mM and potas-
sium persulfate 2.59 mM) was prepared in ethanol and rest in the dark for 16h, at room
temperature, before use. Ethanol was added to the fruits extracts up to a 100 µL final
volume and added 1.9 mL of 100× diluted ABTS solution (in ethanol). After 2 h storage in
the dark, the reduction of the radical cation was measured at 734 nm.

2.4.3. Antihypertensive Capacity

The antihypertensive capacity was assessed using the ACE-inhibition activity assay
reported by Holmquist, et al. [27] with minor changes. Briefly, 50 µL of FAPGG (2 mM)
were diluted in 450 µL of Tris-HCl buffer (50 mM, with 300 mM of NaCl and HCl 0.1 M at
pH 8.3). After homogenization by vortex (1 min), 400 µL of water were added, then 50 µL
of the sample, followed by homogenization before adding 50 µL of ACE (125 mU diluted
from a stock solution of 25 U in the phosphate-potassium buffer—KH2PO4 9.3 mM and
K2HPO4·3H2O 0.7 M; with 300 mM NaCl at pH 8.3), and incubate 3 min at 37 ◦C. Finally,
the absorbance was measured every 2 min for 20 min at λ = 328 nm.

2.4.4. Antidiabetic Capacity

The study of the antidiabetic capacity was estimated through the inhibition of the
digestive enzymes α- and β-glucosidases and α-amylase. For α- and β-glucosidases assay,
50 µL of the respective enzyme (1 U/mL) were added to 25 µL of the sample extract and
incubated 10 min at 37 ◦C. A total of 100 µL of the substrate α-pNPG (5 mM) or β-pNPG
(5 mM), respectively, were added and incubated 30 min at 37 ◦C.

The reaction was terminated by adding 180 µL of Na2CO3 (0.1 M) and the absorbance
measured at λ = 405 nm. α-Amylase inhibition was evaluated by adding 400 µL of the
substrate starch (1%) to 200 µL of the sample extract followed by 3 min incubation at 37 ◦C,
and addition of 200 µL of the enzyme (13 U/mL) followed by a new 3 min of incubation
at 37 ◦C. It was adicionad200 µL of DNS color reagent (DNS 96 mM, potassium sodium
tartrate 5.31 M in NaOH 2 M), finally, the mixture was incubated at 95 ◦C for 10 min in a
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dry bath (Block heating system Grant QBD1, Frilabo, Portugal), the reaction stopped with
the addition of 900 µL of cold water, and absorbance measured at λ = 540 nm.

2.5. Statistical Analysis

The statistical analysis was performed using the MetaboAnalyst 4.0 web-based tool [28]
(https://www.metaboanalyst.ca/ (accessed on 9 July 2021)). The raw data obtained in
the bioactive assays (TPC, TFC, ABTS, DPPH, α-amylase, α-glucose, β-glucose, and ACE-
inhibition) was pre-processed by normalization (to sample median, data transformation by
Log10 normalization and data scaling by autoscaling). Additionally, a one-way Analysis
of Variance (ANOVA, p < 0.05) was carried out, followed by post-hoc analyses Tukey’s
Honestly Significant Difference (Tukey’s HSD, p ≤ 0.05), used for mean comparisons
among dates. The correlations between variables were examined by Pearson’s correlation
(p < 0.05).

3. Results and Discussion

In previous works, a high concentration in different bioactive compounds, particularly
phenolic compounds, has been observed in the fruits analysed in this work [5,9,10,15,25].
This observation led us to investigate the bioactive potential of the juice and peels of
lemon and tangerine, pulp and seeds of pitanga, and the whole fruit of tomato and uva-
da-serra. The bioactivity was assessed by measuring the phenolic content (total phenolic
content, TPC, and total flavonoid content, TFC), the antioxidant capacity (total antioxidant
assays, TAC, DPPH and ABTS), as well the inhibition of key enzymes associated with
antihypertensive and antidiabetic effects. To allow a systematic comparison between the
fruit extracts, seven extraction conditions were assayed to find the most suitable to all
samples. Accordingly, TPC and TFC were determined for 35 different conditions (five
sample extracts vs. seven extraction conditions). The data obtained (Supplementary
Materials; Table S1) were normalized as log10 of the antioxidant assays values determined
to allow the identification of the best extraction conditions. As shown in Figure 2, the
solvent mixtures ACN:MeOH (4:1, v/v), MeOH:FA (19:1, v/v) and ACN retrieve the best
results. ACN:MeOH (4:1, v/v) was the selected condition as it was previously used with
success in the extraction of hydrophilic and lipophilic bioactive compounds (carotenoids
or tocopherols) [5,25].
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3.1. Phenolic Content and Antioxidant Capacity of the Selected Fruits Extracts

The TPC and TFC were determined to get a snapshot of the phenolic amount of the
selected fruits. As shown in Figure 3A, pitanga seeds and uva-da-serra berries exhibit
the highest phenolic content, while peels from lemon and tangerines and the pulp from
pitanga also contain very interesting TPCs, being much lower for tomato and vestigial in
tangerine and lemon juices. Although most of these individual results are in agreement
with the previous literature results for uva-da-serra [14], tangerine [29] and lemon [30]
and tomato [31], however, pitanga seeds present a TPC that is being, to the best of our
knowledge, reported for the first time.
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Figure 3. Evaluation of the phenolic composition (A) and antioxidant capacity (B) of the selected fruit
extracts, pitanga (seeds and pulp), tangerine (peel and juice), lemon (peel and juice), uva-da-serra
(whole fruits) and tomato (whole fruits). The phenolic composition was evaluated through the
assessment of the total phenolic composition (TPC) and total flavonoid content (TFC), while the total
antioxidant capacity (TAC) was evaluated using DPPH and ABTS assays; * by 100 mL of fresh juice
instead of dry weight (DW). Legend: ABTS—2,29-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)
radical cation assay, ACE—angiotensin-converting enzyme, DPPH—2,2-diphenyl-1-picrylhydrazyl
free radical assay, GAE—gallic acid equivalents, QE—quercetin equivalents, TFC—total flavonoid
content, TE—Trolox equivalents, TPC—total phenolic content.
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Very relevant is the high flavonoid composition of uva-da-serra which is almost three
times higher than the levels found in pitanga seeds, the second extract with the highest
TFC value (Figure 3A, right panel). Again, this result is corroborated by our previous
results [15] which revealed that 8 of the top 10 free low molecular polyphenols identified in
uva-da-serra are flavonoids. To understand the impact of the TPC and TFC values found
in the selected fruits, a literature survey was performed to compare the results obtained
with the ones previously reported in other studies involving the same or similar fruits
(Supplementary Materials, Table S2). A systematic comparison among all data collected
is not totally feasible due to the variations in the experimental conditions used in the
different reports, namely the fruits extracts preparation and extraction technique. Despite
that fact, the potential of the fruits studied in this work is very relevant and promising as
they present the richest phenolics content and antioxidant capacities. To unveil putative
correlations between the high phenolic content and antioxidant capacity, the antioxidant
capacity of the 8 extracts analysed was assessed through DPPH and ABTS assays. As
Figure 3B shows, the antioxidant capacity of pitanga (seeds and pulp) and uva-da-serra
replicate the trends observed for the phenolic content, being these extracts that present the
highest values for the DPPH and ABTS assays. The data obtained is supported by previous
reports for the different fruits studied, namely tomato [31], uva-da-serra [14], pitanga [22]
and lemon [32,33]. Detailed data is listed in Table S2.

Overall, the TAC results point very clearly to the promising antioxidant proprieties
of the endemic blueberry uva-da-serra and pitanga. Moreover, the obtained results show
that the seeds of pitanga, which are not edible and generally discarded as waste, can be
explored as a bioresource of natural antioxidants and nutraceuticals unveiling important
applications in the food industry as a bioresource of natural antioxidant compounds.

3.2. Enzymatic Inhibition Capacity

To obtain further evidence of the bioactive potential of the fruits analysed beyond
their high antioxidant properties, enzyme inhibition assays were performed using selected
enzymes to verify putative antidiabetic and antihypertensive effects. The antidiabetic po-
tential was estimated through the inhibition of the digestive enzymes α- and β-glucosidases
and α-amylase. The α-glucosidase and α-amylase are the main enzymes that mediate the
metabolism of dietary carbohydrates [34]. Also, α- and β-glucosidase are responsible for
the conversion of glycosidic bond into oligosaccharide and finally into monosaccharide [35].
Accordingly, the inhibition of these enzymes will delay glucose absorption, preventing
post-meal peaks of glucose in blood that eventually trigger diabetes development [35]. The
results obtained (Figure 4) reveal a high antidiabetic potential, mostly above 50% inhibition
of α- and β-glucosidases and α-amylase. Pitanga seeds extracts, however, are particularly
effective against α-glucosidase, reaching a total inhibitory effect.

The antihypertensive capacity of the selected extracts was assessed through the ACE-
inhibition activity assay. As can be observed in Figure 4, except for uva-da-serra, which
presents an inhibitory effect of around 90%, the remaining fruit extracts achieved almost
full ACE-inhibition. Overall, these results agree with previous observations taking into
account that fruits rich in flavonoids, as the ones studied, exert important inhibitory effects
on ACE [36].

3.3. Statistical Analysis

To unveil a possible correlation between the phenolic composition, antioxidant ca-
pacity and antihypertensive and antidiabetic potential for the selected fruits extracts,
correlation coefficients (r) between the TPC and TFC assays, TAC, and enzyme inhibition
of ACE, α -amylase and α- and β-glucosidases were performed (Table 1).
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Figure 4. In vitro inhibitory activities (of the selected fruits samples towards (A) antidiabetic- (α-
amylase—83 µL extrac/1 U, α- and β-glucosidase—500 µL extract/1 U) and (B) antihypertensive-
(ACE—8 µL extract/1 U)) model enzymes. For legend simplification, fruits sections were organized
by colors: pitanga seeds and pulp in light and dark blue, respectively, tangerine peel and juice in
yellow, and light orange, respectively, lemon peel and juice in light and dark green, respectively.
Legend: ACE—Angiotensin-converting enzyme.

Table 1. Pearson correlation coefficients between phenolic composition, antioxidant capacity and
selected enzymes inhibition for the fruit extracts analysed in this work.

DPPH TFC TPC ABTS β-glu α-glu α-amy ACE

1.00 −0.80 −0.65 −0.83 0.22 0.13 0.02 −0.11
1.00 0.27 0.57 −0.21 −0.27 −0.33 −0.12

1.00 0.92 0.48 0.59 0.74 0.77
1.00 0.35 0.29 0.47 0.51

1.00 0.75 0.81 0.72
1.00 0.92 0.96

1.00 0.94
1.00

Legend: α-amy—α-amylase, α-glu—α-glucosidase, β-glu—β-glucosidase, ABTS—2,29-azinobis-(3-
ethylbenzothiazoline-6-sulfonic acid) radical cation assay, ACE—angiotensin-converting enzyme, DPPH—2,2-
diphenyl-1-picrylhydrazyl free radical assay, TAC—total antioxidant capacity, TFC—total flavonoid content,
TPC—total phenolic content.

According to the correlation matrix obtained, DPPH presents a strong inverse correla-
tion to ABTS and TFC, and a moderate inverse correlation to TPC. In fact, DPPH assay is
very sensitive to the nature of the antioxidants present in the extracts analysed and may
manifest positive or negative correlations with those [37].

In turn, there is a strong correlation between ABTS and TPC. Regarding the enzymatic
inhibition assays, there is a strong correlation between themselves, which suggests that
the nutraceuticals presented in the samples may have common anti-enzymatic effects.
To further understand the translation of these correlations in the selected fruit extracts,
correlations heatmaps were produced for each sample (Figure S1). The results obtained
are evidence of important variations in the correlation between phenolic composition,
antioxidant capacity and enzyme inhibition that were summarized in an overall correlation
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heatmap (Figure 5). Accordingly, it is easily observed that the contribution of the phenolics
of each fruit extract to the antioxidant capacity is very different among fruits (uva-da-
serra vs tomato, for instance), as well as among fruit sections (pitanga seeds vs pulp or
tangerine and lemon peels vs. the respective juices). In relation to the enzyme inhibition
assays, Figure 1 reveals a strong contribution of the phenolics present in pitanga seeds
to the inhibition of the selected enzymes. Such behaviour is different from what can be
observed for tangerine, lemon or uva-da-serra, in which the respective phenolics seems
to be more effective against one enzyme than another. As an example of such correlation,
such phenolic composition is not very effective in the inhibition of α-amylase or ACE
despite the higher phenolic composition of the uva-da-serra extracts, which correlate with
a high antioxidant capacity. In contrast, an overall positive correlation is particularly
evident for pitanga seed extracts that present the highest phenolic content (Figure 3A),
highest antioxidant capacity (Figure 3B) and highest enzyme inhibition (Figure 5). Similar
correlation patterns were previously reported in citrus fruits by Alu’datt, et al. [38].
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Figure 5. Correlation heatmap to evaluate the putative contribution of the phenolics and flavonoids
present in the samples extracts to the TAC and key enzymes inhibition. The different assays were per-
formed as described in Materials and Methods. Legend: a_amy—α-amylase, a_glu—α-glucosidase,
b_glu—β-glucosidase, ABTS—2,29-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation
assay, ACE—angiotensin-converting enzyme, DPPH—2,2-diphenyl-1-picrylhydrazyl free radical
assay, TAC—total antioxidant capacity, TFC—total flavonoid content, TPC—total phenolic content.

4. Conclusions

In this work, the health-promoting benefits of different fruits grown in Madeira
Island—lemon (Citrus limon var. eureka), tangerine (Citrus reticulata var. setubalense),
pitanga (Eugenia uniflora var. red), tomato (Solanum lycopersicum var. gordal) and uva-
da-serra, (Vaccinium padifolium Sm.), were investigated to evaluate its bioactive potential
based on TPC, TFC, antioxidant capacities, antihypertensive and anti-diabetic properties.
Overall, the analysis of seeds and pulp of pitanga, and peels and juices tangerine and
lemon, uva-da-serra and tomato, reveal a high bioactive potential that justifies further and
deeper studies uncovering the specific nutraceutical composition, namely the phenolic
content of the fruits studied. This is particularly relevant in the context of the production
of new functional foods with antihypertensive and antidiabetic capacities. In this context,
pitanga seeds, which are inedible, at least in their raw presentation, and thus, discarded as
waste, have a great potential and should be further explored. In turn, uva-da-serra, the
berry of the wild bush Vaccinium padifolium is fairly unknown and so there is also a great
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potential in its use in the human diet, taking into consideration the high bioactive potential
determined in this study.

Supplementary Materials: The following are available online, Table S1: The influence of the extrac-
tion conditions on the antioxidants assays for each fruit extract, Table S2: Literature survey of the
bioactivity of the selected fruits, Figure S1: Correlation heatmaps between the bioactive assays for
each fruit extract.
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