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The properties of biological networks, such as those found in the ocular lens capsule, are difficult to study
without simplified models. Model polymers are developed, inspired by ‘‘worm-like” curve models, that
are shown to spontaneously self assemble to form networks similar to those observed experimentally
in biological systems. These highly simplified coarse-grained models allow the self assembly process
to be studied on near-realistic time-scales. Metrics are developed (using a polygon-based framework)
which are useful for describing simulated networks and can also be applied to images of real networks.
These metrics are used to show the range of control that the computational polymer model has over the
networks, including the polygon structure and short range order. The structure of the simulated networks
are compared to previous simulation work and microscope images of real networks. The network struc-
ture is shown to be a function of the interaction strengths, cooling rates and external pressure. In addi-
tion, ‘‘pre-tangled” network structures are introduced and shown to significantly influence the
subsequent network structure. The network structures obtained fit into a region of the network land-
scape effectively inaccessible to random (entropically-driven) networks but which are occupied by
experimentally-derived configurations.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Two-dimensional (2D) networks are critically important in biol-
ogy — from basement membranes surrounding muscles, to the
lens capsule of the eye. Furthermore, some three-dimensional
(3D) networks are composed of stacked layers of 2D networks in
which the intra-layer interactions are significantly larger than
those of the inter-layer. The ubiquity of these systems makes
understanding the formation and ageing of the 2D networks a
key research interest, often with the aim that an understanding
of the structure and properties of biological networks can lead to
the development of synthetic materials that mimic natural biolog-
ical networks. By understanding the millions of years of design
experience nature has applied, stronger or stretchier materials
can be developed allowing, for example, prosthetic replacements
for parts of the body to be built [1].

One example of a 2D biological network is the collagen IV net-
work in the ocular lens capsule. Artificial lens capsules can be
implanted after cataract surgery, which can improve the ability
to accommodate focal depths in elderly people [2]. The loss of focal
accommodation in human senescence has been linked to collagen
IV networks becoming less stretchy as they age [3]. For this reason,
artificial intraocular lenses can often be superior to the removed
biological lens [4]. The mechanism of this network ageing is a
poorly-understood process, despite being a topic of scientific inter-
est for 100 years [5].

There is a clear need for simplified computational models to
study this network, as individual collagen molecules have back-
bones of over 1000 amino acids [6], and the ageing process occurs
over a human lifetime [5]. These properties make it difficult to
observe the relevant pathway, because it cannot be directly
observed on laboratory timescales and the complexity of the indi-
vidual molecules makes large-scale atomistic simulation computa-
tionally unfeasible. A further issue arises because the 2D networks
are most interesting when they are part of living creatures. The
removal of biological networks (and their preparation for study)
can often disturb their delicate structure, with significant knock-
on effects for their properties [7]. Previous work has used animal
models, such as mice, cows, and monkeys, to understand the age-
ing of human lens capsules; or coarse-grained finite-element mod-
els to treat the whole lens as an engineering problem [8,9,1].
Previous computational models have been based on graph theory;
these include Erdös-Rényi random graphs, Mikado networks and
bond-switching of ordered graphs [10–12]. These graph
approaches are parameterised and based on experimental data
and small-scale simulations, but provide an incomplete link
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between detailed molecule simulations and the wider network
behaviour.

Collagen IV molecules can spontaneously self-assemble into
networks in vitro, which can occurs at more computationally acces-
sible timescales than aging does [13,14]. These self assembly stud-
ies have shown that the network structures formed are strongly
dependent on the environmental conditions, for example on the
concentration of dissolved salts [15,16]. Such analysis provides
some insight into which network arrangements are favourable,
and how they self-assemble.

This work presents a highly simplified computational model for
collagen-like molecules that self assemble into 2D network struc-
tures. The models are based on information obtained from experi-
mental images of collagen IV networks, both self-assembled and in
the ocular lens. The model is simple enough to be able to capture
long timescales as well as to incorporate different interaction
types.

First, a method of analysing 2D networks is established, includ-
ing a way to unambiguously assign polygon structures. Next, bio-
logical random networks (both experimental images and
simulated networks) are compared and contrasted to inorganic
chemical networks, which have been studied using similar frame-
works and which are generally more well-defined in terms of sup-
porting a single atom local coordination number. The regularity of
the polygons in the networks are a key point of comparison. Fol-
lowing that, the available range of control over the generated net-
work structure is demonstrated by varying physically meaningful
parameters, including pressure, cooling rates and the strength of
attractions (a proxy for physical effects such as salt concentration).
Finally, the generated networks are placed in the context of the
range of experimental data available from microscope images of
2D collagen IV networks, and are shown to be more appropriate
for reproducing these experimental networks when compared
with previous continuous random (entropically-driven) networks.
Fig. 1. Snapshots from the process of constructing the polygon graph. Dashed edges
are those that only exist in the Delaunay triangulation (top left), which are removed
one-by-one (top right then bottom left). Removing a dashed edge merges two
polygons together, and the final network structure (bottom right) is left after all
dashed edges are removed. The polygons are coloured by their number of edges.
2. Methods.

2.1. Network structures

Network theory has been long used to analyse biological struc-
tures ranging from hexagonal arrangements of cells to graph mod-
els of biopolymers [17,10]. The existence of such a wide range of
network models indicates that it is first helpful to establish a
method to describe 2D networks rigorously, here using the gaps
between molecules instead of the molecules themselves. Intu-
itively, a 2D network can be considered as being assembled from
a collection of edge-sharing polygons — for example, a honeycomb
is a network of hexagons, and chain-link fences may form a net-
work of squares [18]. This concept can be extended to cover gen-
eric 2D networks across many length scales, from the atomic
structure of glasses to the cantons of Switzerland [19,20]. Viewing
a 2D network as being constructed of polygons allows use of con-
sistent metrics, applicable across many different types of network
including those generated via a self assembly model, graph theory
or experimental microscope images.

For example, the preference of polygons to be adjacent to sim-
ilar or dissimilar polygons (described, for example, by the assorta-
tivity, and first discussed by [21] to describe social networks [21])
describes the short-range structure of a network and improves on
the Aboav-Weaire parameter traditionally used to describe chem-
ical 2D networks [22,20]. Alternatively, the number of edges of a
polygon (often referred to as their size) or their area is useful to
quantify the voids in a network. In a biological context these voids
could be affected by the presence of a scaffold, such as laminin
[23], or by repulsive cations that the network forms around akin
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to a Voronoi partition [16]. A significant feature of biological net-
works (compared with inorganic glasses) is the ability to support
a distribution of local coordination environments. The coordination
number (called the degree in network theory) k of nodes in the net-
work can be used to analyse the preference for different types of
bonding between molecular head groups or lateral interactions.

There are numerous ways to describe the polygon structure of a
network, and each has its own benefits and shortcomings. These
include polygons chosen by shortest path criteria, primitive rings
that cannot be decomposed into smaller rings, and a series of
stronger criteria. Polygon (or ‘‘ring”) assignment criteria are dis-
cussed in great detail in Yuan and Cormack [24], and also in Le
Roux and Jund [25]. The latter discusses their implementation in
the R.I.N.G.S. code, a popular package for obtaining ring size distri-
butions. For example some methods of assigning polygons to a net-
work ensure each edge is belongs to one polygon, or the area is
covered by a layer of polygons with no overlaps, or all shortest
paths between nodes are included [24]. We have found these
methods to be difficult to interpret, especially in the presence of
nodes with k ¼ 2or in the case of small periodic systems.

To this end, we have developed a method to describe the poly-
gon structure utilising a Delaunay triangulation, a common tech-
nique to break large polygons into triangles often used in
computer graphics applications. First, a network graph is created,
in which small clusters of head groups are nodes, joined by edges
representing molecules. An algorithmic description of this process
can be found in the Supplementary Information Section I. The
Delaunay triangulation of a set of nodes creates a set of triangles,
whose edges connect neighbouring nodes and cover the entire
area. We restricted our study to only networks where the Delaunay
triangulation is a superset of the edges in the network; this crite-
rion was met for all imaged and simulated networks we encoun-
tered. It is computationally simple to identify a triangle as a
simple polygon. From there polygons with more edges can be built
up by connecting smaller polygons, as shown in Fig. 1. If edges that
are not in the original graph are systematically removed, updating
the polygons at each stage, it is possible construct a set of unique
polygons for the network that covers the entire area and maps
neatly to an intuitive definition of polygons.
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2.2. The simplified model

The assembly of collagen-like molecules was simulated using a
model inspired by a combination of ‘‘worm-like” curve polymers
and patchy particles. Patchy particles are colloids with attractive
regions on their surface which have been shown experimentally
and computationally to self-assemble [26,27], and mimic the crys-
tallisation properties of proteins [28]. The simplified collagen like
molecules are represented by a series of beads joined by springs.
Each pair of beads is joined by a stiff harmonic potential, and each
adjacent trio of beads has their angle constrained by an angular
potential as shown schematically in Fig. 2. This is a coarse-
graining of a worm-like curve model, which have been used suc-
cessfully in modelling the stiffness of biopolymers [29,30]. The
energy terms are controlled by the force constants, kl and Kh,
respectively. The beads may have two (or more) types, here body
(B) beads and head (H) beads. To mimic the effective excluded vol-
ume of a polymer biomolecule, the body beads repel each other
according to a cut-off Lennard-Jones potential described by an
energy scale �BB and a range rBB

UBB rð Þ ¼ 4�BB rBB
r

� �12 � rBB
r

� �6h i
r < r

0 r P r:

(
ð1Þ

Two head groups interact with one another, according to a
Lennard-Jones potential with an energy scale �HH and a range
rHH (representing an effective size of the bead),

UHH rð Þ ¼ 4�HH
rHH

r

� �12
� rHH

r
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� �
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rBBand rHH are chosen to prevent molecules from interpene-
trating and to favour k ¼ 3 coordination. Body-head interactions
are set to zero throughout (UBH ¼ 0). There is only one type of head
group interaction in this model, but real collagen IV molecules
have been observed to have two different head groups: 7S and
NC1. The 7S and NC1 domains interact only with other domains
of the same type, and favour different coordination numbers, k.
However, initial simulations with two types of head groups lead
Fig. 2. Two schematic parts of a collagen IV molecule, representing the simplifi-
cation in the coarse graining process. The left-hand image represents a trimer in an
NC1 domain, approximately 5000 atoms which are simplified into a single green
head bead in the polymer representation [31]. The right hand image (shown on a
different scale) shows one representative section of a triple helix joining the two
ends of the collagen IV molecule, which is represented by two purple body beads
and a joining spring [32]. The blue head bead at the other end of the polymer
represents a 7S domain, which is not pictured here.
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to networks with only even sized polygons forming; this is similar
to the geometrical frustration observed in ferromagnetic systems.
By changing the attractive part and range of the Lennard-Jones
potentials, the screening effect of salts in the self assembly solvent
can effectively be mimicked without explicitly taking them into
account (which greatly reduces computational expense).

The solvent was taken into account implicitly using a Langevin

thermostat, which sets the force ~F on the molecules to

~F ¼~FBond þ~FAngle þ~FLJ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}ConservativeForces � m~v
c|{z}Drag

þ n

ffiffiffiffiffiffiffiffiffiffiffiffi
kBTm
cdt

s
|fflfflfflfflffl{zfflfflfflfflffl}Brownian ð3Þ

This thermostat has the traditional conservative forces includ-

ing bond forces ~FBond, intra-molecular angle forces ~FAngle and head

group forces ~FLJ, but adds a drag term featuring the mass mand
velocity~v of each bead, divided by a damping factor c representing
the viscosity of the solvent. Finally, the thermostat features a
Brownian dynamics term with dt the timestep, Tthe desired tem-
perature, and n a random number recalculated every step. In Sec-
tion 3.4.2, the thermostat desired temperature Tis changed over a
period of time denoted tcool.

2.3. Simulation protocol

This work used LAMMPS to perform Molecular Dynamics simu-
lations due to the ease of use and ready support for 2D systems
[33]. Molecular Dynamics methods are well suited for studying self
assembly methods, as they repeatedly numerically solve Newton’s
equations of motions and thus naturally capture dynamic beha-
viour of a complex system. Unless otherwise mentioned, each set
of parameters was sampled in ten different configurations of
20� 20 molecules in a periodic simulation cell, initially placed
on a square grid. The grid arrangement was equilibrated by simu-
lation at T ¼ 30 K for t ¼ 40 ls, with an initial t ¼ 4 ls limiting the
maximum motion per timestep to prevent the simulation explod-
ing. The drive to form a network was so strong that an initial net-
work was commonly formed during equilibration. Next, the
simulation cell size was relaxed using an NpT ensemble (i.e. con-
stant number of particles, pressure, and temperature with the tem-
perature controlled by a Nosé-Hoover thermostat instead of the
Langevin thermostat) at T ¼ 30 K with p ¼ 20 Pa for a further
t ¼ 40 ls. This pressure was chosen based on parameter scans (dis-
cussed more in Section 3.4.3) as it best reproduced the biological
networks of interest. The use of pressure is a shorthand, as the cor-
responding physical property is more accurately stress. However,
LAMMPS treats 2D systems as being in a 3D cell with the zcompo-
nent of position and velocity set to 0. Following equilibration of the
pressure, the simulation cell size was fixed and the simulation
returned to a NVT (i.e. constant number of particles, volume and
temperature) ensemble. The proto-network was heated to 300K
by adjusting Tin Eq. (3) over 100 ls, which melted it. This is a rel-
atively low melting temperature for computational efficiency, and
all energy values in the simulation could be arbitrarily rescaled if
necessary. After melting was complete (as evidenced through equi-
libration of the structural metrics, i.e. k ¼ 1 for all molecules), the
collagen polymer liquid was cooled over a final 100 ls to 30 K.
The total time from T = 300 K to 30 K was recorded as the value
tcool. Snapshots were extracted and analysed at the end of each
simulation.

In general, only one parameter was varied across each set of
simulations, with the remaining parameters fixed at the default
values that most reliably produced networks (chosen after an ini-
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tial scan of the effective parameter space). These default parame-
ters were bond and angle energy scales as
kl ¼ 1:657� 10�4 Nm�1;Kh ¼ 200� 10�21 J, a cooling time of
tcool ¼ 100 ls, Lennard-Jones head-head and body-body energy
scales were �HH ¼ 4:142� 10�21 J; �BB ¼ 16:142� 10�21 J. The
length scales in the simulation were such that the equilibrium
polymer length was leqm ¼ 300 nm, and the Lennard-Jones length
scales were rHH ¼ 50 nm and rBB ¼ 137:5 nm. The polymer length
is similar to the observed length of collagen IV molecules, which
has been reported to be in the range 300nm to 400nm [34,35].
The body bead interactions are considerably larger than the actual
width of a collagen IV triple helix, 1.5nm, as they also take into
account the excluded volume effect of polymers where close coor-
dination in entropically unfavourable. The Lennard-Jones length
scales were chosen to favour k ¼ 3 coordination geometrically akin
to the design of patchy particles. These parameters were chosen to
promote the assembly of the coarse grained units into networks
that best matched observed images, while avoiding ‘‘over-fitting”
to the relatively sparse experimentally observed macroscopic
properties. The parameters used in this work are generic by choice,
and aim to reproduce as wide a variety of network types as possi-
ble, reflecting the variance in microscope images of biological net-
works — for example, images of collagen IV networks can vary
dramatically depending on the environmental conditions or self
assembly conditions [34,36,15,14]. Future refinements of this
model could more specifically reproduce properties of interest of
a given biological network; for example, choosing kl to reproduce
mechanical properties or to assign the stiffness of the angular
potential based on experimental data as has been highlighted for
chromosomes [37,38].
3. Results and discussion

The polymer model described has been developed so as to be
deliberately generic in order to capture as wide a range of biolog-
ical network structure as possible. Current images of biological
networks show an amazing diversity of form, structure and func-
tion. A number of previous approaches have been used to explore
biological networks, including entropically driven random network
methods and modelling random networks as being idealised struc-
tures. We compare the polymer network model to those different
approaches before presenting the degree of control and improve-
ments available in the proposed model.
Fig. 3. The process of applying network statistics to a network generated by the
coarse graining procedure, here with the metric being polygon edge counts. First, a
snapshot of a coarse grained simulation is taken (top left panel) and the polygons
are identified (top right panel). Finally, the fraction of polygons with nedges
(denoted pn) is compared to the distribution predicted by maximum entropy (red
dashed line).
3.1. Comparison to the ideal (maximum entropy) networks

A key feature of the polymer model is that it can take enthalpic
effects into account naturally. The importance of enthalpy to bio-
logical networks can be demonstrated by comparing with polygon
networks which are dominated purely by entropy, such as those
studied using bond switching methods [12]. A simple, numerical
model is the maximum entropy distribution. This maximises the
entropy of polygon edge counts according to the following con-
straints [39,20]:X

n

pn ¼1 ð4aÞX
n

npn ¼ nh i ð4bÞ
X
n

pn

n
¼constant ð4cÞ

with pn the fraction of polygons with n edges. This system of equa-
tions can be solved numerically with Lagrange’s method of undeter-
mined multipliers.
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The self-assembled networks show polygon edge count distri-
butions which do not resemble the numerical maximum entropy
model; this is visible in Fig. 3, which compares polygon edge
counts from a polymer simulated and the polygon edge counts
from maximum entropy model distribution. This was based on
simulations described in Section 3.4.1 at kl ¼ 1:5� 10�4 Nm. Simi-
lar differences are observed across all simulations, and the differ-
ence between a maximum entropy model and the distribution of
edge counts from polymer simulations is sufficiently pronounced
that the numerical fitting procedure often fails. For polygons with
many edges, their population is accurately predicted by a maxi-
mum entropy approach because they are sufficiently flexible to
minimise bond and angular strain. However, for polygons with
few edges, such as triangles and squares, this angular strain is
unavoidable. There are therefore very few triangles in the gener-
ated networks because of the strain involved in forming them,
but an overpopulation of squares compared to the maximum
entropy population.
3.2. Comparison to previous network studies

Prior to considering how different controllable variables may
affect the network structure, a clear set of metrics is required.
These metrics must capture the key differences that biopolymer
networks exhibit compared with inorganic networks, describe
the effects of enthalpy and entropy, and provide simple proxies
for complex physical phenomena. These metrics build on those
previously applied to characterise 2D networks [12].
3.2.1. Polygon convexity
One interesting difference that shown by biopolymer networks,

compared with inorganic networks is that the polygons are more
likely to be concave or distorted. The strong angular potentials
and fixed coordination numbers of atoms in inorganic glasses, such
as silica, lead to a strong preference for convex polygons. This is not
the case for polymer networks, which can have variable coordina-
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tion numbers, more flexible angular potentials and even curved
edges. To quantify this difference in shape regularity, we make
use of a metric originally developed for computer graphics [40].
The shape regularity coefficient (SRC) of a shape S, is defined as

SRC Sð Þ ¼ SO Sð ÞVxy Sð ÞCO Sð Þ ð5Þ
in which SO Sð Þis the solidity, defined as the ratio of the polygon
area to the area of its convex hull; Vxy Sð Þis the balanced repartition

of the shape, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min rx ;ryð Þ
max rx ;ryð Þ

r
where rx yð Þ is the standard devi-

ation of the x yð Þ coordinate of the vertex positions; and finally
CO Sð Þis the convexity, defined as the ratio of the convex hull
perimeter to the polygon perimeter.

Regular shapes, like a square, pentagon or circle are charac-
terised by SRC ¼ 1. Less-regular shapes, such as ellipses or rectan-
gles, have 0 6 SRC < 1. Fig. 4 shows four example networks with
varying degrees of regularity as defined by the SRC, with each poly-
gon coloured by SRC. The silica network in Fig. 4a [41] shows highly
regular polygons, corresponding to SRCh i ¼ 0:966� 0:024, the lat-
ter figure being the standard deviation. A more complete table of
data can be seen in Table SI 1 of the Supplementary Information.
The silica networks show SRCh i � 0:96 with relatively narrow dis-
tributions (small standard deviations). By comparison biological
networks show SRCh ivalues which are significantly smaller. For
example, networks generated in the present work show SRCh i in
the range 0:747 6 SRCh i 6 0:928 (see Table SI 2). In a previous pub-
lication a number of experimental images were analysed [12]. The
microscope images of collagen IV networks showed that the poly-
gons formed were often irregular.

Table SI 1 lists the values of SRCh i obtained from 21 such images
which show values in the range 0:69 < SRCh i < 0:91. As a visual
example, Fig. 4d shows a section of a network from Yurchenco
and Furthmayr [14] which corresponds to SRCh i ¼ 0:871� 0:088.
Fig. 4. A comparison of an inorganic network Fig. 4a and two simulated biological
networks [Fig. 4b and Fig. 4c]. The color ramp of red to blue represents the range of
irregular (SRC ¼ 0:5) to regular (SRC ¼ 1) polygons.
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The greater flexibility of the biological networks, compared to
the silica, is highlighted by the broader range of SRC values
observed in the former.

Overall, therefore, the flexibility of biopolymers leads to less
regular polygons in a 2D network, and this matches observation
from microscope images. Other factors that lead to lower SRCval-
ues are more flexible angular terms around nodes in the graph
compared to inorganic networks, and the presence of k ¼ 2 sites
which can lead to concave shapes. These concave shapes can be
seen in Fig. 4b and Fig. 4d as the long shapes, coloured pale. In
comparison, all polygons in Fig. 4a are convex and approximately
isotropic. A full table of data with SRCh i values is available in the
Supplementary Information as Table SI 2.
3.2.2. Coordination number and internal energy
The energetics of the networks generated by the polymer self-

assembly model, while interesting, are highly dependent on the
potential energy of interaction between polymers. The short-
range nature of the Lennard-Jones potential used in this work
means that it is possible to use the node coordination numbers
kas a proxy for the internal energy in the network. This removes
the complicating effects of bond stretches and angular strain, and
solely represents the energy gained in forming the network. This
makes it possible to study the energetics of the network easily,
using only the final polygon structure.

Fig. 5 shows one example of the correlation between the node
coordination number and the internal energy. Fig. 5a shows the
evolution of the internal energy and mean node coordination num-
ber for a simulation taken from Section 3.4.2, cooled over 100 ls.
Fig. 5b further highlights the correlation between Upair and kh i,
with scatter points being the positions of kh i and Upair shown at dif-
ferent time points in Fig. 5a. Similar correlations exist across all the
simulations we performed. The linear link between Upair and kh i
makes kh i useful, because it is independent of simulation parame-
ters and smooths out thermal noise.
3.3. Energetics of idealised network structures

The actual network structures adopted in collageneous net-
works has been a topic of some discussion. Timpl et al. and more
recently Cummings et al. [16,34] favour a ‘‘chain-link fence” net-
work, effectively a square-net structure. Burd [42], has alterna-
tively suggested a primarily hexagonal network. Yurchenco and
Furthmayr suggest a disordered collagen IV network interacting
with an ordered scaffold [14,43]. Imaging experiments have shed
some light on the structure of the networks. However, complicat-
ing factors such as the biological origins of the networks, the pres-
Fig. 5. Two figures to highlight the strong correlation between the mean coordi-
nation number kh i and the pairwise head-group interaction energy Upair . Fig. 5a
shows kh i as a function of time for a system undergoing network self assembly.
Fig. 5b shows a scatter plot of kh i against Upair to emphasize their correlation. Since
kh i dominates the internal energy, we can use kh i as a simple proxy for the energy.
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ence of surfaces, or dissolved salts, mean that the matter has not
been conclusively resolved.

Using our current polymer model, the energies of both square
and hexagonal networks were compared. The initial networks are
shown in Fig. 6a and Fig. 6b. The idealised networks were con-
structed at their energy minima (corresponding to all bonds
remaining unstretched), and scaled in the xy plane. The stretching
simulations revealed that the simple potential model used here
always favours the hexagonal structure over the square net struc-
ture, regardless of the choice of kland �HH. However, an improved
potential model that better takes the preference of 7S and NC1
domains for different coordination numbers (k ¼ 2 and k ¼ 4
instead of k ¼ 3 for both types) may reverse this stabilisation order
and favour a square net. Equally, environmental conditions or scaf-
folds may also reverse the stabilisation order.

Data on the stretching simulations can be found in Section SI IV
of the Supplementary Information.

3.4. Control of the network structure

Having established a highly simplified model and metrics to
describe the results, this work next investigates the sensitivity of
network structure to the parameters of underlying coarse grained
polymer model and simulation conditions.

3.4.1. Polymer potential parameters
Collective behaviour, such as network assembly, can be strongly

affected by the properties of the individual assembling units —
here, the simplified model polymer. With any model, it is impor-
tant to capture as much of the critical physics of a system while
retaining computationally affordability. Two such important phys-
ical properties of collagen IV are how stiff or elastic a molecule is,
because of the need for elasticity in the lens capsule, and the flex-
ibility of the collagen IV molecule, which has been shown to be key
in forming networks [30]. Here the impact of both the molecular
stiffness, controlled by varying the energy scale of the harmonic
bonds kl, and the non-linear flexibility governed by changing the
energy of the angular bonds Kh, are investigated, while all other
parameters used are the defaults discussed in Section 2.3. There
is a brief discussion of the effects of intrinsic curvature (by chang-
ing the equilibrium angle between three beads) in Section SI III,
which was found to only have minor effects.

The bond strength was found to have little effect on the nature
of the polygons formed, and the mean length of an edge in the net-
work did not change with kl, remaining at lh i ¼ 317 nm� 53 nm.
This matches the spacing between interaction sites for untangled
molecules observed by Yurchenco and Furthmayr [14], although
it is longer than the distance between tangled sites in the more
Fig. 6. A comparison of two idealised networks, one square net (left panel — where
each edge is two molecules long) akin to a chain-link fence, and hexagons akin to a
honeycomb (right panel — where each edge is one molecule long).
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complex networks observed by Barnard et al. [44]. This indicates
that polymers successfully forming a network do not deviate sig-
nificantly from their equilibrium length in order to accommodate
network formation. This near-invariance to kl allows the selection
of convenient energy and timescales for simulations such that rel-
atively long time-scale properties (such as network ageing) can be
accessed while retaining relatively rigid polymers.

Changing the angular strength parameter, Kh in the range
5� 10�21J 6 Kh 6 4� 10�19J had two major effects. First, it reduced
the average length of an edge in the network from 295nm for
‘‘loose” angles (low Kh) to 319 nm (high Kh) for ‘‘stiff” angles. This
is because the head-to–head distance within one molecule is
shorter if the backbone curves, and looser molecules can bend
more easily to accommodate better head group interactions. The
longer edge lengths better reproduce the lengths observed in bio-
logical networks [34]. Second, it decreased the number of polygons
successfully formed in the networks, from 81.0 on average in the
loosest case to 66.0 on average in the stiffest case. This demon-
strates that the bending of the polymers is important in order to
allow network formation. These data are available in Table 1, and
justify the importance of a worm-like curve model to network
formation.
3.4.2. Dynamical cooling time
The timescales of self assembly are difficult to control in a lab-

oratory setting, but relatively simple to control computationally.
The freezing rate of the simplified polymers as they formed into
networks was controlled by varying the time the polymers had
to cool (referred to as tcool in Section 2.3) from tcool ¼ 54 ls to
tcool ¼ 150 ls. When frozen rapidly, many fewer polygons were
formed, varying from 31.6 polygons on average when cooled over
tcool ¼ 54 ls, to 105.0 on average when cooled over tcool ¼ 150 ls.
Fig. 7 shows the total number of polygons formed as a function
of the cooling time, with all other parameters as discussed in Sec-
tion 2.3. In addition, the figure shows two example networks to
highlight the origin of the differences. The cooling solvent locks
polymers into place before they can form full polygons, and many
polymers end up ‘‘dangling”. As the cooling rate slows, the poly-
mers have more time to slot into place in the evolving network.

When the polymer networks are cooled for longer, the average
edge length and polygon areas remain similar — however, the
average node coordination kh i increases to 2.996 for the slowest
cooled network from 2.638 for the fastest cooled network. This
can be inferred from Fig. 7, as the polygons in the fast-cooled net-
works feature more polygons with dangling edges, and a network
with many fewer dangling edges in the slower-cooled network.
The slow-cooled networks better resemble those seen in biology,
and reinforce the value of a computational model simple enough
to access long timescales.
Table 1
The mean edge length lh i, number of polygons Npolygon, and the standard deviation of
the number of polygons rNpolygon

counted across 10 simulations as the angular strength
Kh changes.

Kh/ 1� 10�21J lh i/ nm Npolygon rNpolygon

5 294.62 79.2 8.64
50 311.65 78.3 4.76
100 314.64 71.1 6.06
150 316.96 68.2 5.83
200 318.27 71.6 4.48
250 318.11 69.0 7.04
300 318.43 69.9 7.58
400 318.51 66.0 3.65



Fig. 7. The number of polygons formed, N, against the time taken to cool the
networks from 300Kto 30K, denoted tcool with two networks cooled at different
rates inset as examples. Different colours are used to highlight polygons with the
same number of edges.

Fig. 8. A comparison of three networks cooled at low, intermediate, and high
molecule densities. Different colours are used to highlight polygons with the same
number of edges, and these networks are drawn at different scales.

Fig. 9. A comparison of three networks formed at low, intermediate, and high
Lennard-Jones well depths. Polygons that have the same number of edges are
coloured the same.
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3.4.3. Molecular density
The huge diversity in the structures of biological networks is

matched by a large diversity in network densities. To explore the
effects of that diversity on the network structure, the molecule
density (molecules per unit area) was varied whilst they were
forming.

However, instead of assigning a potentially non-physical den-
sity a priori, we introduced an isothermal-isobaric (NpT) step in
the simulation protocol, which allowed the periodic simulation cell
size to be physically-determined rather than assigned based in rel-
atively sparse data. After the simulation cell size was set in the
NpTensemble, it was thereafter fixed at the final value and the
pressure coupling removed. The pressure in this section should
not be interpreted directly, but instead as a proxy for the molecule
density, for two reasons. The first is that nature of the simulation
means that the position of particles are described by standard 3D
Cartesian coordinates but images in the zdirection are effectively
infinitely separated. This means that pressure is a more convenient
physical measure than stress, which would be strictly accurate for
2D systems. The second is that effects of the implicit solvent are
neglected when performing the NpTstep as the Langevin ther-
mostat is disabled, and a Nosé-Hoover thermostat is applied in
its place as described in Section 2.3.

Below a pressure of p ¼ 2 Pa at the lowest molecule densities no
networks form. At low molecule densities the available volume for
each molecule is so large that the mean intermolecular interaction
energies are relatively small. As pressures increase, the coordina-
tion number per node increases and the average area and number
of edges of polygons decreases. These data can be seen in Table 2,
and examples are shown in Fig. 8. Networks formed at intermedi-
ate densities often had dangling edges, and networks at high den-
sities had many small polygons forced together, surrounded by
large polygons. The number of dangling edges is seen in Table 2,
which counts the number of edges which are not involved in any
polygon. For a full description of how the dangling nodes are
Table 2
Average molecules per unit area qh i, average coordination number kh i, average edges
per polygon nh i, and the percentage of dangling edges (D.E.) which do not form parts
of polygons, as a function of molecular density.

p=Pa qh i=nm�2 kh i nh i D.E. =%

5 4:60� 10�4 2.588 6.789 62.6

10 6:25� 10�4 2.691 7.039 47.5

20 1:01� 10�3 2.799 6.823 36.55

50 1:81� 10�3 3.062 6.034 23.875
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quantified, see the polygon finding algorithm discussion in Bailey
et al. [12].

3.4.4. Lennard-Jones interaction strength
One well-studied aspect of collagen network formation is the

effect of salts dissolved in the solvent, which can affect the stiffness
of collagen molecules [45], the rate of network formation [16] and
the structure of the network [15]. These different effects are diffi-
cult to deconvolute from one another experimentally; for example
one cannot easily tell how the stiffness of monomers changes the
final network without simultaneously changing the rate and ener-
getics of network formation. In a simulation of self assembling
polymers, these parameters are more easily separable and can be
individually varied which can shed light on how multiple salting
effects contribute.

We tested the effect of energetics of head-group interaction by
varying the well-depth for Lennard-Jones interactions in the range
1� 10�21J 6 �HH 6 2� 10�20J. Some example networks are shown
in Fig. 9 at different values of �HH, and highlight the dramatic effect
on network structure. Relatively weak Lennard-Jones interactions
lead to irregular networks that do not show any significant polyg-
onal character. In this weak attraction regime there is sufficient
thermal energy to disconnect nodes in the network for a longer
period. This meant that the networks did not build up highly-
coordinated sites, and remained as connected chains. Strong
Lennard-Jones attractions encouraged more effective polygon net-
work formation, with more hexagons and squares. The energetic
Table 3
Average polygon area, average edges per polygon nh i, average coordination number
kh i of networks as a function of Lennard-Jones well depth.

�HH=1� 10�21J Areah i=nm2 nh i kh i

2 720321 6.422 2.69
4 386607 6.892 2.82
6 332060 6.923 2.87
8 282086 6.564 2.95
10 261117 6.409 2.98
12 257307 6.375 2.98
14 241528 6.273 3.01
16 231528 6.095 3.03
20 217023 5.925 3.05



Fig. 11. Comparison of networks formed with pre-tangled polymers. The nodes are
coloured by the same scheme as used in Fig. 10.

Table 4
Width of the node coordination distribution as measured by its second moment l2 kð Þ
for simulations in which a certain percentage of linear molecules have been replaced
with tangled molecules seen in Fig. 10.

nFig. 10b/ % nFig:10c=% l2 kð Þ r Areah i=nm2

0 2.5 0.443 �0.116 245 473
0 25 0.257 �0.082 173 958
2.5 0 0.454 �0.114 247 026
2.5 2.5 0.417 �0.104 235 151
2.5 25 0.250 �0.068 203 734
25 0 0.281 �0.070 205 269
25 2.5 0.295 �0.084 190 625
25 25 0.215 �0.083 145 209
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reward for head groups interacting in this regime meant the aver-
age coordination number approached 3, and more small polygons
were formed. Data on these networks are available in Table 3
which bear a significant resemblance to the results in Table 2. This
is because both pand �HH affect the ratio between the kinetic
energy of monomers and the potential energy gained in forming
a network. By changing this ratio, the balance shifts between
enthalpy guiding network formation towards a thermodynamically
rewarding arrangement, and the kinetics locking a network into
place as it forms. Studies of real collagen IV networks suggest that
the coordination of 7S tetramers cannot be thermally reversed, and
that thermal irreversibility is important to network formation [14].

3.4.5. Pre-seeding lateral ‘‘Tangling” interactions
One reason biopolymers exhibit a richness in network structure

is that their interactions are not limited to the terminal interac-
tions of head groups. For example, as 3D objects, collagen IV mole-
cules may tangle around one another. Yurchenco and Ruben argue
that these lateral tangling interactions are key to forming an amor-
phous polygon network [43,46]. In a 2D simulation it is possible to
capture some of these 3D lateral interactions by pre-forming tan-
gled molecules and introducing them to the network. Some exam-
ple molecules are shown in Fig. 10, chosen as the simplest possible
tangles that match observed images [14]. These are schematic
molecules, with coloured circles representing beads that interact
by Lennard-Jones interactions with one another and springs being
harmonic potentials between beads in a molecule.

The simulation procedure was followed as described above, but
with between 0% and 50% of the linear polymers substituted for
their tangled counterparts. Two example networks can be seen in
Fig. 11, showing the propensity of tangling sites to lead to a greater
number of small polygons. The addition of tangling sites also
reduces the width of the kdistribution, measured by l2 kð Þ, as each
tangle point had a fixed value of k ¼ 3. Data on l2 kð Þ can be seen in
Table 4, which show a clear decrease in l2 kð Þ as a greater percent-
age of straight polymers are replaced with tangled polymers. The
Fig. 10c tangled molecules had a greater effect on l2 kð Þ because
they had two sites of fixed kinstead of one or zero. The decreased
l2 kð Þ lead to a better fit to experimental networks, as discussed
further in Section 3.5. The networks with different fractions of tan-
gling sites had similar short-range orderings, as represented by the
assortativity rin Table 4, showing a slight trend towards a more
random short range order (with rcloser to 0) when there are more
tangling sites.

The average polygon area decreased in the networks with more
tangling sites. This is to be expected, as the tangled molecules were
not a one-to-one replacement for single polymers and had a
greater density of head group sites. The presence of tangling sites
Fig. 10. Three example molecules used in the simulations, demonstrating the
ability to seed a simulation with pre-tangled interactions. Purple circles represent
body beads, contributing to UBB, and green/ blue beads are head beads that
contribute to UHH, similar to those shown in Fig. 6a. Finally, orange circles represent
tangling sites (which can be seen in action in Fig. 11), but are otherwise identical to
body beads. The gap from a blue/green head bead to an orange tangling site is
150nm, which matches a distance between interaction sites observed by Yurchenco
and Furthmayr [14].
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could better capture the properties of physical networks and allow
for a potential model with head group preferences that better
reflects real networks.

3.5. The network landscape

The simulation results discussed here can be viewed in the con-
text of Bailey et al. [12]. In that work the formation of disordered
collagen-like networks was studied starting from a regular hexag-
onal network and systematically switching the bonds, maintaining
an average value of kh i, effectively modelling the network structure
as entirely entropically-driven. The work also highlighted the role
of the assortativity as an effective metric in characterising the net-
work structure. Furthermore, the differences between networks
could be best differentiated by considering a ‘‘network landscape”
which shows the assortativity as a function of the width of the k
distribution, as characterised by l2 kð Þ. While this technique better
simulated 2D biological networks than previous bond switching
techniques, it identified a gap where it was not possible to produce
networks with a certain range of polygon assortativities rand dis-
tribution widths of k.

Fig. 12 shows a ‘‘network landscape” similar to that in Bailey
et al. [12], capturing rand l2 kð Þ for the networks discussed in the
current work. The shaded regions highlight the regions of the land-
scape accessible to the entropic models. The figure also shows the
results obtained from analysis of experimental images (from Refs.
[44,36,47,15,14,43]). The values obtained from experiment show a
wide range of values reflecting both the different conditions under
which images are obtained and the difficulties in extracting
detailed information. Experimental images occupy regions of the
network landscape excluded from the entropically-driven models,
which had studied the effects of temperature, cooling rates, and
limits on k. Fig. 12 shows the results from the present work, vary-
ing the system variables as discussed above.

Each set of simulations discussed earlier is present as a different
coloured set of squares, where each square represents the result of
a single simulation. Critically, the introduction of controlled inter-



Fig. 12. A ‘‘network landscape”, showing the assortativity r(representing short
range order of polygons) against the second moment of the node coordination
number distribution l2 kð Þ (representing the range of node types). The simulated
points in coloured squares match experimental data points (circles) better than
previous work presented in Bailey et al. [12], which are represented as shaded
regions.
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and intra-molecular interactions (enthalpic contributions) gener-
ates network configurations which significantly fill the regions of
the network landscape occupied by the experimental configura-
tions. The majority of parameter changes result in a clear relation-
ship between r and l2 kð Þ with the former becoming less negative
(less dissassortative) as l2 kð Þ increases. This is most obvious in
the results from Section 3.4.2 and Section 3.4.3, and also holds
for the results from Section 3.4.1. This relationship can be
explained by reference to the assortativity of polygons formed by
a random point process, which is r � �0:15 [20]. This disassortativ-
ity for an entirely random process comes from geometrical con-
straints; with kand nh ifixed, small polygons must border large
polygons [12]. When a range of values is allowed for k(that is,
l2 kð Þ– 0), these constraints no longer hold and the system can
approach a more random organisation of polygons with r � 0.
Varying the Lennard-Jones parameter �HH as in Section 3.4.4 and
the number of tangled nodes as in Section 3.4.5 produces a more
complicated behaviour. The simulations with tangled interactions
lead to a cluster of points on the landscape with changing l2 kð Þ
but relatively similar r, demonstrating the control that is possible
over simulated networks by changing the starting molecules. The
effects of �HH lead to a similar clustering of landscape points in
the region r � �0:10 and 0:25 6 l2 kð Þ 6 0:6. This is because the
energetics of network formation leave the short-range order rela-
tively unaffected.
4. Conclusion

In conclusion, a highly simplified model for collagen IV has been
constructed which is shown to self assemble to form well-defined
biological networks. The ‘‘worm-like” polymer model features
physically meaningful parameters that allow control over the net-
works formed. The polymer networks are significantly different
from typical inorganic networks, for example easily forming con-
vex, irregular polygon structures. There is a rich range of networks
that can be formed, since varying simple parameters changes the
balance between enthalpy (guiding the shape of polygons), entropy
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(affecting the ordering of polygons) and kinetics (locking networks
into shape as they form).

The properties of the polymers themselves can affect the net-
works that are formed. The worm-like curve model allows for poly-
mer flexibility, which encourages network formation as polymers
can deform out of position to better coordinate into a network.
The rate of cooling, external pressure and strength of interaction
are all important in controlling the nature of the final networks.
By varying key variables it has been demonstrated that a key factor
in network formation is the kinetics of node-forming events where
two head groups encounter one another to create a node in the
network (which is thermally irreversible) and locked forming net-
works into place.

Finally, the networks formed in this work have filled in a gap
established in previous work in the network landscape, and again
highlight the critical balance of enthalpic, entropic and kinetic
factors.
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