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Abstract

The selection in commercial swine breeds for meat-production efficiency has been increas-

ing among the past decades, reducing the intramuscular fat content, which has changed the

sensorial and technological properties of pork. Through processes of natural adaptation and

selective breeding, the accumulation of mutations has driven the genetic divergence

between pig breeds. The most common and well-studied mutations are single-nucleotide

polymorphisms (SNPs). However, insertions and deletions (indels) usually represents a fifth

part of the detected mutations and should also be considered for animal breeding. In the

present study, three different programs (Dindel, SAMtools mpileup, and GATK) were used

to detect indels from Whole Genome Sequencing data of Iberian boars and Landrace sows.

A total of 1,928,746 indels were found in common with the three programs. The VEP tool

predicted that 1,289 indels may have a high impact on protein sequence and function. Ten

indels inside genes related with lipid metabolism were genotyped in pigs from three different

backcrosses with Iberian origin, obtaining different allelic frequencies on each backcross.

Genome-Wide Association Studies performed in the Longissimus dorsi muscle found an

association between an indel located in the C1q and TNF related 12 (C1QTNF12) gene and

the amount of eicosadienoic acid (C20:2(n-6)).

Introduction

Pork is one of the world’s most produced meat. Selective breeding in pigs has been developed

in parallel to the increase and intensification of this productive sector. Over the last decades,

genetic selection has notably improved meat-production efficiency in commercial pig breeds.

However, this artificial selection had the unwanted drawback of reducing the pork sensorial

and technological properties of meat. These modifications were driven by the reduction of

intramuscular fat (IMF) content and fatty acid (FA) composition changes [1].
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Commercial breeds as Landrace possess an efficient meat production with a rapid growth

and a leaner carcass, but the resulting meat has lower IMF and higher polyunsaturated FAs

(PUFA) content compared with some indigenous pig breeds, such as the Iberian pig [2]. The

Iberian breed is characterized by its higher IMF content with a great proportion of monoun-

saturated FAs (MUFA) [3]. In addition, MUFA have a more oxidative stability than PUFA,

improving the organoleptic properties of meat [4]. In contrast, PUFA consumption, in partic-

ular omega-3, has the beneficial role of decreasing the total cholesterol concentration, while

saturated FAs (SFA) increase the risk of suffering cardiovascular diseases [5,6].

Fatty acid composition in muscle is determined by physiological conditions such as fed and

fasted states [7], environmental factors such as nutrition [4,8] and genetic factors; carcass and

FA composition traits in pigs that range from moderate to high heritability values [9–12].

The genetic divergence between breeds has been driven by the accumulation of mutations

through processes of natural adaptation to the environment and selective breeding. Genetic

mutations can be produced by base pair substitution, but also by insertion, inversion, fusion,

duplication or deletion of DNA sequences. The development of next generation sequencing

(NGS) technologies has improved the detection of these genomic variants. Hitherto, the most

well-known variants studied with this method have been the substitutions of single nucleotide

polymorphisms (SNPs), which represent almost the 80% over all the detected variants [13–15].

In contrast, insertions and deletions (indels) have been less characterized although the

genome-wide ratio of indels to SNPs has been estimated as 1 indel for every 5.3 SNPs [16].

Studies in Drosophila melanogaster and Caenorhabditis elegans have determined that indels

represent between 16% and 25% of all genetic polymorphisms in these species [17,18]. In addi-

tion, studies performed in humans and chimpanzees evidenced that indels instead of SNPs

were the major source of evolutionary change [19–21].

As it has been described over the last decades, the most frequently found indel was the 1

base pair (bp) long [22,23]. Furthermore, a major proportion of deletions than insertions was

observed in the genome of 18 mammals, with the exception of the opossum [24]. A mechanism

that favours the occurrence of deletions was proposed by de Jong & Rydén [25], in which the

loops formed by slipped mispairing after DNA strand breakage are trimmed off. In pigs, recent

studies using whole genome sequencing (WGS) have detected the 1 bp long indel as the most

frequent indel, but the deletion/insertion ratios differ [26–29].

Indels can produce frameshifts in the reading frame of a gene or modify the total number

of amino acids in a protein, but they can also affect gene expression levels. In pigs, indels were

found to affect backfat thickness [30] and fat deposition [31] through the alteration of gene

expression, underlining the importance of these variants for animal production.

The objectives of this study were to identify indels from WGS data of Iberian and Landrace

pigs, which were founders of an experimental cross (IBMAP) with productive records for FA

composition, and to study the association between a selection of indels and meat quality traits

in three different genetic backgrounds.

Material and methods

Ethics statement

The present study was performed in accordance with the regulations of the Spanish Policy for

Animal Protection RD1201/05, which meets the European Union Directive 86/609 about the

protection of animals used in experimentation. All experimental procedures followed national

and institutional guidelines for the Good Experimental Practices and were approved by the

IRTA (Institut de Recerca i Tecnologia Agroalimentàries) Ethics Committee.

Indel detection from Whole Genome Sequencing data and association with lipid metabolism in pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0218862 June 27, 2019 2 / 17

82641-R. DCP was funded by a “Formació i
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Animal material and phenotypic records

The pigs used in this study belonged to the Iberian and Landrace breeds. The Iberian line,

called Guadyerbas, is a unique black hairless line that has been genetically isolated in Spain

since 1945 [32]. The Landrace line belonged to the experimental farm Nova Genètica S.A.

(Lleida, Spain). WGS data of seven founders of the IBMAP experimental population [32], two

Iberian boars and five Landrace sows, were used for indel detection. Analysis of indel segrega-

tion and association with meat quality traits were performed in 441 individuals of different

backcrosses: 160 BC1_LD ((Iberian x Landrace) x Landrace), 143 BC1_DU ((Iberian x Duroc)

x Duroc) and 138 BC1_PI ((Iberian x Pietrain) x Pietrain). All animals were reared in the

experimental farm of Nova Genètica S.A. (Lleida, Spain). Population structure of these three

backcrosses is depicted in S1 Fig.

Animals were fed ad libitum with a cereal-based commercial diet and slaughtered at an

average age of 179.8 ± 2.6 days with an average carcass weight of 72.2 kg. Blood from founder

animals was collected in 4 ml EDTA vacutainer tubes and stored at -20˚C until analysis. Sam-

ples of diaphragm tissue were collected from backcrossed animals, snap-frozen in liquid nitro-

gen and stored at -80˚C until analysis. Genomic DNA was extracted from all samples by the

phenol-chloroform method [33].

At the slaughterhouse, 200 g of Longissimus dorsi muscle samples were collected from the

three backcrosses. The IMF composition was measured with a protocol based on gas chroma-

tography of methyl esters as described in Pérez-Enciso et al. [32]. In total, 20 traits were

Table 1. Descriptive statistics including mean and SD of fatty acid composition and FA indices in the Longissimus dorsi muscle of the merged dataset and the three

backcrosses.

Group Trait Name Merged dataset BC1_DU BC1_LD BC1_PI

Mean SD Mean SD Mean SD Mean SD

SFA C14:0 Myristic acid 1.17 0.24 1.27 0.23 1.18 0.15 1.06 0.27

C16:0 Palmitic acid 22.99 1.51 23.94 1.65 22.59 1.20 22.42 1.14

C17:0 Margaric acid 0.27 0.10 0.25 0.10 0.27 0.07 0.30 0.13

C18:0 Stearic acid 14.21 1.44 14.33 1.75 14.18 1.03 14.13 1.46

C20:0 Arachidic acid 0.26 0.11 0.23 0.08 0.26 0.12 0.31 0.12

MUFA C16:1(n-9) 7-Hexadecenoic acid 0.36 0.11 0.31 0.12 0.39 0.09 0.39 0.10

C16:1(n-7) Palmitoleic acid 2.61 0.50 2.81 0.52 2.50 0.39 2.53 0.52

C17:1 Heptadecenoic acid 0.23 0.10 0.19 0.09 0.27 0.11 0.23 0.10

C18:1(n-9) Oleic acid 37.08 5.78 35.97 5.63 40.07 2.77 35.15 6.92

C18:1(n-7) Vaccenic acid 3.91 0.33 3.83 0.30 3.88 0.36 4.03 0.30

C20:1(n-9) Gondoic acid 0.82 0.20 0.73 0.16 0.85 0.11 0.88 0.26

PUFA C18:2(n-6) Linoleic acid 11.92 5.01 12.11 5.83 10.36 2.38 13.32 5.64

C18:3(n-3) α-Linolenic acid 0.50 0.23 0.40 0.13 0.65 0.29 0.44 0.14

C20:2(n-6) Eicosadienoic acid 0.51 0.14 0.43 0.12 0.54 0.12 0.57 0.14

C20:3(n-3) Eicosatrienoic acid 0.22 0.13 0.18 0.10 0.20 0.15 0.28 0.13

C20:3(n-6) Dihomo-γ-linolenic acid 0.43 0.28 0.45 0.29 0.28 0.13 0.58 0.29

C20:4(n-6) Arachidonic acid 2.53 2.04 2.57 1.94 1.54 0.74 3.49 2.53

Metabolic Ratios SFA Saturated fatty acids 38.90 2.44 40.01 3.13 38.47 1.64 38.17 1.84

MUFA Monounsaturated fatty acids 44.78 6.25 43.54 6.05 47.95 3.07 42.81 7.54

PUFA Polyunsaturated fatty acids 15.88 7.26 15.96 8.12 13.37 3.30 18.37 8.37

https://doi.org/10.1371/journal.pone.0218862.t001
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analysed: 17 intramuscular FAs and 3 FA metabolism indices (Table 1). Data values were nor-

malized applying a log2 transformation when needed.

Whole genome sequencing

The whole genome of seven founders of the IBMAP population was sequenced at CNAG

(National Centre for Genome Analysis, Barcelona, Spain) on an Illumina HiSeq2000 instru-

ment (Illumina, San Diego, CA, USA). Paired-end sequencing libraries, with approximately 300

bp insert size, were generated using TruSeq DNA Sample Prep Kit (Illumina, San Diego, CA,

USA). For each sample, around 40 million 100 bp-long paired-end reads were produced with

an average sequencing depth of 11.7x. Whole genome sequencing files of the seven BC1_LD

founders are described in Revilla et al. [34] and were deposited in the NCBI Sequence Read

Archive (SRA) under accession nos. SRR5229970, SRR5229971, SRR5229972, SRR5229973,

SRR5229974, SRR5229975 and SRR5229976.

Sequences were trimmed based on their quality using the FastQC [35] software. Then,

reads were mapped against the reference genome sequence assembly (Sscrofa10.2) using the

Burrows-Wheeler Alignment (BWA) tool [36]. Duplicated reads or those which were under a

Phred-based quality score of 20 were removed. Finally, alignment result files (in bam format)

were prepared for indel detection.

Indel detection and effects prediction

Several programs allow performing indel calling from WGS bam files. Following the article of

Neuman et al. [37] on the comparison of short indel detection programs, we applied the recom-

mended pipelines on the use of these three programs: Dindel (version 1.01) [38], SAMtools mpi-
leup (version 0.1.19) [39], and Genome Analysis Toolkit (GATK) (version 3.4–46) [40].

The Variant Effect Predictor (VEP) (version 82) [41] tool of Ensembl (http://www.ensembl.

org/) was used to quickly and accurately predict the effects and consequences of indels previ-

ously found on Ensembl-annotated transcripts [41]. Furthermore, to predict the possible effect

of an indel in the secondary structure of a protein, JPred4 [42] was used.

Finally, ten indels were selected for indel validation and association analysis if they followed

any of these two criteria:

1. those start or stop variants related with lipid metabolism

2. those indels with high or moderate severity that were found at extreme frequencies in the

founder animals (IB = 1 & LD�0.2 or IB = 0 & LD�0.8). Among this subset of 127 indels,

those involved in lipid metabolism were prioritized.

Genotyping

For indel validation and association analysis, ten indels were genotyped in three experimental

backcrosses: BC1_DU (n = 143), BC1_LD (n = 160) and BC1_PI (n = 138), using Taqman

OpenArray genotyping plates custom designed in a QuantStudio 12K flex Real-Time PCR Sys-

tem (ThermoFisher Scientific, Waltham, MA, USA).

The same animals of BC1_LD and BC1_PI were genotyped with the Porcine SNP60K

BeadChip (Illumina, San Diego, CA, USA), while BC1_DU samples genotypes were

obtained with the Axiom Porcine Genotyping Array (Axiom_PigHDv1; Affymetrix, Santa

Clara, CA, USA). Only those variants shared by both genotyping platforms were kept. A

total of 38,424 SNPs remained after removing SNPs with a minor allele frequency (MAF)

< 5% and SNPs with missing genotype > 5% data using PLINK (1.90b5 version) [43].
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Genome-Wide association analysis

Genome-Wide Association Studies (GWAS) were performed between the measured pheno-

types of IMF composition and the previously genotyped variants of the three backcrosses

(38,424 SNPs and nine indels) along the pig reference genome assembly (Sscrofa11.1). The

studies were conducted with GEMMA [44] following the mixed linear model:

yijklm ¼ Sexi þ Batchj þ Backcrossk þ bcl þ ul þ dlam þ eijklm;

where yijklm indicates the value of the phenotypic observation in the lth individual; sex (two cat-

egories), batch (fourteen categories) and backcross (three categories) are fixed effects; β is a

covariate coefficient with c being carcass weight; ul is the infinitesimal genetic random effect

and distributed as N(0, Kσu), where K is the numerator of the kinship matrix; δl represents the

allelic effect, calculated as a regression coefficient on the lth individual genotype for the mth

SNP or indel (values -1, 0, +1); am represents the additive effect associated with the mth SNP or

indel; and eijklm is the random residual term. Genomic kinship was obtained selecting the “-gk

1” option in GEMMA software [44], which calculates a centred relatedness matrix using the

genotypic information of the individuals.

GWAS were also performed individually for each one of the three backcrosses following the

previously described model, except for the fixed effect of the backcross which was removed

from the model.

The multiple test correction was conducted with the p.adjust function incorporated in R

(www.r-project.org) using the false discovery rate (FDR) method developed by Benjamini and

Hochberg [45]. In order to consider a SNP or an indel as significant or suggestive a cut-off was

set at FDR�0.05 or FDR�0.1, respectively.

Results and discussion

Genome-wide detection of indels in Iberian and Landrace animals

Whole genome sequencing data of seven founders of the IBMAP population (two Iberian

boars and five Landrace sows) were used for indel detection with Dindel, SAMtools mpileup
and GATK software. Dindel was the program that detected the highest number of indels

(3,380,221) as opposed to SAMtools mpileup and GATK (2,749,596 and 2,957,377, respec-

tively). To reduce the rate of false positives, only indels (1,928,746) that were found in common

between the three programs were considered for further analyses (Fig 1). In addition, 50,528

indels were discarded for not displaying the same genotype in at least two programs.

Repetitive elements, such as microsatellites, are short insertions or deletions that can inter-

fere with the detection and annotation of indels. Thus, to reduce the interference of repetitive

elements in the next steps, 105,783 variants were discarded if they were triallelic or the alterna-

tive allele was different among individuals for the same chromosomal position. Moreover,

141,391 indels were trimmed because they were homozygous for the alternative allele in all

samples and may not be segregating in our population. Hence, we only considered the final list

comprising 1,631,044 indels for further analysis (S1 Table).

In a preliminary study of our group, in which SNP calling was performed from WGS of

these seven IBMAP founders, the number of SNPs identified after the quality filter was 4.9 mil-

lion in the Iberian boars and 6 million in the Landrace sows. Therefore, the number of indels

detected (1.6 million indels) was within the expected range (16–25%) of the total number of

variants detected [13–18]. Nevertheless, another study in pigs reported that indels were less

frequent than SNPs in a proportion of 1 to 10 [26].
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The distribution of the indels found along all the Sus scrofa chromosomes (SSC) showed

that sexual chromosomes (SSCX and SSCY) had lower density of indels than autosomes (Fig

2). Disregarding the pseudoautosomic regions, this low density of indels in the sexual chromo-

somes is probably caused by the low recombination rate, only possible for the X chromosome

in females, and by the appearance of hemizygous recessive lethal mutations in males. In addi-

tion, males present one copy of each heterosome, and accordingly, the density of mutations in

autosomes, which have two copies of each chromosome, is higher than in heterosomes. The

autosome that had the highest density of indels was SSC10, while SSC1 had the lowest (Fig 2).

Fig 1. Weighted Venn diagram showing the number of indels shared between the three indel detection programs: Dindel, Pindel and SAMtools
mpileup. A total of 1,928,746 indels were found in common.

https://doi.org/10.1371/journal.pone.0218862.g001
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In accordance with the literature, indel frequencies decreased as their length increased

[27,46] and thus, 1 bp long indel was the most frequent indel found (Fig 3), either insertion or

deletion [22,23]. Insertions were more frequent than deletions in single bp indels, but from the

1.6 million indels, 52.9% were deletions from 1 to 54 bp and the rest were insertions (47.1%)

from 1 to 32 bp. Therefore, deletions were found to be more frequent than insertions, which

has been previously reported by some other studies made in pigs [26,28] and follows the muta-

tional mechanisms described by de Jong & Rydén (1981).

Consequence and severity predictions of the indels detected

The effects (consequence type and severity) of the 1.6 million indels were estimated by the

VEP platform and are summarized in Table 2. Since a variant may co-locate with more than

Fig 2. Distribution of the density of indels across chromosomes calculated as number of indels per Mb. Chromosomes are sorted in

increasing order of density value.

https://doi.org/10.1371/journal.pone.0218862.g002
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one transcript, one line of output was provided for each instance of co-location and thus, there

were more lines written (1,790,722) than indels entered (1,631,044). In addition, the total

number of predicted effects was 1,809,798 as some indels can result in more than one effect in

the same transcript (e.g., an indel could cause a frameshift along with a stop gained). Around

the third part of the 1.6 million indels (33.1%) did not fall within intergenic regions (539,920

indels) and only 1,758 indels were inside a coding region (0.11%). Finally, the VEP platform

classified the 1.6 million indels by their possible severity as high (1,289), moderate (561) or low

(1,018) impact, and the rest of indels were considered as modifiers.

Indel selection for genotyping

From the total of indels with high and moderate impact (1,850), ten indels were selected to be

genotyped in three different genetic backgrounds. These indels were chosen regarding their

Fig 3. From the total of 1,631,044 indels detected, it is represented the quantity of them according to their length in bp. Insertions are in

red and deletions are in blue.

https://doi.org/10.1371/journal.pone.0218862.g003
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possible consequence, if they were inside genes that could be related with lipid metabolism

and/or considering their frequencies in the founder animals.

Table 3 summarizes the list of genes with indels selected for genotyping:

1. The aspartate beta-hydroxylase (ASPH) gene (ENSSSCG00000025087), located on SSC4,

contained a predicted frameshift variant (rs691136075) with a high impact. The expression

of this gene was found to be negatively correlated with insulin-stimulated sprouting in mice

adipose tissue [47].

2. The calpain 9 (CAPN9) gene (ENSSSCG00000010182) is located on SSC14 and contained a

predicted inframe deletion (rs704351652). CAPN9 is a member of the calpain family and

some of its members have been associated with body fat content and insulin resistance in

human and mice [48,49]. This variant was found at extreme frequencies in the founder ani-

mals being the alternative allele (CAPN9:c.2013_2015delGAA) fixed in the Iberian boars.

3. The C-C motif chemokine receptor 7 (CCR7) gene (ENSSSCG00000017466) is located on

SSC12 and contained a predicted frameshift variant (rs789030032). CCR7 codifies for a che-

mokine receptor that plays a crucial role in inducing adipose tissue inflammation, insulin

resistance and obesity [50,51]. The allele frequency for this indel (CCR7:c.1142dupA) in the

Landrace sows was 0.5 while the two Iberian boars were homozygous for the reference

allele.

4. The C-reactive protein (CRP) gene (ENSSSCG00000021186), located on SSC4, contained a

frameshift variant (CRP:c.515delT). High levels of CRP has been related with overweight

Table 2. Consequences predicted by the VEP platform.

Consequence type Quantity VEP severity

Total of indels processed (input) 1,631,044 -

intergenic variant 1,091,124 Modifier

intron variant 506,323 Modifier

downstream gene variant 91,517 Modifier

upstream gene variant 90,313 Modifier

non coding transcript variant 11,535 Modifier

3’ UTR variant 7,618 Modifier

NMD transcript variant 5,911 Modifier

splice region variant 1,443 Low

frameshift variant 1,246 High

5’ UTR variant 1,112 Modifier

non coding transcript exon variant 650 Modifier

inframe deletion 359 Moderate

inframe insertion 285 Moderate

coding sequence variant 115 Modifier

splice acceptor variant 94 High

splice donor variant 74 High

mature miRNA variant 41 Modifier

start lost 14 High

stop gained 9 High

protein altering variant 6 Moderate

stop retained variant 5 Low

stop lost 3 High

incomplete terminal codon variant 1 Low

https://doi.org/10.1371/journal.pone.0218862.t002
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and obesity in human adults [52]. This variant was found fixed in the Iberian boars for the

alternative allele (CRP:c.515delT) and the alleles of the Landrace sows were as the reference.

5. The C1q and TNF related 12 (C1QTNF12) gene (ENSSSCG00000003333) is located on

SSC6 and contained an inframe deletion (C1QTNF12:c.557_559delCCG). This gene is also

known as CTRP12 and FAM132A. C1QTNF12 functions as an adipokine that is involved in

glucose metabolism and obesity in mice [53,54]. This deletion was found at extreme fre-

quencies in the founders being the alternative allele (C1QTNF12:c.557_559delCCG) fixed in

the Iberian boars.

6. The granzyme A (GZMA) gene (ENSSSCG00000016903), located on SSC16, contained an

inframe insertion (rs792025734). This gene was differentially expressed in the mesenteric

adipose tissue of beef cattle with distinct gain [55]. The insertion (GZMA:

c.129_131dupGTT) was found with a frequency of 0.8 in the Landrace sows while the Ibe-

rian boars were homozygous for the reference allele.

7. The jumonji domain containing 1C (JMJD1C) gene (ENSSSCG00000010226) is located on

SSC14 and contained an inframe deletion (JMJD1C:c.5964_5966delCAG). JMJD1C was

found in a human GWAS as a candidate gene for very low-density lipoprotein particles

[56]. This variation was found at extreme frequencies in the founders being the alternative

allele (JMJD1C:c.5964_5966delCAG) fixed in the Iberian boars.

8. The lysosomal trafficking regulator (LYST) gene (ENSSSCG00000010151), located on

SSC14, contained an inframe insertion (rs713515754). This gene has been related with

hypertriglyceridemia and anomalous lipid and FA composition in the erythrocyte

Table 3. Selection of the ten genotyped indels with the alternative allele frequency in the Iberian (Freq. IB) and Landrace (Freq. LD) founders and their consequence

predicted by the VEP platform.

Gene Name Ensembl Gene ID Chr. Positiona Reference Allele Alternative Allele Freq.b IB Freq.b LD Consequence Severity

ASPH ENSSSCG00000025087c 4 78,502,739

(72,104,018)

T TAGAC 0 0.1 Frameshift variant

Stop retained variant

High

PEX19 ENSSSCG00000023091 4 98,087,517

(90,197,086)

G GCAAGT 1 0.2 Frameshift variant High

CRP ENSSSCG00000021186 4 98,755,304

(90,783,699)

GT G 1 0 Frameshift variant High

C1QTNF12 ENSSSCG00000003333 6 57,988,405

(63,549,854)

ACCG A 1 0 Inframe deletion Moderate

CCR7 ENSSSCG00000017466 12 22,151,183

(21,868,256)

T TA 0 0.5 Frameshift variant

Stop retained variant

High

LYST ENSSSCG00000010151 14 59,597,172

(55,547,902)

G GACC 0 0.8 Inframe insertion Moderate

CAPN9 ENSSSCG00000010182 14 64,251,137

(59,585,649)

GTTC G 1 0 Inframe deletion Moderate

JMJD1C ENSSSCG00000010226 14 71,899,504

(66,662,629)

TCTG T 1 0 Inframe deletion Moderate

GZMA ENSSSCG00000016903 16 36,388,745

(34,285,211)

G GTGT 0 0.8 Inframe insertion Moderate

SAMD4B ENSSSCG00000016927c 16 40,171,247

(37,404,073)

TCA T 0.25 0.7 Frameshift variant

Stop gained

High

aPosition is referred to the indel’s previous nucleotide in the Sscrofa10.2 assembly. Position in the Sscrofa11.1 assembly is enclosed in parentheses.
bFreq. stands for the frequency of the alternative allele.
cNovel pig genes that were orthologous with their human, mouse and cow counterpart genes.

https://doi.org/10.1371/journal.pone.0218862.t003
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membranes of Chédiak-Higashi human patients [57]. This variation (LYST:

c.6287_6289dupCCA) was found with a frequency of 0.8 in the Landrace sows while the Ibe-

rian boars were homozygous for the reference allele.

9. The peroxisomal biogenesis factor 19 (PEX19) gene (ENSSSCG00000023091) is located on

SSC4 and contained a predicted frameshift variant (rs702520311). PEX19 is assumed to be

under regulation by peroxisome proliferator-activated receptor gamma coactivator-1 alpha

(PGC-1α) increasing the mitochondrial FA oxidation in human primary myotubes [58]. In

addition, peroxisomes are intimately associated with lipid droplets and they are able to per-

form FA oxidation and lipid synthesis [59]. The frameshift variant was found to be fixed in

the Iberian boars for the alternative allele (PEX19:c.98_102dupAAGTC), whereas in the

Landrace sows the alternative allele was present with a frequency of 0.2.

10. The sterile alpha motif domain containing 4B (SAMD4B) gene (ENSSSCG00000016927),

located on SSC16, contained a predicted frameshift variant that causes a stop gained

(rs709630954). This gene was found to produce leanness and myopathy in mice due to the

dysregulation of the rapamycin complex 1 (mTORC1) signalling [60].

Segregation analysis of the selected indels

The ten selected indels were genotyped in 143 BC1_DU, 160 BC1_LD and 138 BC1_PI indi-

viduals. Table 4 shows the genotype frequencies of indels in each backcross. Allele genotyping

of the CRP:c.515delT indel failed and this indel was discarded for posterior analysis.

GWAS results

Nine indels located within genes related with lipid metabolism and genotyped in the three

experimental backcrosses were selected for the association analysis. GWAS was performed

with a linear-mixed model (GEMMA software) among the genotypes of 38,424 SNPs segregat-

ing in the three backcrosses and the nine selected indels and the fatty acid composition in

muscle.

GWAS results in the merged dataset showed no significant association between the nine

genotyped indels and the 20 FA composition traits in IMF. However, a suggestive association

between the C1QTNF12:c.557_559delCCG indel and the eicosadienoic acid (C20:2(n-6)) (p-

value = 1.77×10-5, FDR = 5.34×10-2) was identified in the BC1_PI backcross-specific GWAS

(Fig 4). This association was not found in the other two backcrosses BC1_DU (p-

value = 1.65×10-1, FDR = 8.92×10-1) and BC1_LD (p-value = 1.63×10-1, FDR = 9.11×10-1) (S2

Fig).

Eicosadienoic acid is the elongated product of linoleic acid, an essential FA that is taken

from the diet [61,62] and can be desaturated into arachidonic acid which participates in multi-

ple regulatory pathways [61,62]. The BC1_PI pigs carrying the C1QTNF12:c.557_559delCCG
allele had a lower proportion of C20:2(n-6). This result was not observed in the rest of back-

crosses despite the C1QTNF12 indel was segregating at similar frequencies in the three back-

crosses (Table 4). We hypothesize that other mechanisms could be modulating the levels of

C20:2(n-6) in the BC1_DU and BC1_LD backcrosses and masking the effect of the C1QTNF12
indel.

C1QTNF12 is a gene member of the C1QTNF family which preferentially acts in adipose

tissue and liver regulating glucose uptake and fatty acid metabolism [54]. C1QTNF12 can also

form heterodimers with the protein encoded by the ERFE (erythroferrone) gene, another gene

member of the C1QTNF family, which is mainly expressed in skeletal muscle and is able to

reduce the circulating levels of free FAs without affecting adipose tissue lipolysis [63].
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Therefore, alterations of the C1QTNF12/ERFE heterodimer may modify the circulation of free

FAs and their accumulation in IMF.

Based on the data from the Ensembl project (www.ensembl.org; release 92) using the

Sscrofa11.1 assembly, the porcine C1QTNF12 gene consists of 8 exons and 7 introns (Ensembl

ID: ENSSSCG00000003333). The identified indel produces an inframe deletion of three bases

(CCG) in the exon 5 of C1QTNF12, which has the consequence of removing the alanine in the

position 186 of the final protein. This alanine deletion was located in the C1q/TNF-like

domain of C1QTNF12, a domain that is highly conserved among the C1QTNF12 gene of

mammals (Fig 5) and other vertebrate species [64], and is characteristic of the C1QTNF family.

Furthermore, the alanine deletion in the position 186 was predicted to cause a new α-helix for-

mation in the secondary structure of C1QTNF12, which could produce an impairment in the

protein function (Fig 6).

Nonetheless, the C1QTNF12 indel was not the most significant genetic variant on SSC6

(Fig 4 and S2 Table). Thus, further studies are required in order to analyse whether other

genes or other C1QTNF12 polymorphisms may be the cause for the differences in the eicosa-

dienoic acid abundance.

Table 4. Genotype frequencies of the nine indels found in each backcross. For each backcross, 143 BC1_DU, 160 BC1_LD and 138 BC1_PI were genotyped.

ASPH PEX19 C1QTNF12
Alleles -/- ACAG/- ACAG/ACAG -/- AAGTC/- AAGTC/AAGTC CCG/CCG CCG/- -/-

BC1_DU 0.82 0.17 0.01 0.21 0.48 0.31 0.57 0.43 0

BC1_LD 0.65 0.32 0.04 0.03 0.25 0.73 0.53 0.47 0

BC1_PI 0.92 0.08 0 0 0.03 0.97 0.55 0.45 0

CCR7 LYST CAPN9
Alleles -/- A/- A/A -/- CCA/- CCA/CCA GAA/GAA GAA/- -/-

BC1_DU 0.60 0.35 0.05 0.73 0.22 0.05 0.43 0.57 0

BC1_LD 0.28 0.46 0.26 0.14 0.57 0.29 0.48 0.51 0.01

BC1_PI 0.87 0.13 0 0.28 0.55 0.16 0.54 0.46 0.01

JMJD1C GZMA SAMD4B
Alleles CAG/CAG CAG/- -/- -/- GTT/- GTT/GTT TG/TG TG/- -/-

BC1_DU 0.54 0.46 0 0.83 0.16 0.01 0.33 0.64 0.04

BC1_LD 0.51 0.49 0 0.17 0.45 0.38 0.05 0.50 0.45

BC1_PI 0.59 0.41 0 0.30 0.64 0.07 0.13 0.48 0.39

https://doi.org/10.1371/journal.pone.0218862.t004

Fig 4. Manhattan plot representing the GWAS analysis for the relative abundance of eicosadienoic acid in the Longissimus dorsi muscle of the BC1_PI backcross

where the C1QTNF12 indel (blue circle) was suggestive (FDR�0.1, blue line). The nine genotyped indels are depicted as black rhombi.

https://doi.org/10.1371/journal.pone.0218862.g004
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In conclusion, in this study we used three different programs that increased the accuracy of

indel detection. Nine indels of the 1.6 million indels detected in silico were validated through

genotyping in three different backcrosses, showing different allelic frequencies. In addition, a

suggestive association was found between the C1QTNF12:c.557_559delCCG indel and the eico-

sadienoic acid abundance. Thus, indels can also be used as genetic markers associated with

phenotypic traits of interest.

Supporting information

S1 Fig. Population structure of the three IBMAP experimental backcrosses (BC1_DU,

BC1_LD and BC1_PI).

(TIF)

S2 Fig. QQ-plots and Manhattan plots for the relative abundance of eicosadienoic acid in

the Longissimus dorsi muscle of the merged dataset and the three backcrosses (BC1_DU,

BC1_LD and BC1_PI). The nine genotyped indels are depicted as black rhombi and the

C1QTNF12 indel is encircled in blue. Red and blue lines indicate those polymorphisms that

Fig 5. Multiple sequence alignment based on MULTALIN [65] of the porcine C1QTNF12 protein sequence with

the deletion and the reference sequences of the C1QTNF12 protein in pig, human, cow and mouse. The green

arrow points out the deletion.

https://doi.org/10.1371/journal.pone.0218862.g005

Fig 6. JPred4 prediction of the change in the secondary structure of the porcine C1QTNF12 protein when the alanine

in the position 186 (A inside the blue rectangle) of the reference sequence (bottom) is deleted (above). Red segments

represent alpha helices and green, beta sheets.

https://doi.org/10.1371/journal.pone.0218862.g006
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were below the genome-wide significance and suggestive threshold (FDR� 0.05 and

FDR� 0.1, respectively).

(TIF)

S1 Table. Compressed vcf file containing the 1,631,044 indels found in common between

the three programs (Dindel, SAMtools mpileup and GATK) used for predicting the conse-

quence type and severity of the indels by the VEP platform.

(RAR)

S2 Table. GEMMA output for the suggestive (FDR�0.1) SNPs found in the GWAS analysis

for the log2 normalization of the relative abundance of eicosadienoic acid in the Longissi-
mus dorsimuscle of the BC1_PI population.

(CSV)
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