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Pseudomonas aeruginosa PAO1 produces three polysaccharides, alginate, Psl, and Pel
that play distinct roles in attachment and biofilm formation for monospecies biofilms.
Considerably less is known about their role in the development of mixed species
biofilm communities. This study has investigated the roles of alginate, Psl, and Pel
during biofilm formation of P. aeruginosa in a defined and experimentally informative
mixed species biofilm community, consisting of P. aeruginosa, Pseudomonas protegens,
and Klebsiella pneumoniae. Loss of the Psl polysaccharide had the biggest impact
on the integration of P. aeruginosa in the mixed species biofilms, where the percent
composition of the psl mutant was significantly lower (0.06%) than its wild-type (WT)
parent (2.44%). In contrast, loss of the Pel polysaccharide had no impact on mixed
species biofilm development. Loss of alginate or its overproduction resulted in P.
aeruginosa representing 8.4 and 18.11%, respectively, of the mixed species biofilm.
Dual species biofilms of P. aeruginosa and K. pneumoniae were not affected by loss of
alginate, Pel, or Psl, while the mucoid P. aeruginosa strain achieved a greater biomass
than its parent strain. When P. aeruginosa was grown with P. protegens, loss of the
Pel or alginate polysaccharides resulted in biofilms that were not significantly different
from biofilms formed by the WT PAO1. In contrast, overproduction of alginate resulted
in biofilms that were comprised of 35–40% of P. aeruginosa, which was significantly
higher than the WT (5–20%). Loss of the Psl polysaccharide significantly reduced the
percentage composition of P. aeruginosa in dual species biofilms with P. protegens
(<1%). Loss of the Psl polysaccharide significantly disrupted the communal stress
resistance of the three species biofilms. Thus, the polysaccharide composition of an
individual species significantly impacts mixed species biofilm development and the
emergent properties of such communities.
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Introduction

Bacteria predominantly occur as biofilms in the environment
and biofilm formation is linked to increased tolerance of bacteria
to a range of environmental and host related stressors. As a
consequence, considerable experimental effort to understand
how bacteria regulate biofilm formation and what effectors
are involved in the increased resilience of biofilms has been
made. Resistance of biofilm cells has been linked in part to the
physiological status of the cells, where gradients of nutrients
result in a stratified population of cells. Under these conditions
the cells within microcolonies are less active or express stationary
phase like responses (Hentzer et al., 2005; Waite et al., 2005).
Biofilm formation also occurs in response to regulatory processes
including quorum sensing or to exposure to stressors such as sub-
lethal doses of antibiotics and detergents (Whiteley et al., 2001;
Folsom et al., 2010).

One of the defining features of the biofilm is the presence
of a self-produced extra-cellular matrix. This matrix not only
provides the scaffold for adhesion to surfaces and cohesion
between cells, but also protects the cells from stresses such
as desiccation, oxidizing agents and host immune defenses
(DeVault et al., 1990; Ophir and Gutnick, 1994; Pier et al.,
2001; O’Toole, 2003; Parsek and Singh, 2003; Friedman and
Kolter, 2004; Jackson et al., 2004; Ryder et al., 2007). The matrix
can additionally sequester valuable enzymes and nutrients, cell-
to-cell communication signals and fosters the exchange of
genetic material (Stoodley et al., 2002). The matrix is typically
comprised of a combination of proteins, extracellular DNA and
polysaccharides.

The biofilm matrix of P. areuginosa PAO1 has been
shown to include at least three polysaccharides, alginate,
Psl, and Pel polysaccharides, and their roles during biofilm
development have been demonstrated in biofilm populations
(single species systems; Colvin et al., 2011, 2012; Ghafoor
et al., 2011; Billings et al., 2013; Zhao et al., 2013). Alginate
deficient mutants develop biofilms with a decreased proportion
of viable cells and contain significantly more extracellular
DNA (Ghafoor et al., 2011). It has also been shown that
exposure to oxidative stress induces the overproduction of
alginate, which protects the biofilms from oxidative radicals
(Mathee et al., 1999; Hentzer et al., 2001). Biofilms of psl
or alginate deletion mutants failed to form the characteristic
mushroom like structures, suggesting these polysaccharides are
important for structural development (Ghafoor et al., 2011).
Pel was described as being essential for the formation of
biofilms by Pseudomonas aeruginosa at the air–liquid interface
in static broth cultures (Friedman and Kolter, 2004). Psl
also plays an important role in the initiation of biofilm
formation (Friedman and Kolter, 2004; Jackson et al., 2004;
Matsukawa and Greenberg, 2004; Campisano et al., 2006; Ma
et al., 2006). More recently, the visco-elastic properties of
Pel and Psl were described (Chew et al., 2014), where it
was shown that Psl demonstrated properties consistent with
elastic materials, suggesting that it is stiff or rigid. In contrast,
the Pel polysaccharide was more viscous and was responsible
for the formation of biofilm streamers. These properties have

been shown to have important outcomes for biofilms that
form in industrial settings. For example, biofilms that lack
the Psl polysaccharide showed a reduced tendency to inhibit
reverse osmosis membrane performance, suggesting that the
strong, cohesive properties of Psl were necessary to make an
impermeable biofilm (Barnes et al., 2014). Collectively, these data
demonstrate that the individual polysaccharide components of
the EPS play important roles in biofilm formation and structure
development.

While the roles of the matrix components have been well
studied in the context of monospecies biofilm development,
considerably less is understood about the roles of the matrix
in the development of mixed species biofilm communities. This
is particularly relevant because in nature, most biofilms are
represented by diverse communities rather than populations of
single species. For these mixed species biofilm communities,
the organization of the different species may be important
for community function and therefore, the matrix potentially
plays a vital role in the structural organization of mixed
species communities. Experiments investigating dual species
biofilms formed by P. aeruginosa and Staphylococcus aureus
indicated that the production of Pel and Psl were important
for the two bacteria to form biofilms together, suggesting that
polysaccharide production may be a key factor in community
assembly (Billings et al., 2013; Chew et al., 2014). We have
recently established a mixed species biofilm community that
results in increased overall biomass of the community relative
to single species biofilms formed separately by its members (Lee
et al., 2014). Further, the mixed species biofilm demonstrated
community level stress protection, which was extended to all
of the community members, despite some of those members
being individually sensitive to those stresses. The mechanisms
that drive community assembly and resistance are currently
unknown.

In the present study, we have investigated the role of
polysaccharides produced by PAO1 in the establishment of
a biofilm community, consisting of P. aeruginosa PAO1, P.
protegens Pf-5, and Klebsiella pneumoniae KP-1. Specifically,
mutants of P. aeruginosa that were deficient in the production
of alginate, Pel, and Psl or that over expressed alginate, were
compared for the formation of mixed species communities. The
results demonstrate that the composition of the mixed species
biofilm community was strongly influenced by the ability of
P. aeruginosa to produce the Psl polysaccharide. This highlights
the importance of specific polysaccharides in biofilm community
assembly and function.

Materials and Methods

Bacterial Strains and Culture Media
Bacteria (Table 1) were routinely cultured in either M9 minimal
medium (48 mM Na2HPO4; 22 mM KH2PO4; 9 mM NaCl;
19 mMNH4Cl; 2 mMMgSO4; 0.1 mMCaCl2; and 2mMglucose)
supplemented with 0.2% w/v CAA (supplemented M9 minimal
medium), Luria Bertani broth (LB10; 10 g L−1 NaCl; 10 g L−1

tryptone; 5 g L−1 yeast extract) or Super Optimal Broth (SOB;
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TABLE 1 | List of bacterial strains used.

Species and strain Genotypic and phenotypic characteristics4 Source

Pseudomonas aeruginosa
PAO1

Lee et al. (2014)

PAO1�alg Isogenic alg8 deletion mutant Ghafoor et al. (2011)

PAO1�pel Isogenic pelF deletion mutant Ghafoor et al. (2011)

PAO1�psl Isogenic pslA deletion mutant Ghafoor et al. (2011)

PDO300�mucA Mutation in the mucA22 allele Mathee et al. (1999)

PAO1-eYFP Carries the gene encoding eYFP in the intergenic region between coding region of glmS
and its downstream gene; GmR

Lee et al. (2014)

PAO1�alg-eYFP This project

PAO1�pel-eYFP This project

PAO1�psl-eYFP This project

PDO300�mucA-eYFP This project
1P. protegens Pf-5 Lee et al. (2014)

Pf-5-eCFP Carries the gene encoding eCFP in the intergenic region between coding region of glmS
and its downstream gene; GmR

Lee et al. (2014)

2Klebsiella pneumoniae
KP-1

Lee et al. (2014)

KP-1 -DsRed Carries the gene encoding DsRedExpress in the intergenic region between coding
region of glmS and its downstream gene; GmR

Lee et al. (2014)

Escherichia coli

JM109 endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ �(lac-proAB) e14− [F′ traD36 proAB+
lacIq lacZ�M15] hsdR17(rK−mK

+ )
Yanisch-Perron et al. (1985)

HPS1 F− �(lab-proAB) endA1 gyrA96 hsdR17 supE44 relA1 recA1 thi rifR zzx::mini-Tn5Lac4 Choi et al. (2005)

CC118 λpir �(ara-leu) araD �lacX74 galE galK phoA20 thi-1 rpsE rpoB argE(Am) recAl λ pir Choi et al. (2005)

DH5α λpir F−,�80dlacZ�M15 �(lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rK−, mK
+ ) phoA

supE44 thi-1 λ pir
Choi et al. (2005)

S17-1 λpir hsdR recA pro RP4-2 (Tc::Mu; Km::Tn7; λ pir) Miller and Mekalanos (1988)

HB101 F−, hsdS20 (rb−, mb− ), supE44, ara14, galK2, lacY1, proA2,
rpsL20 (StrR ), xyl-5, mtl-1, l-, recA13, mcrA−, mcrB−

Lambertsen et al. (2004)

1Pseudomonas fluorescens Pf-5 has recently been renamed as P. protegens Pf-5 (Ramette et al., 2011; Lim et al., 2013)
2Klebsiella pneumoniae is an environmental isolate, has been sequenced and the sequence deposited under the accession number- AVNZ01000000, AVNZ00000000
(Lee et al., 2013).
GmR, Gentamicin resistance; StrR, Streptomycin resistance.

10 mM NaCl; 2.5 mM KCl; 10 mM MgCl2; 10 mM MgSO4; 20 g
L−1 tryptone; 5 g L−1 yeast extract).

Transformation of P. aeruginosa EPS Mutants
by Electroporation
Electrocompetent P. aeruginosa EPS mutants �mucA, �alg,
�pel, and �psl were prepared as described (Choi et al.,
2006). During transformation, the ColE1 replicon-based delivery
plasmid and the helper plasmid, pTNS1 (Table 2), were added
to the electrocompetent cells and electroporated (25 μF, 200 �
and 2.5 kV cm−1) using a Gene PulserTM apparatus (BIO-RAD,
USA). Transformed cells were recovered by the addition of ice
cold Super Optimal Broth with Catabolite repression (SOC; SOB
supplemented with 2% w/v glucose) and incubated with shaking
for 3 h at 37◦C. Recovered cells were plated onto LB5 agar (5 g
L−1 NaCl; 10 g L−1 tryptone; 5 g L−1 yeast extract; 1.5%w/v agar)
plates were supplemented with 100 μg mL−1 gentamicin for the
selection of transformants.

Determination of Tn7 Insertion Site
Colony PCRwas used to verify chromosomal Tn7 insertion using
primers specific for the insertion site (Table 3) using a C1000TM

thermal cycler (BIO-RAD, USA) with an initial denaturation
at 97◦C for 3 min followed by 35 cycles of amplification
(denaturation at 97◦C, 30 s; annealing at 55◦C, 30 s; extension
at 72◦C, 1 min) and a final extension at 72◦C for 10 min.
The PCR product was visualized on a 1% w/v agarose gel and
sequenced.

Flow Cells Dynamics Experiments
Biofilms were cultivated in three-channel flow cells (channel
dimensions, 1 mm × 4 mm × 40 mm; Biocentrum-DTU;
Sternberg and Tolker-Nielsen, 2006). The flow cells were supplied
with supplemented M9 minimal medium at 9 mL h−1 (mean
velocity = 0.625 mm s−1) with a Reynolds number of 1.12. Each
channel was injected with 0.5 mL of diluted overnight culture
containing approximately 1 × 108 cfu mL−1. Mixed species
biofilms were established by inoculating mixed cultures of PAO1
EPS mutants, Pf-5, and KP-1 in the ratio of 5:5:1, respectively.

SDS Treatment
Flow cells biofilms were grown in M9 supplemented with 2 mM
glucose and 0.2% w/v CAA. After 3 days, biofilms were treated
with M9 glucose, CAA, and 0.1% SDS under flow conditions for
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TABLE 2 | List of plasmids used in this study.

Plasmid Relevant characteristic3 Source

pTNS1 Helper plasmid, providing the Tn7 transposition function. ApR, R6K ori, ori T Choi et al. (2005)

pTNS2 Helper plasmid, providing the Tn7 transposition function. ApR, R6K ori, ori T AY8848331,2

pTNS2-ColE1 Helper plasmid, providing the Tn7 transposition function. ApR, ColE1 ori, ori T Lee et al. (2014)

pUC18T-
mini-Tn7T-Gm-eYFP/HPS1

pUC18 –based delivery plasmid for mini-Tn7-Gm-eYFP. ApR, GmR, ColE1 ori, oriT DQ4938791,2

pUC18TR6K- mini-Tn7T-Gm-eYFP pUC18 –based delivery plasmid for mini-Tn7-Gm-eYFP. ApR, GmR, R6K ori, oriT Lee et al. (2014)

pRK600 Mobilizing plasmid, providing the mobilization ability during conjugation. ApR, CmR, R6K ori Laboratory stock

pUC18TR6K-mini-Tn7T pUC18 –based vector plasmid for construction of R6K replicon-based delivery plasmids in this
project. ApR, R6K ori, oriT

AY7129532

1Plasmids were generously provided by Herbert P. Schweizer (Choi et al., 2005).
2National Center for Biotechnology Information (NCBI) accession number.
3ApR, Ampicillin resistance; CmR, Chloramphenicol resistance; GmR, Gentamicin resistance.

TABLE 3 | List of primers used.

Primer Sequence Description

ColE1_F 5′AGGATCCCCGGGGATAACGCAGGAAAGAACAT3′ Primer is used during PCR amplification of ColE1 ori. Primer is flanked
with SmaI site at 5′ end.

ColE1_R 5′GATTACGAATTCCTGTCAGACCAAGTTTACTC3′ Primer is used during PCR amplification of ColE1 ori. Primer is flanked
with EcoRI site at 5′ end.

Tn7R 5′CAGCATAACTGGACTGATTTCAG3′ Common primer used for checking chromosomal insertion of Tn7.

PAglmS-down 5′GCACATCGGCGACGTGCTCTC3′ Primer used with Tn7R to check chromosomal insertion of Tn7 in PAO1

2 h. Images were collected before and after the treatment for the
quantification of biomass.

Microscopy, Image and Statistical Analysis
All microscopic observations and image acquisition were
performed using a CLSM (LSM 780, Carl Zeiss, Germany). For
each channel, five image stacks were acquired, covering a total
area of approximately 9 × 105 μm2, which was more than the
suggested minimum of 1 × 105 μm2 to acquire representative
data (Korber et al., 1993). For image analysis, a total of 15
image stacks (five from each experiment) were quantified for each
biofilm type using IMARIS (Bitplane AG, Switzerland). Statistical
analysis was performed using Graph pad PRISM.

Results

The Role of Pel, Psl, and Alginate in the
Development of Three-Species Biofilm
Communities
To determine the roles of alginate, Psl, and Pel produced by
P. aeruginosa in mixed species biofilm community development,
polysaccharide mutants of P. aeruginosa, alg, mucA, pel, and
psl were cultivated with P. protegens and K. pneumoniae
as triple species biofilms. Initial attachment of the alginate
overproducing strain, mucA, was similar to the wild-type
(WT) P. aeruginosa (Figure 1; Supplementary Figure S1).
However, in contrast to the WT P. aeruginosa, the biovolume
of the mucA mutant remained constant at 20% throughout
the duration of the experiment, which was significantly
higher than the WT (2%). Mutants in the alg and pel

polysaccharide genes showed an increase in the amount of
P. aeruginosa present in the three species biofilm community
during the initiation of biofilm formation (Figures 1B,D,F).
When the alg mutant was included in the biofilm, the
architecture of P. protegens changed from one dominated
by microcolonies to a more filamentous biofilm and the
alg mutant completely covered the top of the biofilm at
day 7 (Supplementary Figure S1). In contrast, the psl mutant
was below the detection level in the triple species biofilms
(Figures 1E,F) with P. protegens and K. pneumoniae accounting
for 52.24 and 47.69% of the biofilm biomass, respectively
(Figure 1E).

The Role of Pel, Psl and Alginate in Dual
Species Biofilm Development
Similarly, the roles of the P. aeruginosa polysaccharides
in mediating dual species biofilm interactions were also
investigated. When grown as a dual species biofilm with
P. protegens (Figure 2; Supplementary Figure S2) the mucA
mutant showed a significant increase (35–40%) in relative
biovolume compared to the WT P. aeruginosa (5–20%). There
was no significant difference in the biovolumes for the pel and
alg mutants relative to the WT. As observed for the three species
biofilm, the psl mutant (<1% biovolume) was also severely
impaired in its ability to establish a dual species biofilm with
P. protegens.

When the polysaccharide mutants formed dual species
biofilms with K. pneumoniae (Figure 3), alg and pel mutants
exhibited significant increases at day 1, but not for the remainder
of the experiment, relative to the WT P. aerugionsa. There
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FIGURE 1 | Spatial and temporal development of Pseudomonas
aeruginosa polysaccharide mutants grown with P. protegens and
Klebsiella pneumoniae as three species biofilms. The proportion of the
three species within the mixed species over the 7 days period was determined

by quantitative image analysis. (A) P. aeruginosa wild-type (WT), (B) �alg, (C)
�mucA, (D) �pel, (E) �psl, and (F) biovolumes of P. aeruginosa WT and
polysaccharide mutants. Statistical analysis was performed vs. the
corresponding WT samples grown in parallel ∗∗P < 0.01, ∗∗∗∗P < 0.0001.

was a statistically significant increase in the biofilm biomass
of the alginate over producing strain, mucA, for days 3–7 of
biofilm development (39–47%) relative to the WT P. aeruginosa
(16–30%).

The data suggest that the mucoid strain of P. aeruginosa is
better able to compete in mixed species biofilm communities
while the psl mutant is generally less fit under these conditions.
The primary changes in P. aeruginosa biofilm biomass were
observed when it was grown with P. protegens suggesting the
resource competition in the mixed species biofilms is strongest
between these two closely related species.

The Role of Polysaccharides in the Stress
Resistance of Mixed Species Biofilms
It was previously shown that this mixed species biofilm
community displays enhanced resistance to SDS and antibiotic
stress relative to biofilms formed by the individual species alone
(Lee et al., 2014). Further, the stress resistance was a communal
property, where all three species were equally protected, despite
monospecies biofilms of P. protegens being highly sensitive to
SDS exposure. To determine the role of the polysaccharide
component of the EPS in stress resistance of mixed species
biofilms, mutants that either overproduce alginate,mucA, or that
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FIGURE 2 | Spatial and temporal development of P. aeruginosa
polysaccharide mutants grown with P. protegens as dual species
biofilms. The proportion of the two species was calculated by
quantitative image analysis. (A) P. aeruginosa WT, (B) �alg, (C) �mucA,

(D) �pel, (E) �psl, and (F) biovolumes of P. aeruginosa and
polysaccharide mutants. Statistical analysis was performed vs. the
corresponding WT samples grown in parallel, which were very similar in
all cases ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.

were defective for the production of Psl were tested for their
contribution to the SDS resistance of the three species biofilms.
These two strains were used since the mucA strain showed an
increased proportion in the mixed species biofilm, while the
psl mutant was less competitive during mixed species growth.
Mixed species biofilms formed with the mucA mutant showed
similar protection as the WT P. aeruginosa and protection was
shared across all three species (Figure 4). In contrast, mixed
species biofilms that included the pslmutant showed a significant
reduction in biofilm biomass after SDS stress. The biomass of
P. protegens was reduced by fivefold, indicating that it was
no longer protected during mixed species biofilm growth. The

biomass of K. pneumoniae showed similar amounts of biofilm
before and after surfactant exposure and hence was unaffected by
the change in biofilm composition.

Discussion

The dynamics of biofilm formation are influenced by a number
of biotic and abiotic factors (Costerton et al., 1994; Wolfaardt
et al., 1994). While the effects of polysaccharides on biofilm
development have been well studied for biofilm populations,
less is understood about their role during the development of
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FIGURE 3 | Spatial and temporal development of P. aeruginosa
polysaccharide mutants grown with K. pneumoniae as dual species
biofilms. The proportion of the two species was calculated by quantitative
image analysis. (A) P. aeruginosa WT, (B) �alg, (C) �mucA, (D) �pel, (E)

�psl, and (F) biovolumes of P. aeruginosa and polysaccharide mutants.
Statistical analysis was performed vs. the corresponding WT samples grown
in parallel, which were very similar in all cases ∗P < 0.01, ∗∗P < 0.001,
∗∗∗∗P < 0.0001.

mixed species biofilm communities. We have investigated here
the contribution of the three known polysaccharides produced
by P. aerugionsa to determine their role in mixed species biofilm
development. It was observed that the initial attachment of the
mucoid P. aerugionsa mucA mutant was higher than for the
WT, as evidenced by the increased proportion of the mutant
in the mixed species biofilm at day 1 and for the remainder of
the biofilm development cycle. This effect was seen when the
mucA strain was present in the three species as well as dual
species biofilms. Alginate over expression in P. aerugionsa is
frequently associated with chronic lung infections and mucoid

strains have been shown to have increased resistance to stressors.
Here we observed that alginate over production resulted in
an increase in the biofilm biomass of P. aeruginosa relative to
P. protegenes and K. pneumoniae. Therefore, over production of
alginate could enhance the competitive fitness of P. aerugionsa
during mixed species biofilm formation during chronic lung
infection.

The pel mutant was similar to the WT in its contribution to
the biofilm and thus, under these conditions, may play a lesser
role in mixed species biofilm development. While Pel was not
essential, loss of this polysaccharide resulted in alteration of the
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FIGURE 4 | The role of alginate and Psl in stress resistance of mixed
species biofilms. Three species biofilms were formed for 4 days and
exposed to 0.1% SDS for 2 h. The biofilm biovolumes of P. aeruginosa mucA
(left), psl (right), Pf-5, and KP-1 were determined by quantitative image
analysis before and after SDS treatment. Statistical analysis was performed
vs. the corresponding WT samples grown in parallel, which were very similar
in all cases ∗∗∗∗P < 0.0001.

biofilm structure. It was observed that the height of microcolonies
formed by the pelmutant ranged from 40 to 50 μm compared to
theWTmicrocolonies, for which the microcolony heights ranged
from 70 to 80 μm (data not shown). It has also been shown that
loss of Pel from P. aeruginosa biofilms results in stiffer, more
rigid biofilms (Chew et al., 2014). Therefore, the loss of Pel may
stiffen the mixed species biofilm, preventing the expansion of
microcolony formation. In dual species biofilms of P. aeruginosa
and S. aureus, Pel was shown to be essential for the two species
to form mixed, integrated biofilm communities (Chew et al.,
2014).

In contrast to the pel mutant, the psl mutant was
almost completely excluded from both triple and dual
(P. aeruginosa + P. protegens) mixed species biofilms. This
observation is in agreement with the role of Psl in monospecies
biofilm formation, where loss of the polysaccharide results in
a severe defect in biofilm formation (Ghafoor et al., 2011).
During attachment, Psl is anchored on the cell surface in a helical
pattern, which promotes cell–cell interactions and assembly of
a matrix, to hold the bacteria in the biofilm and on the surface
(Ma et al., 2009). When grown with S. aureus, the Psl mutant
formed well mixed dual species biofilms (Chew et al., 2014),
further supporting the role of Psl as a rigid polymer responsible
for the formation of stiff, inflexible microcolonies.

Given that mixed species biofilms display enhanced stress
resistance (Lee et al., 2014) and that the polysaccharide
Psl has been shown to play a role in the protection of
other species in biofilm communities, the roles of alginate
and Psl in the surfactant stress response of mixed species
biofilms were tested. Previously, it was shown that monospecies
biofilms of P. protegens were sensitive to SDS stress, but
when P. protegens was grown as a biofilm with P. aeruginosa

and K. pneumoniae, it was protected in the mixed species
biofilm. When the WT P. aeruginosa was replaced with the
mucA mutant, the all of the community members were equally
protected during mixed species biofilm growth. In contrast,
when the mixed species biofilm included the psl mutant, the
protection was lost and both P. aeruginosa and P. protegens,
showed a significant decrease after exposure to SDS stress.
This observation suggests that Psl is required for community
level protection against SDS stress. Similarly, it was previously
shown that Psl plays a role in mediating antibiotic resistance
of P. aeruginosa biofilms and that the antibiotic resistance
afforded by Psl could also protect Escherichia coli and S. aureus
when grown as co-culture biofilms with P. aeruginosa (Billings
et al., 2013). Thus, Psl may play a more general role in
mediating stress tolerance of mono and mixed species biofilms,
hence providing protection of biofilm populations as well as
communities.

Conclusion

The data presented here show that specific polysaccharides,
such as Psl and alginate play important roles for P. aeruginosa
during mixed species biofilm growth. The production of these
polysaccharides not only impact the competitive fitness of a
species during mixed biofilm growth, but also has significant
effects on the function of that community. Therefore, biofilm
matrix biomolecules may individually play significant roles in the
formation of biofilm communities, arguably the natural state of
most biofilm systems, and these functions may not be evident
from population based studies.
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FIGURE S1 | Ortho views of confocal micrographs of mixed species
biofilms composed of Pseudomonas aeruginosa polysaccharide mutants
(yellow), P. protegens (blue) and Klebsiella pneumoniae (red) grown on M9
supplemented with 2 mM glucose + 0.2% CAA. (A) P. aeruginosa wild-type
(WT), (B) �alg, (C) �mucA, (D) �pel, and (E) �psl. The top and side images of
each panel represent the x–z and y–z planes, respectively. The green and red lines
indicate the positions corresponding to the x–z and y–z cross sections,
respectively. The blue line indicates the x–y plane of the main panel.
Magnification 200×.
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FIGURE S2 | Dual species biofilms comprised of P. aeruginosa
polysaccharide EPS mutants and P. protegens grown on 2 mM
glucose + 0.2% CAA. The ortho view of confocal micrographs of dual species
composed of P. aeruginosa polysaccharide mutants (yellow) and P. protegens
(blue) imaged over 7 days. The top and side images of each panel represent the
x–z and y–z planes, respectively. The green and red lines indicate the positions
corresponding to the x–z and y–z cross sections, respectively. The blue line
indicates the x–y plane of the main panel. Magnification 200×.

FIGURE S3 | Dual species biofilms of P. aeruginosa polysaccharide
mutants and K. pneuomoniae grown in 2 mM glucose + 0.2% CAA. The
ortho view of confocal micrographs of dual species composed of P. aeruginosa
polysaccharide mutants (yellow) and K. pneumoniae (red) imaged over 7 days.
The top and side images of each panel represent the x–z and y–z planes,
respectively. The green and red lines indicate the positions corresponding to the
x–z and y–z cross sections, respectively. The blue line indicates the x–y plane of
the main panel. Magnification 200×.
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