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The DNA-directed primase-polymerase PrimPol of the
archaeo-eukaryotic primase superfamily represents an
ancient solution to the many problems faced during genome
duplication. This versatile enzyme is capable of initiating
de novo DNA/RNA synthesis, DNA chain elongation, and has
the capacity to bypass modifications that stall the replisome
by trans-lesion synthesis or origin-independent re-priming,
thus allowing discontinuous synthesis of the leading strand.
Recent studies have shown that PrimPol is an important new
player in replication fork progression in eukaryotic cells; this
review summarizes our current understanding of PrimPol and
highlights important questions that remain to be addressed.

Introduction

The integrity of the eukaryotic genome is constantly under
threat. During DNA replication, if the template is damaged or
DNA synthesis is disrupted, the replication fork can stall lead-
ing to the formation of pathologic DNA structures.1 This vul-
nerability of DNA during genome duplication is commonly
exploited by many anticancer treatments currently in use.2

Thus, a complete understanding of the enzymes involved in
processing and restarting stalled replication forks is of great
importance. PrimPol is a recently identified DNA-directed pri-
mase-polymerase responsible for the efficient progression of

replication forks, particularly under non-optimal conditions,
such as when the DNA template is damaged or when the nucle-
otide precursor pool is depleted.3-10 This review article will
summarize our current understanding of this newly discovered
enzyme and outline important questions that remain to be
addressed. For a broader overview of DNA replication and the
additional mechanisms that exist to overcome replication per-
turbations, readers are directed to previous articles11,12 and
references cited therein.

The AEP Superfamily—Much More than Primases

PrimPol is a member of the archaeo-eukaryotic primase
(AEP) superfamily.13 AEPs are typically thought of as DNA-
dependent RNA polymerases that specialize in the de novo syn-
thesis of short RNA polymers called primers that provide the
30 hydroxyl group that is absolutely required by DNA poly-
merases to begin synthesis of a new DNA chain.14,15 The
defining member of the AEP superfamily is the DNA-
dependent RNA polymerase Prim1 (or PriS).13 In eukaryotes,
Prim1 binds to the non-catalytic primase large subunit Prim2
(or PriL) to form the heterodimeric DNA primase complex
that is associated with DNA polymerase a (Pol a). Pol
a-primase is required for the synthesis and initial extension of
primers at replication origins on the leading strand and at
each Okazaki fragment on the lagging strand, and is essential
for the completion of genome duplication.16 Historically, the
absence of well-characterized AEPs has resulted in the prevail-
ing view that this class of enzymes are strictly DNA-dependent
RNA polymerases responsible for primer synthesis. However,
an increasing body of work published over the past decade,
including the recent characterization of PrimPol, has estab-
lished that this not the case.

The identification of AEP homologues in bacteria provided
one of the first hints that AEPs could have additional
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biological roles, because prokaryotes already contain a dedi-
cated replicative DnaG primase. Notably, the AEP homo-
logues are often part of a multidomain protein called ligase D
(LigD) that contains putative DNA ligase and nuclease
domains and is encoded by a gene that is co-operonic with
homologues of the eukaryotic DNA repair protein Ku.17-19

Ku and LigD were demonstrated to form a minimal non-
homologous end-joining (NHEJ) complex in bacteria that is
required for the repair of DNA double-strand breaks
(DSBs).20 The AEP domain of LigD, called PolDom (or LigD
POL), is capable of a multitude of nucleotidyl transferase
activities and possesses all DNA/RNA synthetic activities that
are possibly required at a DNA break; in eukaryotes these
functions are shared among 3 family-X DNA polymerases.
Notably, PolDom can perform template-dependent DNA/
RNA extension and has gap-filling, strand displacement, tem-
plate-dependent RNA priming, and template-independent ter-
minal transferase activities.20-23 PolDom can also tolerate
DNA lesions by catalyzing error-free gap-filling opposite a
template 8-oxo-guanine, and can bypass abasic sites by tem-
plate scrunching.23,24 Further demonstrating its specialization
in DNA break repair, PolDom can bind to the termini of
DSBs and mediate the synapsis of broken DNA ends.25-27 Pol-
Dom was the first AEP demonstrated to have a bona fide role
outside of priming DNA synthesis, and a recent study suggests
this utilization of the AEP family in DNA break repair is not
restricted to prokaryotes, as archaeal homologues of PolDom
have been identified and shown to co-operate with Ku to cata-
lyze similar DSB repair activities in vitro.28

This catalytic versatility of AEPs is not restricted to distant
AEP homologues either, as an archaeal Prim1 homologue
from the hypothermophile Pyrococcus furiosus, PfuPriS, was
demonstrated to be a competent DNA-dependent DNA poly-
merase in vitro. Additionally, PfuPriS was shown to initiate
DNA synthesis de novo with dNTPs, thus generating DNA
primers.29 The ability to synthesize DNA primers and extend
DNA chains was shown to be a conserved feature of other
archaeal PriS orthologues.30-32 PriS has also been demon-
strated to catalyze DNA repair activities reminiscent of Pol-
Dom in vitro, such as terminal transferase, gap-filling, strand
displacement, and DNA end-synapsis functions.31,33-35 As
archaeal genomes encode no detectable Pol a homolog or
family-X repair polymerases, it has been suggested that PriS
might be responsible for these different roles;36 however, to
date no biological roles have been attributed to these activi-
ties. Additional AEP primase-polymerases have also been
characterized in archaeal genomes, the best example being the
pRN1 plasmid-encoded AEP from Sulfolobus islandicus.37-39

AEP primase-polymerase homologues have also been charac-
terized in phage, bacterial, and viral genomes.40-42 In sum-
mary, AEPs are not restricted to archaea and eukaryotes but
are present in all domains of life, and the vast majority char-
acterized to date are capable of catalyzing a wide variety of
nucleotidyl transferase activities. Thus, it seems that AEPs
have been functionally mis-annotated, and rather than being
strictly DNA-dependent RNA polymerases specialized in

priming DNA synthesis, they are in fact a group of versatile
DNA/RNA primase-polymerases with additional biological
roles (Fig. 1). The recent characterization of PrimPol extends
this paradigm into eukaryotes.

PrimPol—A Versatile DNA-Directed RNA/DNA
Primase-Polymerase

Human PrimPol (also referred to as hPrimPol13,9) is encoded
by the PRIMPOL gene (alternative names are coiled-coil domain
containing protein 111 [CCDC111] or FLJ33167) located on
chromosome 4q35.1, and was originally identified as a putative
AEP by in silico analyses.13 PrimPol was categorized as a member
of the nucleo-cytoplasmic large DNA virus (NCLDV)-herpesvi-
rus primase clade, which also contains herpes viral and kineto-
plastid primases, some of which have been recently
characterized.43,44 PrimPol homologues are conserved in a broad
range of unicellular and multicellular eukaryotes, including ani-
mals, plants, and protists,4,5,13 and is notably duplicated in trypa-
nosomatids.8 However, PrimPol is not conserved in all
eukaryotes, being absent from Drosophila, Caenorhabditis elegans,
and all fungal genomes sequenced to date with the exception of
the parasitic Batrachochytrium dendrobatidis. This patchy phylo-
genetic distribution is consistent with the PRIMPOL gene being
acquired early in eukaryotic evolution by horizontal gene transfer
from viruses, and then lost independently on multiple occasions
in some animals and fungi.13 Alignment of PrimPol homologues
reveals several conserved regions that can be principally divided
into 2 domains; an N-terminal catalytic AEP domain and a C-
terminal CHC2 zinc finger motif (Fig. 2). The PrimPol AEP
domain contains the 3 catalytic motifs conserved in all AEP-like
enzymes. Motif I of PrimPol homologues contains the consensus
LYFDLE with invariant DxE residues; this is unusual among
members of the AEP superfamily, which usually have the
sequence DxD. Motif II in PrimPol homologues is an invariant
SxH and motif III is an invariant xD. Residues in motif I and III
are predicted to be required for binding of divalent metal ions
and motif II is required for nucleotide binding, consistent with
these residues being essential for PrimPol activity in vitro.3-8 The
second conserved region among PrimPol homologues is a C-ter-
minal zinc finger motif with homology to the human herpesvirus
UL52 primase, which has been shown to specifically bind zinc
ions.7 Zinc fingers are known to have critical functions in pri-
mases15 and this is also the case with PrimPol, as discussed below.

Recombinant human PrimPol has been purified by a num-
ber of groups, facilitating in-depth biochemical characteriza-
tion. We and others found that, akin to prokaryotic and
archaeal AEPs, human PrimPol is an extremely versatile nucleo-
tidyl transferase in vitro3-7 (Fig. 3), and that this versatility is
shared among 2 divergent PrimPol homologues from the
African trypanosome.8 Human PrimPol is capable of synthesiz-
ing both RNA and DNA primers, which is unique for a eukary-
otic enzyme. Preferential primer synthesis was repeatedly
reported when dNTPs were used as substrates, with primers
typically exceeding 50 nucleotides in length, whereas RNA
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primers typically contained 20 nucleotides, similar to the
canonical RNA primers synthesized by Prim1. When manga-
nese was the co-factor rather than magnesium, primers synthe-
sized using dNTPs or NTPs exceeded 100 nucleotides in length
and it was reported that PrimPol preferentially initiated synthe-
sis with a NTP-dNTP di-nucleotide,4 akin to the archaeal pri-
mase-polymerase encoded on the archaeal pRN1 plasmid.39

Although increased activity has been reported with manganese
as a co-factor;4 higher manganese concentrations can result in
the catalysis of template-independent terminal transferase activ-
ity, indicating that this metal may promote additional activi-
ties.7 Which divalent metal is preferentially used in vivo
remains to be established. To initiate di-nucleotide synthesis
PrimPol requires templated pyrimidines,4-5 consistent with the
template requirements of other eukaryotic primases,14 and pri-
mers synthesized by PrimPol are readily extended by replicative
DNA polymerases. PrimPol is also a competent DNA-depen-
dent DNA polymerase capable of extending already existing
DNA/RNA chains (including its own primers). Mutation of
the invariant residues in motif I of the AEP domain completely
abolishes both primase and polymerase activities, confirming
that they are intrinsic to the PrimPol enzyme.3-5,7,8 PrimPol
has reasonably low fidelity, preferentially performing template-
dependent synthesis, and is a distributive enzyme, polymerizing
approximately 4 nucleotides in a single DNA binding event7

reminiscent of low-fidelity polymerases of the X-and Y-families.

Like most primases characterized to date, the zinc finger
motif of PrimPol plays an important role in its catalytic activi-
ties. Truncation of the UL52 domain or mutation of zinc che-
lating residues abolishes primase activity in vitro, providing
an important biological tool as a ‘separation-of-function’
mutant.3,6,7 However, the UL52 domain also modulates the
polymerase activity of PrimPol.7 For example, mutation of the
zinc-chelating residues decreases the processivity of PrimPol,
whereas truncating the carboxyl terminus (thereby removing
the UL52 domain) increases processivity but at the cost of
fidelity. Keen et al.7 demonstrated that whereas the AEP
domain of PrimPol binds to both single-stranded and double-
stranded DNA, the UL52 domain binds only single-stranded
DNA and thus probably binds upstream of the primer-
template junction in vivo.

PrimPol is also a competent trans-lesion synthesis (TLS)
DNA polymerase that can bypass a number of replicase-
blocking DNA lesions. PrimPol has been reported to bypass
templated oxidative lesions such as 8-oxo-guanine and abasic
sites, the ultraviolet (UV)-induced cyclobutane pyrimidine
dimer (CPD), and pyrimidine (6–4) pyrimidone photoprod-
ucts. The reported mechanism and efficiency of bypass varies
between reports, probably reflecting differences in the metal co-
factor used. For example, when manganese is used as a cofactor,
PrimPol can perform template re-arrangement to allow bypass
of abasic sites, CPDs, and 6–4 photoproducts.4,6 However, in

Figure 1. The domain organization of members of the archaeo-eukaryotic primase superfamily. Domain organization of various AEPs is depicted: motifs I,
II, and III of the catalytic AEP domain (blue boxes), zinc finger (Zn) motifs (red boxes), and additional domains often associated with AEP enzymes are
shown. The putative or characterized role of each AEP is indicated. Domain organizations were deduced from the article by Iyer et al.13
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the presence of magnesium, PrimPol can completely bypass a
6–4 photoproduct but not an abasic site or CPD, and can only
extend from 2 terminal dA residues opposite a template CPD.5

Notably, a C-terminal truncation of PrimPol lacking the UL52
domain can completely bypass a CPD in an error-free manner.7

Bypass of 8-oxo-G was equally error-free and error-prone,
whereas bypass of a 6–4 photoproduct was error prone, with
PrimPol incorporating dT opposite the 30T, and dC or dG
equally frequently opposite the 50T.5

These studies demonstrate a catalytic flexibility of human
PrimPol that is unprecedented for AEPs, and this flexibility is
shared with other eukaryotic PrimPol orthologues.7,8 Notably, 2
PrimPol-like (PPL) proteins in the African trypanosome, one of
the earliest diverging organisms from the eukaryotic tree and an
important human pathogen, possess almost identical catalytic
capabilities to those of human PrimPol.8 Trypanosoma brucei
PPL1 and PPL2 can bypass a template 8-oxo-guanine and 6–4
photoproduct, and extend from mis-matched termini opposite
template CPDs. Interestingly, although PPL1 is a primase-
polymerase like human PrimPol, PPL2 does not appear to
possess any detectable primase activity, being the first
example of an AEP to have completely lost this activity, and
probably plays a specialized role during genome replication in
trypanosomes.

PrimPol—A New Player at Replication Forks

Elucidating the biological function of an enzyme capable of
catalyzing a broad range of nucleotidyl transferase activities in
vitro can be challenging. However, published reports on PrimPol
from several groups all arrived at a similar conclusion: PrimPol is
required to ensure replication fork progression during chromo-
somal DNA replication, particularly when DNA synthesis is per-
turbed.3,5,6 PrimPol is also present within mitochondria and was
demonstrated to be important for maintenance of the small cir-
cular mitochondrial genome,4 probably performing similar roles
as those undertaken during nuclear DNA synthesis.

Pathways that stabilize and restart disrupted replication
forks

In eukaryotic cells, the DNA replication machinery faces
many obstacles that can prevent efficient DNA polymerization
by the replicative polymerases, and thus slow or stall replication
forks. The best-characterized examples are perhaps when the
nucleotide pool is depleted using the ribonucleotide reductase
inhibitor hydroxyurea (HU), or when the DNA template con-
tains damage such as base modifications or cross-linking of adja-
cent pyrimidines induced by UV radiation. Other obstacles
include non-B form DNA, RNA-DNA hybrids, and replisome

Figure 2. Conserved domains and motifs present in the PrimPol family. The catalytic archaeo-eukaryotic primase (AEP) domain containing 3 signature
motifs (I, II, and III; blue boxes), the UL52-like zinc finger domain (Zn), and the replication protein A (RPA)-interaction site (orange box) are indicated for
human PrimPol, including amino acid numbers. Multiple sequence alignment was generated for a selection of PrimPol homologues; blue shading indi-
cates �40% sequence identity, red circles indicate residues required for metal ion binding, orange circles indicate those required for nucleotide binding,
and green circles those required for chelation of zinc.
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collisions with protein complexes, such as the transcription
machinery. To overcome these obstacles and ensure timely and
complete genome duplication, eukaryotic cells contain multiple
distinct pathways to stabilize and restart disrupted replication
forks. In the case of an obstacle such as a DNA lesion, alternative
flexible DNA polymerases primarily of the of the Y- and X-fami-
lies can be employed after stalling of the replicative DNA poly-
merase to extend the stalled primer terminus by TLS.45,46

Alternatively, the homologous recombination (HR) machinery
can allow replication of an alternative sister template to facilitate
lesion bypass.47 Additionally, prior to the beginning of DNA
synthesis, an excess of replication origins are licensed and these
can be fired to allow replication forks to converge on the dam-
aged site, thus allowing completion of bulk DNA synthesis.48

Synthesis of the lagging strand is known to be tolerant of DNA
damage because synthesis of a new Okazaki fragment can occur
downstream of the lesion. Discontinuous synthesis on the leading
strand by re-priming can also occur,49-51 and its mechanism in
bacteria has been described.52-54 Discontinuous DNA synthesis
will result in the damage being encompassed by single-stranded
gaps left behind the replication fork, which can be filled using
TLS or HR-mediated mechanisms.55 Additionally, stalled forks
can be remodeled by multiple enzymes, facilitating removal of
the damage and/or resumption of DNA synthesis.12 There are 2
non-mutually exclusive models for PrimPol-mediated fork

progression (Fig. 4). First, PrimPol is able to bypass some DNA
lesions using TLS in vitro, and therefore could directly extend
the stalled primer terminus to facilitate resumption of DNA syn-
thesis. Second, PrimPol is also a primase and could potentially
catalyze origin-independent re-priming downstream of the
lesion, allowing discontinuous synthesis of the newly growing
DNA strand. Cellular studies supporting these 2 models will be
discussed below.

PrimPol is required for progression of disrupted
replication forks

The biological role of PrimPol is most apparent after pertur-
bation of DNA replication. PrimPol assembles into multiple sub-
nuclear foci upon treatment of cells with DNA damage inducing
agents; focal accumulation of PrimPol was observed following
UV-C irradiation5 and HU-treatment,3,5 and PrimPol relocal-
ized to sites of microirradiation by UV-A laser.6 A common fea-
ture of these DNA damaging treatments is their ability to stall
cellular replicases. In accordance with this, PrimPol focal accu-
mulation was also observed after treatment with the UV-mimetic
4-nitroquinoline 1-oxide (4NQO) or the alkylating agent methyl
methanesulfonate (MMS) (JB, SGR, AJD, unpublished). How-
ever, Wan et al.3 reported PrimPol focal accumulation after ion-
izing radiation (IR), which is known to induce strand breaks and
prevent overall DNA synthesis,56 whereas we observed no IR-

Figure 3. PrimPol is a versatile DNA/RNA primase-polymerase in vitro. The reported in vitro activities of human PrimPol are represented schematically.
Some activities are dependent on specific metal co-factors: for example, template scrunching to facilitate bypass and template-independent terminal
transferase activity are only observed when manganese ions are used as co-factors. TLS, translesion synthesis; 8-oxo-guanine, 8-oxo-G; pyrimidine (6-4)
pyrimidone photoproduct, 6-4 PP; apurinic/apyrimidinic site, AP site; cyclobutane pyrimidine dimer, CPD.

www.landesbioscience.com e960754-5Molecular & Cellular Oncology



induced foci.5 DNA damage-induced PrimPol foci were also
shown to be sites of chromatin association.5,6 Focal accumulation
of a particular enzyme is not always an indicator of enzyme func-
tion; however, the DNA damage sensitivities of PrimPol knock-
down or knockout cell lines are largely in accordance with this
notion. PrimPol depletion using shRNA sensitized HeLa cells to
the cytotoxic effects of HU, but not IR,3 and disruption of the
Gallus gallus PRIMPOL gene sensitized avian DT40 cells to UV-
C and 4NQO, but not IR.5 However, RNAi-depletion of Prim-
Pol in human fibroblasts did not result in UV-C sensitivity,5

which may be explained by the relatively rapid doubling times
and larger S-phase population of chicken DT40 cells compared
to human cells. Analysis of spread DNA fibers in PrimPol knock-
down or knockout (DT40 and MEF) cells that were treated with
UV-C or HU indicated a specific role for PrimPol in the

resumption of DNA synthesis after replica-
tion perturbations,3,5-7 placing PrimPol
directly at stalled replication forks in accor-
dance with the chromatin association and
DNA damage-induced sensitivities discussed
above. Furthermore, PrimPol knockdown
cells treated with HU or UV display an
increase in replication stress markers, such as
chromatin-associated replication protein A
(RPA) and phosphorylation (S345) of the
intra-S phase checkpoint kinase Chk1.3,5

This indicates that generation of single-
stranded DNA is most likely the result of
fork stalling and uncoupling of the replica-
tive helicase and polymerase, which occurs
more frequently in the absence of PrimPol.
Following UV-C irradiation, knockdown
cells also showed an increase in chromatin-
bound Rad51 recombinase, suggesting HR-
mediated rescue of stalled replication forks
in the absence of PrimPol,5 and a further
increase in origin firing was also reported,6

highlighting the pathways that compensate
for the loss of PrimPol.

The defect in the resumption of replica-
tion after UV-C irradiation or nucleotide
deprivation could be consistent with either
the in vitro primase or TLS polymerase
activity of PrimPol. In this regard, an impor-
tant tool is the ‘separation-of-function’ zinc
finger mutant that has been used in a num-
ber of reports.3,6,7 As discussed above, inac-
tivation of the PrimPol zinc finger abolishes
primase activity while leaving polymerase
activity intact, although not unaffected.
Although the fork-restart defect observed in
PrimPol knockdown or knockout cell lines
could be rescued by ectopic expression of
wild-type PrimPol, it could not be rescued
by expression of a zinc finger mutant.3,6,7

This demonstrates that the replication
resumption role of PrimPol is dependent on an intact zinc finger,
which would be consistent with PrimPol mediating the fork
restart by re-priming. However, it should be noted that the zinc
finger mutant does modulate polymerase activity in vitro,7 there-
fore further work will be required to pinpoint the precise role of
PrimPol at stalled replication forks. The recruitment of PrimPol
to sites of DNA damage is independent of checkpoint signaling
by ataxia telangiectasia mutated (ATM) and ATM Rad3 related
(ATR) kinases.6 Wan et al.3 demonstrated that PrimPol interacts
with RPA1 via a conserved C-terminal region, and that this inter-
action is required for its localization to sites of damage and its
replication restart role. When the replisome encounters a DNA
lesion, the helicase and polymerase can functionally uncouple,
producing long stretches of single-stranded DNA that are pre-
sumably the sites of PrimPol re-priming. It therefore makes sense

Figure 4. Model of PrimPol-mediated replication fork progression. Distortion of DNA and base
modification can be induced by various environmental insults and endogenous processes and, if
not corrected prior to replication, can disrupt DNA synthesis by the cellular replicases (blue lines).
A DNA modification on the leading strand is shown, which in this example has caused uncou-
pling of leading and lagging strand synthesis. This generates stretches of single-stranded DNA
that will be coated by replication protein A (RPA), which in turn recruits PrimPol. PrimPol-depen-
dent DNA or RNA synthesis (green lines) then facilitates restart of DNA replication. PrimPol may
re-prime DNA synthesis downstream of the lesion leaving a daughter strand gap that can be sub-
sequently filled by translesion synthesis (TLS) or homologous recombination (HR)-mediated pro-
cesses. Alternatively, in the case of DNA lesions such as UV photoproducts (depicted in red
lettering), PrimPol can use its TLS activity and directly extend the stalled primer terminus to syn-
thesize DNA opposite the lesion, either alone or by cooperating with another DNA polymerase.
For example, in the case of a template cyclobutane pyrimidine dimer (CPD), after incorporation
of 2 terminal dA residues opposite the lesion, PrimPol can catalyze the extension of this mis-
matched terminus. In the case of a pyrimidine (6–4) pyrimidone photoproduct (6–4 PP), PrimPol
can catalyze both the insertion of nucleotides opposite the damaged bases and the subsequent
extension from the mismatched terminus, and thus could possibly catalyze complete bypass of
this lesion. PrimPol misincorporates a dT opposite the 50T of the lesion and either dG or dC oppo-
site the 30T, as shown in green.
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that PrimPol’s role is mediated by RPA interaction and further
suggests that this is an immediate response that could be likened
to re-priming in prokaryotes as it is an inherent property of the
replisome (although catalyzed by the replicative primase).53 The
replication restart role of PrimPol following UV-C irradiation is
independent of the well-characterized role of the Y-family poly-
merase Pol h, which is specialized in bypassing CPDs, the most
commonly occurring UV-induced lesions. PrimPol depletion
renders human cells sensitive to UV-C induced killing only in
the absence of functional Pol h, as in cells of xeroderma pigmen-
tosum variant (XP-V) patients,5 and in accordance, a synergistic
defect in fork-restart was observed in cells depleted of both Prim-
Pol and Pol h6 and constitutive activation of the intra-S phase
checkpoint was observed.5 This could be consistent with both
the re-priming and TLS models of PrimPol-mediated fork
restart. The in vitro TLS capabilities of PrimPol are complemen-
tary to the function of Pol h: whereas Pol h can completely
bypass CPDs and only insert opposite 6–4 photoproducts, Prim-
Pol can completely bypass 6–4 photoproducts and only extend
from CPDs (Fig. 4).5,57,58 The mutagenic signature of PrimPol
activity in vitro, the incorporation of a dT opposite the 30T of a 6–
4 photoproduct, has been observed in UV-irradiated cells, with
the polymerase responsible so far remaining unidentified.59,60

Future studies into the role of PrimPol in UV-C–induced muta-
genesis will prove insightful, especially for patients with diseases
like XP-V in whom UV-induced mutagenesis is known to pro-
mote carcinogenesis.

The role of DNA polymerases in tolerance of UV lesions by
TLS is well documented;45 however, the role of polymerases after
nucleotide deprivation is less well established. TLS polymerases
also accumulate into foci following HU treatment61 and it has
been demonstrated that Pol h and E. coli Y-family polymerases
(Pol IV and Pol V) are required for DNA replication during HU
treatment.61,62 In the case of Y-family polymerases, it was sug-
gested that because these polymerases have much lower binding
affinities for dNTPs than replicative polymerases, they could take
over DNA replication at times of nucleotide deprivation to pre-
vent replication fork collapse,62 which could also be a possible
function of PrimPol.

PrimPol is required during an unperturbed S phase
Although the consequences of loss of PrimPol function are

most apparent in cells in which DNA replication has been chal-
lenged, they can also be observed in otherwise unperturbed
cells. PrimPol knockout DT40 cells present minor proliferative
defects, such as an increased G2/M transit and an overall reduc-
tion of replication fork speeds.5 Proliferative defects and
reduced fork speeds were also observed in PrimPol knockdown
HeLa cells.6 This reduced efficiency of replication fork progres-
sion probably leads to the reported genomic instability, as sug-
gested by an increase in replication stress markers (RPA foci)
and DSB markers (gH2AX and 53BP1 foci).3,5,6 An RPA-
interaction mutant of PrimPol could not rescue the increase in
gH2AX foci in PrimPol knockdown cells, suggesting that inter-
action with RPA is required for its normal role in S phase.3

Interestingly, the PrimPol zinc finger mutant could

complement the reduced replication fork speed in unperturbed
conditions, suggesting that the polymerase activity of PrimPol
is biologically relevant.7 PrimPol knockdown cells and knock-
out MEFs also displayed increased chromosome aberrations
consistent with S-phase defects, which were further increased
after mild replication stress induced by low doses of aphidico-
lin, an inhibitor of replicative polymerases.3,5,6 To compensate
for the loss of PrimPol function, knockdown cells fire dormant
origins,6 which could explain the higher G2 population but
slower fork speeds observed in PrimPol knockout DT40 cells.5

In support of a function in normal S phase, PrimPol associated
with chromatin in a replication-dependent manner in unchal-
lenged cells.5,6 Together, these studies demonstrate that Prim-
Pol is required for replication fork progression during
unperturbed S phase and functions to prevent genome instabil-
ity. This could very well represent a role in bypassing naturally
occurring replication obstacles, as re-priming would be a simple
and elegant method to bypass any obstacles that do not block
the replicative helicase but block the replicative polymerase.
TLS polymerases are also known to play important roles during
an unchallenged S phase, such as the bypass of non-B form
structures,63 replication of chromosomal fragile sites,64,65 and
possibly bypass of naturally occurring oxidative damage66 or
misincorporated ribonucleotides,67 therefore a role for the TLS
polymerase activity of PrimPol should not be excluded.

Underlining the importance of AEPs during unperturbed
DNA synthesis, a PrimPol-like protein (PPL2) in Trypanosoma
brucei is essential for the completion of genome duplication.8

This is probably a trypanosome-specific PrimPol, because trypa-
nosomes encode another PrimPol-like protein (PPL1) that, like
human PrimPol, is a primase-polymerase and dispensable for cell
viability. It is likely that the PrimPol gene has been duplicated in
trypanosomes and used for a trypanosome-specific DNA meta-
bolic problem. Knockdown of PPL2 leads to the arrest of cells
after bulk DNA synthesis with an abundance of irreparable DNA
damage. We hypothesized that PPL2 might be responsible for
the post-replication bypass of endogenously occurring DNA rep-
lication obstacles. This could be a consequence of the unortho-
dox transcription mechanism, an abundance of structural
barriers, or the lack of active origins for replication of the bulk of
the DNA,68 which render these parasites more reliant on damage
tolerance pathways. Future work is required to pinpoint the pre-
cise biological role of PPL2, although at this early stage it appears
to represent an attractive target for anti-trypanosomal drugs given
that human PrimPol is not an essential gene and PPL2 knock-
down results in a lethal phenotype.

Future questions
An interesting avenue for future study would be to deter-

mine the functional interplay/redundancy between PrimPol
and Pol a-primase, although these experiments would be diffi-
cult given that Pol a-primase function is essential for cell via-
bility. Mouron et al.6 observed a small but significant defect
in fork restart after UV treatment following partial knock-
down of Prim1, which increased after depletion of PrimPol.
Yeast lack a detectable PrimPol homolog yet single-stranded
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gaps in the DNA behind replication forks in UV-irradiated
NER-deficient yeast have been observed,50 suggesting that Pol
a-primase is responsible for re-priming in yeast. Primers syn-
thesized by Pol a-primase at stalled replication forks play an
important role in generating DNA structures responsible for
checkpoint signaling.69 Primed single-stranded DNA is
required for activation of the intra-S checkpoint,70 and the
accumulation of newly synthesized primers at stalled replica-
tion forks by Pol a-Primase and their elongation by DNA pol-
ymerases contributes to the activation of Chk1.71,72 It is
interesting that UV-C irradiated or HU-treated PrimPol
knockdown cells show no defect in Chk1 activation,3,5 sug-
gesting that PrimPol plays no significant role in generating
these structures. It is possible that checkpoint-activating DNA
structures are primarily generated on the lagging strand, there-
fore if PrimPol is required for leading-strand re-priming its
contribution to checkpoint activation would be less pro-
nounced. However, arguing against this, Pol k is hypothesized
to function in leading-strand checkpoint activation and knock-
down of Pol k reduces Chk1 phosphorylation.72 It is also pos-
sible that PrimPol is primarily involved in ensuring
continuation of DNA replication, while Pol a-primase gener-
ates structures for checkpoint activation at stalled forks. It has
been suggested that generation of these checkpoint-activating
DNA structures might be linked to replication restart,73 in
which PrimPol clearly plays an important role. Elucidating the
function, if any, of PrimPol in checkpoint activation would be
an interesting topic for future research.

Another avenue of future study is the involvement of PrimPol,
and its mutations, in human disease. A mutation of PrimPol
(Y89D), close to the active site, has been identified in individuals
with high myopia.74 A recent report has shown that this

mutation significantly reduces the polymerase activity of PrimPol
and is associated with defective DNA replication in vivo.75 A
number of PrimPol mutations have also been identified in can-
cers, with the most common being the missense mutation
R417L/W (http://www.cbioportal.org/public-portal/).76-79This
residue is located in the UL52 zinc-finger and would likely
impact upon the biological function of PrimPol. Over-expression
of alternate DNA polymerases has been identified in a number of
cancers, and has been hypothesised to be a source of the mutator
phenotype and replicative stress observed in some cancer cells.80

PrimPol is up-regulated in some cancers, such as glioma81 and so
determining the biological effects of PrimPol over-expression
would be relevant. Given PrimPol’s central role in maintaining
replication fork progression, particularly when DNA synthesis is
perturbed, and as it is not an essential gene, developing small
molecule inhibitors of PrimPol could be a fruitful avenue for
future studies. Such inhibitors have the potential to be combined
with current genotoxic agents that perturb DNA synthesis to
treat a range of cancers, particularly those that up-regulate expres-
sion of PrimPol.
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