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Abstract 

Background:  Improving feedlot performance, carcase weight and quality is a primary goal of the beef industry 
worldwide. Here, we used data from 3408 Australian Angus steers from seven years of birth (YOB) cohorts (2011–
2017) with a minimal level of sire linkage and that were genotyped for 45,152 SNPs. Phenotypic records included 
two feedlot and five carcase traits, namely average daily gain (ADG), average daily dry matter intake (DMI), carcase 
weight (CWT), carcase eye muscle area (EMA), carcase Meat Standard Australia marbling score (MBL), carcase ossifica‑
tion score (OSS) and carcase subcutaneous rib fat depth (RIB). Using a 7-way cross-validation based on YOB cohorts, 
we tested the quality of genomic predictions using the linear regression (LR) method compared to the traditional 
method (Pearson’s correlation between the genomic estimated breeding value (GEBV) and its associated adjusted 
phenotype divided by the square root of heritability); explored the factors, such as heritability, validation cohort, and 
phenotype that affect estimates of accuracy, bias, and dispersion calculated with the LR method; and suggested 
a novel interpretation for translating differences in accuracy into phenotypic differences, based on GEBV quartiles 
(Q1Q4).

Results:  Heritability (h2) estimates were generally moderate to high (from 0.29 for ADG to 0.53 for CWT). We found 
a strong correlation (0.73, P-value < 0.001) between accuracies using the traditional method and those using the LR 
method, although the LR method was less affected by random variation within and across years and showed a better 
ability to discriminate between extreme GEBV quartiles. We confirmed that bias of GEBV was not significantly affected 
by h2, validation cohort or trait. Similarly, validation cohort was not a significant source of variation for any of the GEBV 
quality metrics. Finally, we observed that the phenotypic differences were larger for higher accuracies.

Conclusions:  Our estimates of h2 and GEBV quality metrics suggest a potential for accurate genomic selection of 
Australian Angus for feedlot performance and carcase traits. In addition, the Q1Q4 measure presented here easily 
translates into possible gains of genomic selection in terms of phenotypic differences and thus provides a more tangi‑
ble output for commercial beef cattle producers.
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Background
Genomic selection represents a revolution in animal 
breeding. It enables the identification of superior animals 
through the estimation of genomic estimated breeding 
values (GEBV) for relevant quantitative traits, and has 
led to dramatic genetic progress in farm animals dur-
ing the last two decades [1–3]. This approach is based 
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on the expectation that quantitative trait loci (QTL) are 
in linkage disequilibrium (LD) with one or more single 
nucleotide polymorphisms (SNPs) in such a way that a 
sufficiently dense SNP panel, covering the entire genome, 
would be able to capture the genetic effects of QTL [4]. 
Thus, the sum of the estimated effects of all SNP geno-
types of an animal is considered to be a predictor of its 
breeding value [5]. However, the accuracy of GEBV 
depends on several factors including the size of the ref-
erence population, the heritability of the traits and the 
extent of the LD between SNPs and QTL [6, 7]. One of 
the most important advantages of genomic selection is 
the ability to select unproven young candidates; however, 
accurate predictions are required to support confident 
decision making. Therefore, Legarra and Reverter [8] 
have proposed the linear regression (LR) method, which 
provides population-based semi-parametric estimates 
of accuracy and bias of GEBV by comparing predictions 
based on partial and whole data. This cross-validation 
method has been validated and applied to data from sev-
eral species, including cattle, sheep, pigs, chickens and 
trout [9–15]. One recent finding is the need to assess 
biases and accuracies using various criteria (truncation 
points) to define partial vs. whole comparisons so that 
the effect of random variation across years is accounted 
for [16]. Here, we used the LR method to evaluate GEBV 
for feedlot and carcase traits in Australian Angus cattle 
from a dataset spanning seven years of birth cohorts with 
a minimal level of sire linkage across cohorts.

In beef cattle, genomic prediction offers an opportunity 
to evaluate, at an early age, traits that are difficult and/
or expensive to measure, or can only be measured post-
mortem, such as carcase traits. Few studies have assessed 
the predictive accuracies of GEBV for feedlot and car-
case traits in cattle. For example, GEBV for average daily 
weight gain in feedlot-finished Nellore steers that were 
generated using Bayesian models, have been previously 
reported with accuracies ranging from 0.18 to 0.27 [17]. 
Similarly, using Bayesian and genomic BLUP methods, 
Bolormaa et al. [18] reported an average GEBV accuracy 
of 0.27 across different carcase and meat quality traits in 
Bos taurus, Bos indicus, and composite beef breeds, and a 
large variation in accuracy between breeds and between 
traits. Indeed, it is well established that considerable vari-
ation exists between breeds for body composition and 
meat quality traits, further highlighting the importance 
of evaluating these traits in specific populations [19].

In the Australian cattle herd, Angus is the dominant 
breed with an estimated 5.6 million females influenced 
by Angus genetics and accounts for 48% of the national 
female herd [20]. Considering its importance, our aim 
was to determine the potential for accurate genomic 
selection of Australian Angus for feedlot performance, 

carcase weight and quality by assessing the accuracy of 
GEBV for these traits using the traditional and the LR 
methods.

While the LR method has received substantial attention 
since its development [8], the statistics that it proposes 
for assessing the quality of genomic predictions have not 
been widely tested as a function of time (e.g., trunca-
tion on year of birth) or with other not time-dependent 
validation datasets. In addition, changes in GEBV accu-
racies (and other quality metrics) that are observed due 
to the use of different models and/or validation popula-
tions are usually explored separately for different pheno-
types. Further compounding these issues, are the lack of 
a clear understanding of the relationship between accu-
racy values and how much extreme individuals based on 
GEBV will differ in performance. While genetic progress 
is proportional to accuracy and drives breeding programs 
for seedstock producers, how changes in accuracy trans-
late to phenotypic differences in commercial settings is 
poorly understood. An attempt to address this question 
was reported by [21] in which the distribution of phe-
notypic values was evaluated after assigning animals to 
quartiles based on their GEBV.

Here, we complement previous studies in three major 
aspects: (1) by testing the quality of genomic predictions 
using the LR method for a complete range of traits that 
are relevant to feedlot performance and carcase yield 
and quality and are key components of the beef indus-
try in Australia and worldwide; (2) by exploring the fac-
tors, such as heritability estimate, validation cohort and 
phenotype, that affect the estimates of accuracy, bias and 
dispersion calculated with the LR method; and (3) by 
suggesting a novel interpretation for translating differ-
ences in accuracy into possible gains of genomic selec-
tion in terms of phenotypic differences, providing a more 
tangible output for beef cattle producers.

Methods
The data for this study were collected as part of the 
Australian Angus Sire Benchmarking Program (ASBP), 
a major initiative of Angus Australia [22] with sup-
port from the Meat and Livestock Australia (MLA) and 
industry partners. This program aims at generating data 
on steers that were progeny from modern Angus sires, 
particularly for hard-to-measure traits such as feed effi-
ciency, abattoir carcase measurements, meat quality 
attributes, and female reproduction. For the develop-
ment of the ASBP, each cohort of steers included prog-
eny of a genetically diverse range of sires, which were 
nominated by breeders from all the states of Australia 
and New Zealand, while some cohorts also included 
progeny of sires from the USA and the UK. The sires in 
each cohort were predominantly young bulls (2–3 years 
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of age), with also a few older influential bulls [23]. For 
the current study, the dataset included phenotypes 
and fixed effect information for 3408 Australian Angus 
steers from seven years of birth cohorts (YOB, 2011–
2017) for which genotypes for 45,152 autosomal SNPs 
were available.

The 3408 steers represent 12 breeding properties 
(herds) and 294 sires with an average of 11.5 progeny 
per sire, ranging from 1 to 27. In total, 2773 dams were 
included in the dataset with an average of 1.22 progeny 
per dam, ranging from 1 to 4. Across the seven YOB 
cohorts, the numbers of dams with one, two, three, and 
four progenies were 2221, 485, 65 and 2, respectively. 
The numbers of progeny (number of sires in brackets) 
in the YOB cohorts from 2011 to 2017 were 361 (35), 
514 (48), 579 (44), 274 (25), 569 (49), 575 (63) and 536 
(56), respectively.

Seven phenotypes were analysed including feedlot 
average daily gain (ADG, kg/d), feedlot average daily 
dry matter intake (DMI, kg/d), carcase weight (CWT, 
kg), carcase eye muscle area (EMA, cm2), carcase Meat 
Standards Australia marbling score (MBL, score), car-
case ossification score (OSS, score) and carcase sub-
cutaneous rib fat depth (RIB, mm). Table  1 provides 
summary statistics for these phenotypes. ADG, DMI, 
CWT, EMA, and RIB were measured as described in 
[24]. MBL was measured in scores ranging from 100 to 
1100 in increments of 10, with higher scores indicating 
greater marbling [25]. Finally, OSS scores ranged from 
100 to 590 in increments of 10, with lower scores indi-
cating less physiological maturity [26, 27].

Variance components, heritabilities, and genetic and 
residual correlations were estimated using the Qxpak5 
software package [28]. For this purpose, a linear mixed 
model was used to analyse all traits, which included a 
fixed effect of contemporary group (CG), i.e. an amal-
gamation of property of origin, year and month of birth, 
and date of measurement, and effects of age of dam 
(AOD) at birth of the calf (in years) and age at measure-
ment (as a linear covariate). CG were not the same for 
feedlot and carcase traits because measurement dates 
differed. In addition, the random additive polygenic and 
residual effects were fitted with assumed distributions 
N (0,G⊗ VG) and N (0, I⊗ VR) , respectively, where G 
represents the genomic relationship matrix (GRM) gen-
erated using the first method of VanRaden [29], VG is 
the genetic variance–covariance matrix, I is an identity 
matrix, VR is the residual covariance matrix and ⊗ rep-
resents the Kronecker product. Two different analyses 
were undertaken to generate estimates for the whole and 
partial datasets. First, a multivariate (7-variate) analysis 
was performed with all seven traits. The resulting GEBV 
from this multivariate analysis are termed ûw to indi-
cate that they are based on the whole dataset and will be 
used as the calibration in the computation of the accu-
racy and bias with the LR method. Next, a series of 49 
univariate analyses were undertaken each with a single 
trait and where the values for animals from consecutive 
YOB cohorts were treated as missing. Hence, 49 analyses 
were performed originating from seven traits by seven 
YOB cohorts. The resulting GEBV from these univariate 
analyses are termed ûp to indicate that they are based on 
partial data and will be used as validation data.

To ascertain the quality of the resulting GEBV in the 
validation population (i.e. the elements of ûp correspond-
ing to the focal individuals in the validation population), 
we used the following four metrics:

(1) Traditional accuracy ( ACCT ): Pearson’s correlation 
( r ) between a GEBV and its associated adjusted pheno-
type ( y∗ ; phenotype y adjusted for CG fixed effects and 
covariates) for individuals in the validation population 
was divided by the square root of the heritability [18]:

(2) Bias calculated with the LR method ( BiasLR) : is the 
difference between the average GEBV of individuals in 
the validation population using the partial data minus 
that using the whole data [8, 15]:

(3) Dispersion calculated with the LR method ( DispLR ): 
for individuals in the validation population, dispersion was 

ACCT =
r
(
ûp − y∗

)
√

h2
.

BiasLR = ûp − ûw .

Table 1  Summary statistics including number of records, mean, 
standard deviation (SD), minimum (Min) and maximum (Max) for 
traits and covariates included in this study

FAGE age at feedlot entry, ADG average daily gain at feedlot, DMI average daily 
dry matter intake at feedlot, CAGE age at carcase assessment, CWT​ carcase 
weight, EMA carcase eye muscle area, MBL carcase marbling score, OSS carcase 
ossification score, RIB carcase subcutaneous fat depth measured between the 
5th and 13th rib

Category/trait Number of 
records

Mean SD Min. Max.

Feedlot

 FAGE, d 3327 511.95 69.39 372.00 767.00

 ADG, kg/d 3327 1.59 0.33 0.52 2.90

 DMI, kg/d 3327 14.52 2.06 3.36 22.78

Carcase

 CAGE, d 3285 734.53 99.05 504.00 990.00

 CWT, kg 3285 432.99 65.60 214.00 607.00

 EMA, cm2 3273 90.06 10.86 57.00 128.00

 MBL 3281 494.66 122.54 160.00 1030.00

 OSS 3280 148.25 18.64 100.00 280.00

 RIB, mm 3261 17.37 6.04 3.00 41.00
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measured from the slope of the regression of ûw on ûp [8, 
15]:

(4) Accuracy calculated with the LR method ( ACCLR) : 
for individuals in the validation population, ACCLR was 
computed as follows [8, 15]:

where F  is the average inbreeding coefficient, 2f  is the 
average relationship between individuals, and σ 2

g ,∞ is the 
genetic variance at equilibrium in a population under 
selection. Assuming the individuals in the validation pop-
ulation are not under selection, σ 2

g ,∞ was estimated by 
the additive genetic variance estimated from the partial 
dataset.

Then, to characterise the factors affecting the GEBV 
quality metrics, accuracy, bias and dispersion were treated 
as dependent variables in an ANOVA model that included 
h2 estimate, validation cohort and trait as independent pre-
dictor variables.

Finally, using only the animals in the validation popula-
tion, we ranked animals based on GEBV, identified those 
in the highest (Q1) and lowest (Q4) quartiles of the GEBV 
scale, and calculated the difference (Q1Q4) between the 
adjusted phenotypes of these two sets of animals. Then, 
we used the following models to evaluate the relationship 
between individual GEBV accuracy metrics and Q1Q4 
using the PROC GLM program (SAS Inst. Inc.):

DispLR =
cov

(
ûw , ûp

)

var
(
ûp

) .

ACCLR =

√√√√
cov

(
ûw , ûp

)
(
1+ F − 2f

)
σ 2
g ,∞

,

Q1Q4 = Trait+ Cohort+ ACCT + e,

Q1Q4 = Trait+ Cohort+ ACCLR + e,

where Q1Q4 is the difference, in SD units, between the 
highest and the lowest quartile for adjusted phenotypes 
based on GEBV ranking, Trait corresponds to the seven 
phenotypes analysed, Cohort corresponds to the seven 
validation cohorts, and e is the vector of residual effects.

Results
In this study, we used data from 3408 Australian Angus 
steers from seven YOB cohorts (2011 to 2017). These 
steers represented 294 sires from 12 breeding properties 
(or herds). A low level of sire linkage across cohorts was 
identified (see Additional file 1 Table S1) as was intended 
in the ASBP design. The 12 breeding properties contrib-
uted on average 284 animals ranging from 57 to 495 and 
all except two contributed animals across three YOB 
cohorts. One breeding property was represented in a 
single YOB cohort while another one was represented in 
five YOB cohorts (see Additional file 1: Table S2). These 
sire and breeding property linkages across YOB cohorts 
can have an impact on the accuracies of GEBV since 
each cohort is used as the validation population. Of note, 
the GRM showed that the within- (i.e. diagonals of the 
GRM) and between-animal relationships (off-diagonals 
of the GRM) were close to the expected values of 1 and 0, 
respectively (see Additional file 1 Table S3). Equally inter-
esting, was the very similar variation that we observed 
across these two types of relationships, which indicates a 
single population from the point of view of genetic vari-
ation [30].

Heritability estimates were generally moderate to high, 
ranging from 0.30 for ADG to 0.53 for CWT (Table  2). 
Genetic correlations were strong and positive between 
ADG and DMI (0.59) and between ADG and CWT (0.65) 
and close to zero between MBL and OSS (−  0.01) and 
between MBL and RIB (− 0.09). In general, the estimates 
of the residual correlation were lower and closer in mag-
nitude to zero than the genetic correlations. For instance, 
between the growth traits ADG, DMI and CWT, the 

Table 2  Genomic estimates of heritability (italics on the diagonal), genetic (above the diagonal) and residual (below the diagonal) 
correlations for feedlot and carcase traits

ADG average daily gain at feedlot, DMI average daily dry matter intake at feedlot, CWT​ carcase weight, EMA carcase eye muscle area, MBL carcase marbling score, OSS 
carcase ossification score, RIB carcase subcutaneous fat depth at the ribs level

ADG DMI CWT​ EMA MBL OSS RIB

ADG 0.30 0.59 0.65 0.15 0.05 0.08 0.11

DMI 0.31 0.38 0.63 0.12 0.10 0.10 0.16

CWT​ 0.25 0.38 0.53 0.37 0.04 0.13 0.18

EMA 0.13 0.15 0.48 0.45 0.14 0.03 − 0.17

MBL 0.01 0.04 0.08 0.18 0.42 − 0.01 − 0.09

OSS − 0.04 0.01 0.05 0.05 0.02 0.33 0.00

RIB 0.02 0.06 0.19 − 0.01 -0.03 0.07 0.31
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genetic and residual correlations were estimated at ~ 0.60 
and ~ 0.30, respectively. Finally, except for CWT, the esti-
mates of the genetic and residual correlations between 
feedlot and carcase traits were weak.

The four GEBV quality metrics (ACC​T, ACC​LR, BiasLR, 
and DispLR, see in “Methods” section) are in Table 3. ACC​
T ranged from 0.28 for ADG to 0.51 for DMI, while ACC​
LR ranged from 0.44 for RIB to 0.64 for CWT. We found a 
strong correlation of 0.73 (P-value < 0.001) between ACC​
T and ACC​LR (Fig. 1a). ACC​LR were on average lower than 
ACC​T (Table 3) and more variable (Fig. 1b). This resulted 
in a much higher coefficient of variation for ACC​LR 
(Fig. 1c), particularly for ADG (41.06 vs. 7.79%) and OSS 
(37.07 vs. 10.24%). For all the traits, the BiasLR values 
were close to 0 and the DispLR values close to 1 (Table 3), 
as expected in the absence of bias.

In magnitude, the BiasLR for CWT (on average 0.27 kg; 
Table  3) appears to be larger than that observed for 
the other traits. However, in relative terms, this bias 
is equivalent for all traits. For instance, the SD of the 
GEBV BiasLR is 0.61 kg and 0.16 cm2 for CWT and EMA, 
respectively (Table 3), which are equal to ~ 1% of the SD 
observed for each trait (Table 1).

By investigating the effects of heritability, validation 
cohort and trait on the GEBV quality metrics (Table 4) we 

found that, in the cross-validation scheme and for a given 
trait, there is a significant negative correlation between 
the estimated heritability and the slope of the disper-
sion (r = −  0.56 ± 0.089; P-value < 0.001). Based on the 
coefficient of determination (R2), a model that includes 
the effects of heritability estimate, validation cohort and 
trait explained 65.3, 84.9, 14.5 and 73.3% of the variation 
in ACC​T, ACC​LR, BiasLR and DispLR, respectively. Thus, 
validation cohort, trait, or heritability of the trait did not 
significantly affect the BiasLR of GEBV. In addition, it is 
important to note that validation cohort was not a sig-
nificant source of variation (P-value > 0.10) for any of the 
four GEBV quality metrics (Table 4).

After ranking the validation animals according to their 
GEBV and calculating the phenotypic differences (Q1Q4) 
between animals in the highest and lowest GEBV quartile 
(Table 5), we observed that, averaged across the 49 esti-
mates (7 cohorts and 7 traits), the estimate of the Q1Q4 
difference is 5.59-fold larger than its SE, which indicates 
the consistency of this metric. When expressed in SD 
units (Table  5, last row), the smallest (0.35) and larg-
est (0.94) Q1Q4 differences were found for ADG and 
CWT, respectively. After adjusting for the effects of trait 
(P-value < 0.0001) and validation cohort (P-value > 0.05), 
we found that for each 0.1 increase in ACC​LR, the Q1Q4 

Table 3  Traditional (ACC​T) and LR (ACC​LR) accuracies, LR bias (BiasLR) and LR dispersion (DispLR) of GEBV for feedlot and carcase traits 
from a 7-way cross-validationa scheme based on year of birth (YOB) cohorts

a Refer to Tables S4 to 7 [see Additional file 1: Tables S4–S7] for the individual results on a per cohort basis

ADG average daily gain at feedlot, DMI average daily dry matter intake at feedlot, CWT​ carcase weight, EMA carcase eye muscle area, MBL carcase marbling score, OSS 
carcase ossification score, RIB carcase subcutaneous fat depth at the ribs level

ADG DMI CWT​ EMA MBL OSS RIB

ACC​T
 Mean 0.28 0.51 0.49 0.48 0.50 0.39 0.34

 SD 0.11 0.20 0.07 0.07 0.06 0.15 0.09

 Min. 0.08 0.21 0.40 0.38 0.43 0.19 0.20

 Max. 0.42 0.76 0.58 0.57 0.60 0.62 0.46

ACC​LR

 Mean 0.47 0.57 0.64 0.56 0.59 0.44 0.44

 SD 0.04 0.09 0.05 0.03 0.05 0.05 0.04

 Min. 0.42 0.41 0.57 0.52 0.53 0.38 0.40

 Max. 0.53 0.67 0.67 0.62 0.67 0.50 0.52

BiasLR

 Mean 0.00 0.03 0.27 − 0.03 − 0.08 − 0.07 0.02

 SD 0.01 0.04 0.61 0.16 1.71 0.16 0.07

 Min. − 0.01 − 0.01 − 0.54 − 0.18 − 2.14 − 0.25 − 0.05

 Max. 0.01 0.08 1.20 0.31 2.13 0.22 0.14

DispLR

 Mean 0.97 1.12 0.99 0.94 0.98 0.93 0.93

 SD 0.15 0.49 0.09 0.12 0.09 0.10 0.13

 Min. 0.74 0.37 0.83 0.78 0.88 0.76 0.72

 Max. 1.17 1.68 1.10 1.13 1.13 1.05 1.12
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difference increased by an average of 0.132 SD units, 
while for each 0.1 increase in ACC​T this increase was 
smaller, i.e. 0.081 SD units. In both cases, the intercept 
did not significantly differ from zero (P-value > 0.05).

Discussion
Genomic predictions need to be accurate to be success-
fully implemented. The accuracy of predictions depends 
highly on size of the reference population, related-
ness between test animals and those in the reference 

Fig. 1  Relationship between traditional accuracies and accuracies obtained with the LR method considering seven years of birth cohorts (2011 
to 2017) and the seven traits analysed: average daily gain at feedlot (ADG), average daily dry matter intake at feedlot (DMI), carcase weight (CWT), 
carcase eye muscle area (EMA), carcase marbling score (MBL), carcase ossification score (OSS), carcase subcutaneous fat depth at the ribs level (RIB). 
a Scatter plot across the 49 accuracy values (i.e. seven traits by seven cohorts); b within trait, across year standard deviation; and c within trait, across 
year coefficient of variation
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population, and heritability of the target traits, but it 
can also vary between different breeds and populations 
[18]. Here, we tested the accuracy of genomic predictions 
for seven feedlot and carcase traits that were generated 
using 3408 Australian Angus steers genotyped for 45,152 
SNPs. Our estimates of genetic parameters for Australian 
Angus were all genomic-based and no pedigree data was 
used in the estimation process. Heritability estimates as 
well as ACC​T and ACC​LR were moderate to high. ACC​
T were highly correlated with ACC​LR. Since the lowest 
ACC​LR value obtained was 0.44 (for RIB and OSS), and 
the measures of bias and dispersion fell within expected 
values, our results provide evidence of the potential for 
accurate genomic selection of the evaluated traits in Aus-
tralian Angus cattle.

We have shown that the 7-way cross-validation scheme 
implemented here, based on YOB cohorts within the 
same population, is as accurate as genomic prediction 
using a training set from a different (target) subpopula-
tion [9]. In that work [9], the authors argued that genomic 
predictions using genetically heterogeneous training sets 
could provide more flexibility and showed that a train-
ing set that includes animals from genetically related 
lines can be as valuable as a training set from the target 
population. In our study, since the YOB cohorts used to 

generate the validation populations presented a low level 
of sire linkage, we could use this experimental design.

Heritability estimates ranged from 0.30 for ADG to 0.53 
for CWT which is consistent with previously reported 
values. For instance, Somavilla et  al. [17] using Bayes-
ian genomic best linear unbiased prediction (GBLUP) to 
evaluate feedlot ADG in Nellore cattle reported a herit-
ability of 0.31, and Su et  al. [31] reported heritabilities 
of 0.48 and 0.43 for marbling score and of 0.51 and 0.34 
for CWT, in Hereford and Simmental cattle, respectively. 
In Angus cattle, a previous study using animals from the 
ASBP but based on pedigree information only, reported 
heritabilities of 0.33, 0.34, 0.52, 0.55 and 0.66 for ADG, 
RIB, EMA, DMI, and CWT, respectively [24].

Genetic correlations were high and positive between 
feedlot and weight traits (ADG, DMI and CWT) and 
close to zero between carcase quality traits (MBL, OSS 
and RIB). Moreover, low correlations were observed 
between these two groups of traits. These results corrob-
orate the findings from previous studies that found lower 
correlations between live/carcass weight and traits such 
as fat deposition and marbling [32]. Particularly in Angus 
cattle, similar results based on pedigree information have 
been reported using a subset of six [24] and four [33] of 
the seven YOB cohorts used here. In those studies, the 
standard error (SE) associated with pedigree-based esti-
mates of h2 and genetic correlation ranged from 0.06 to 
0.11 and from 0.04 to 0.27, respectively. In the literature 
on livestock genomics, there is ample evidence showing 
that the SE associated with genomic estimates of genetic 
parameters is lower than that associated with pedigree-
based estimates (see for instance [34–36]), which is 
attributed to the genomic relationship matrix being more 
informative than the pedigree-based numerator relation-
ship matrix.

Based on a simulation study, Macedo et al. [15] showed 
that the LR method works in the presence of selection 
and verified that LR accuracies agreed with theoretical 

Table 4  P-value and coefficient of determination (R2) of the 
effect of heritability (h2), validation cohort and trait on GEBV 
quality metrics, including traditional accuracy (ACC​T) and 
accuracy (ACC​LR), bias (BiasLR) and dispersion (DispLR) obtained 
with the LR method

ACC​T ACC​LR BiasLR DispLR

h2 0.0028 0.0001 0.6187 0.0001

Cohort 0.1514 0.2805 0.5862 0.1176

Trait 0.0001 0.0001 0.0714 0.0001

R2, % 65.3 84.9 14.5 73.3

Table 5  Average difference (± SE) in adjusted phenotypes between the highest and lowest quartile (Q1Q4) based on GEBV ranking

* Standard deviation of adjusted phenotypes

Cohort ADG DMI CWT​ EMA MBL OSS RIB

2011 0.00 ± 0.04 1.05 ± 0.17 33.57 ± 4.54 7.70 ± 1.16 103.47 ± 16.42 10.78 ± 1.87 3.56 ± 0.83

2012 0.14 ± 0.03 0.85 ± 0.21 33.25 ± 4.17 7.49 ± 1.05 116.36 ± 13.93 7.47 ± 1.92 2.21 ± 0.57

2013 0.08 ± 0.03 1.27 ± 0.17 34.44 ± 3.86 9.45 ± 1.06 99.20 ± 11.69 5.94 ± 1.62 3.35 ± 0.54

2014 0.10 ± 0.04 1.21 ± 0.23 25.90 ± 5.37 4.70 ± 1.39 78.60 ± 16.43 10.34 ± 1.72 3.78 ± 0.94

2015 0.08 ± 0.03 1.29 ± 0.17 28.36 ± 3.32 7.12 ± 0.95 85.45 ± 10.64 5.31 ± 1.57 2.13 ± 0.49

2016 0.13 ± 0.03 1.31 ± 0.19 31.51 ± 3.31 6.49 ± 0.98 86.56 ± 10.60 9.30 ± 1.49 1.78 ± 0.50

2017 0.09 ± 0.03 0.85 ± 0.19 20.53 ± 3.24 5.13 ± 0.94 60.19 ± 9.88 8.48 ± 1.55 0.96 ± 0.43

Average 0.09 ± 0.03 1.12 ± 0.19 29.65 ± 3.97 6.87 ± 1.07 89.98 ± 12.79 8.23 ± 1.68 2.54 ± 0.61

Average/SD* 0.35 0.71 0.94 0.83 0.89 0.61 0.55
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accuracies once the Bulmer effect is correctly accounted 
for. In the current study, we used real data and report 
that the ACC​T and ACC​LR for each trait were highly cor-
related (r = 0.73; P-value < 0.001). One key advantage of 
the LR method for computing accuracy is that it does 
not need adjustment factors to pre-correct phenotypes, 
which are themselves estimates and prone to errors, for 
instance, in  situations with many contemporary groups 
each with few records or when heritability is poorly esti-
mated (i.e. when the selection process is inadequately 
described in the data and environmental trends are 
present). Instead, the LR method obviates the need for 
adjustment factors and has been shown to perform opti-
mally even if the model uses an incorrect heritability or if 
a hidden trend exists in the data [15].

It is worth noting that the complete dataset was used to 
obtain estimates of CG fixed effects and covariates, and 
these estimates were used to adjust the phenotypes of 
individuals in the validation population. These adjusted 
phenotypes were needed in the computation of ACC​
T and Q1Q4. Animals in the validation and training sets 
were raised in different CG. Therefore, the only link-
age between these animals is through genomic relation-
ships and no link was created as a consequence of using 
records in the validation sets to obtain the estimates for 
the precorrection. However, while the key advantage of 
ACC​LR is that is does not require to estimate adjustment 
factors from fixed effects corresponding to the valida-
tion population, whether that is a sufficient argument 
to favour ACC​LR over ACC​T cannot be determined with 
certainty because it is likely that they are capturing differ-
ent aspects of predictions.

In agreement with previous studies, our results sug-
gest that the accuracy for carcase traits is higher than 
for live animal body composition traits [37] and that the 
accuracy is higher for traits with a higher heritability [18, 
38]. In fact, a high correlation (r = 0.91, P-value < 0.001) 
was observed between heritability and GEBV accuracy. 
An absence of GEBV bias was indicated by values close 
to zero for all traits. Bias was not significantly influenced 
by validation cohort, heritability of the trait, or trait. In 
the absence of bias, the expected value of dispersion is 
1. Although a negative correlation between heritability 
and dispersion was observed, such that higher estimates 
of heritability were associated with overdispersion in the 
resulting GEBV, DispLR values were mostly around 1, 
ranging from 0.93 for OSS and RIB to 1.12 for DMI.

The breeding properties that contributed data to the 
ASBP were selected on a YOB basis and on their abil-
ity to supply data on hard-to-measure traits and from 
sires that were not already represented in other YOB. 
This particular structure allows for a unique paradigm 
by which each YOB cohort can be considered as a truly 

independent validation dataset to generate the “partial” 
GEBV which, in turn, gives us the opportunity to better 
test the optimality of the genomic predictions than if 
the partial datasets were generated at random or based 
on the last generation (as often used to mimic the “old” 
versus the “recent” predictions). Indeed, analysis of 
the variability of accuracy estimates within and across 
traits and years revealed that ACC​LR were less affected 
by random variation within trait across years (Figs. 1b 
and c) and within year across traits than ACC​T. Aver-
aged across the seven YOB cohorts, the SD of ACC​LR 
was 0.09 compared to 0.14 for ACC​T.

To further characterise the factors that affect GEBV 
quality metrics, accuracy, bias, and dispersion were 
treated as dependent variables in an ANOVA model 
that included h2 estimate, validation cohort and trait 
as independent predictor variables (Table  4). We con-
firmed that bias was not significantly affected by any of 
the independent variables (P-value > 0.05). Similarly, in 
spite of the low level of sire linkage across cohorts and 
the varying size of the cohorts (274–579), validation 
cohort was not a significant source of variation for any 
of the GEBV quality metrics.

The high correlation between heritability and GEBV 
accuracy was also reflected in the phenotypic differ-
ences between validation animals in the highest and 
lowest GEBV quartile (Q1Q4). The higher was the 
GEBV accuracy, the larger was the phenotypic differ-
ence between quartiles and, therefore, the greater was 
the genetic gain which could be expected when select-
ing for the trait. Moreover, we found a larger increase in 
Q1Q4 difference (0.132 SD units) for each 0.1 increase 
in ACC​LR than that (0.081 SD units) for the same 0.1 
increase in ACC​T. These results suggest an improved 
ability of ACC​LR to discriminate between extreme 
GEBV quartiles. The fact that both intercepts were not 
significantly different from zero indicates that when 
either ACC​T or ACC​LR is zero, GEBV are not different 
from randomly guessed values, and hence, the Q1Q4 
difference is zero, as expected.

Conclusions
We have performed a series of analyses aimed at investi-
gating the behaviour of bias, dispersion, and accuracy of 
GEBV according to the characteristics of the validation 
dataset, and the value of these quality metrics for reflect-
ing extreme-performing individuals. The GEBV quality 
metrics based on the LR method, i.e. accuracy, bias, and 
dispersion, as well as the heritabilities reported here, sug-
gest that there is potential for accurate genomic selection 
of Australian Angus for feedlot performance and carcase 
weight and quality.
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