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Abstract

Understanding the aspects of cell functionality that account for disease mechanisms or drug modes of action is a main chal-
lenge for precision medicine. Classical gene-based approaches ignore the modular nature of most human traits, whereas con-
ventional pathway enrichment approaches produce only illustrative results of limited practical utility. Recently, a family of
new methods has emerged that change the focus from the whole pathways to the definition of elementary subpathways with-
in them that have any mechanistic significance and to the study of their activities. Thus, mechanistic pathway activity (MPA)
methods constitute a new paradigm that allows recoding poorly informative genomic measurements into cell activity quanti-
tative values and relate them to phenotypes. Here we provide a review on the MPA methods available and explain their contri-
bution to systems medicine approaches for addressing challenges in the diagnostic and treatment of complex diseases.
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Background

Since the beginning of the century, two technological waves
(first microarray and subsequently massive sequencing) have
been producing an increasingly vast amount of genomic data
on gene variation and gene expression for different phenotypes,
diseases and conditions [1]. As these methodologies gain in ma-
turity, different statistical methods were used to derive progres-
sively reliable and robust biomarkers and gene signatures [2]
that, despite not being exempt of problems [3, 4], have contrib-
uted toward increasing the knowledge on the relationships be-
tween genotypes and phenotypes and have become

mainstream in clinics [5, 6]. A major drawback from biomarkers
and gene signatures is that they do not have an easy interpret-
ation because they frequently lack any mechanistic link to the
fundamental cellular processes that account for the phenotype
studied. Actually, phenotypic differences are better understood
as alterations in the operation of functional modules in the cell,
which can be multiprotein complexes, a pathway or a single cel-
lular or subcellular organelle [7]. Such alterations can be caused
by different combinations of perturbations (mutations or gene
expression changes) of functionally related genes [8, 9]. The
interest in defining these biological modules and using them to
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interpret gene-based analyses resulted in early proposals of
functional enrichment methods [10–12]. Such approaches con-
sider functional modules just as plain lists of genes without tak-
ing into account either the underlying pathway network
topology or the involved functional relations among genes. In
the simplest approach, the over-representation analysis (ORA),
the fraction of genes belonging to a particular gene set found
within a predefined list of genes (e.g. genes showing significant
changes in expression) is assessed [13, 14] (Figure 1B and C). A
subsequent and more sensitive approach, the gene set enrich-
ment analysis (GSEA), does not need a predefined list of genes
but rather searches for functionally related gene sets constitu-
tively up or down within all the genes studied, ranked by a
relevance criterion (e.g. differential expression or association to a
disease) [15–20]. Typical gene sets used in GSEA are gene ontology
[21] categories, but other applications include gene sets sharing
common regulation by transcription factors [22] or miRNAs [23],
or even assess the impact of regulatory dynamics within func-
tional gene sets, like the ROMA method [24]. However, similarly
to ORA, GSEA methods ignore the complex network of functional
relations among the proteins that compose the gene sets.
Another generation of methods, generically known as pathway
topology-based (PT-based) [11] or structure-based [25] methods,
constitute different versions of GSEA for structured gene sets
(pathways defined in the Kioto Encyclopedia of Genes and
Genomes (KEGG) [26], Reactome [27], etc.). Contrarily to ORA and
GSEA, these methods take into account the internal relationships
among the proteins that compose the pathway (see Figure 1D
and 1E for an example of the importance of internal gene–gene
connections in the definitions of gene sets). Methods such as
SPIA [28], CePa [29], NetGSA [30] or Pathifier [31] use different
strategies to produce an enrichment value of the pathway, which

is weighted according to the relationships among the activated
constituent genes. Even with this approach, assessing and scor-
ing whole pathway activities limits our understanding on the ac-
tual functionalities, triggered by specific subpathways of the
pathway, carried out by the cell in the conditions studied.
Actually, these methods ignore the obvious fact that many path-
ways are multifunctional entities composed of different subpath-
ways that often may trigger very different and even opposite cell
behavioral outcomes, depending on the dynamic progression of
the signal propagation between the receptor and the effector pro-
teins. For example, the apoptosis pathway may trigger cell sur-
vival or death depending on the specific receptor activated and
how the signal is transduced within the pathway to reach a spe-
cific effector protein at the end of the signaling circuit. Actually,
the most frequently used pathway descriptions (KEGG [26],
Reactome [27], Pathway Commons [32], WikiPathways [33], etc.)
are abstract concepts built around whole biological notions (e.g.
apoptosis or cell cycle) and can be understood as compendiums
of different possible cell activities that ultimately account for
phenotypes (e.g. disease mechanisms or drug mechanisms of
action—MoA). These cell activities are caused by the combined
action of different genes that, in turn, are highly pleiotropic and
often participate in more than one cell activity. This is the reason
why gene activity by itself is often not descriptive of the cell
functionality because it depends critically on the activity of other
partner genes in the pathway to produce specific cell functional-
ities, as described in the map of interactions that is the pathway.
On the other hand, the activity of the whole pathway does not
provide a solution either. Activity measurement at the level of
the whole pathway does not have a unique mechanistic conse-
quence, and therefore, its use for the interpretation of genomic or
transcriptomic experiments is purely indicative and of limited

Figure 1. Schematic representation of the three families of methods: enrichment analysis, PT-based analysis and MPA. The conventional enrichment analysis assumes

the existence of a background (A) in which an observed percentage (25% in the example) of the genes differentially expressed (or mutated, associated to a trait, etc.). If

gene sets are sampled based on some property shared by all the genes (e.g. they belong to a given pathway), a scenario (B) in which 60% of them are differentially

expressed is found; the application of a simple test will evidence that this gene set is significantly enriched in differentially expressed genes, whereas in other scen-

arios (C), the gene set would not be different from a random sample of genes from the background. A PT-based algorithm takes into consideration the topology of the

gene set, and a scenario (C) in which the differentially expressed genes are more connected among them would get a better score that an alternative scenario (D) in

which the level of connection of the genes is lower. The significance of this data set would depend on the algorithm that estimates the score and the specific test

applied. In MPA, there is more or less specific definition of circuits (subnetworks) within the pathway that should be related to cell activity in some way, and the con-

nectivity of such circuits will determine the potential changes in cell activity. If circuits define subnetworks connecting receptor proteins to effector proteins in a signal

transduction pathway, the same number of active genes could allow signal transduction (E) or being incompatible with the arrival of the signal to the current effector

proteins (F), even in scenarios that would be significantly enriched in a conventional enrichment method.
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practical utility. Actually, methods like OCSANA [34] that seek
minimal combinations of interventions to disrupt the subnet-
works that connect source nodes and target nodes point to
substructures within the pathway instead of whole pathways as
the relevant entities to target. Moreover, evidences from the
experimental side consisting of the prediction of patient survival
based on the activity of the JNK subpathway provided a solid
demonstration that subpathways can be considered real
mechanistic biomarkers of clinical utility [35].

In an attempt to gain a more precise knowledge on the func-
tional consequences of the activity of pathways, methods that
focus on mechanistic pathway activity (MPA) have emerged. MPA
methods constitute a new paradigm by providing an alternative
way to study the specific activities of internal elementary sub-
pathways or circuits that compose the whole pathway. Circuits
are subpathways, defined in different ways by different MPA
methods, which are expected to be better descriptors of cell func-
tional activity than whole pathways or single genes. Circuit defi-
nitions made by different MPA methods range from simple
cliques or strings of connected nodes, that most likely account for
unspecific activity within the pathway [36–39], to subpathways
with a sound biological foundation (e.g. receptor-to-effector sig-
naling circuits, which are defined from the chain of proteins that
connect a specific receptor protein to a specific effector protein at
the end of the signaling circuit) that are known to account for spe-
cific cell behavioral outcomes [40–43]. Under this mechanistic per-
spective, what is relevant is not the pure enrichment or a high
connectivity by itself, but rather that the observed connectivity
within the gene set will be compatible with a biological mechan-
ism of the cell as, for example, signal transduction in a signaling
pathway (Figure 1F and G). Most of the methods for computing
circuit activity scores use gene expression values [36, 37, 40–42],
but also methods that use mutations [44], have been proposed.
The main difference with respect to PT-based methods is that
MPA methods directly focus on pathway substructures and calcu-
late the corresponding score for them rather than using such sub-
structures to calculate a global score for the whole pathway.

MPA methods are likely to gain importance as systems
medicine becomes increasingly relevant in understanding com-
plex diseases and helping in their precise diagnosis and thera-
peutic decisions [45]. Initiatives such as Disease Maps (http://
disease-maps.org/) have already provided detailed maps of
complex gene relationships among genes in several diseases,
such as cancer [46], Parkinson [47], Alzheimer [48] and influenza
[49], and eight more are under development. These curated dis-
ease maps, along with the classical pathways, such as KEGG
[26], Reactome [27], Pathway Commons [32], WikiPathways [33]
and others [50], are detailed static diagrams whose dynamics
and activity can be understood with MPA methods.

Despite the fact that numerous reviews of pathway enrich-
ment methods can be found [10, 51], along with a few reviews
on pathway-topology analysis methods [11, 25], to our know-
ledge, there are no reviews on specific methods that focus on
testing independently the activity of pathway substructures
(circuits). Here, we present a comprehensive review of MPA
methods in which their relative advantages, drawbacks and
performances are compared.

Methods
Methods analyzed

Contrarily to different versions of GSEA methods, such as PT-
based [11] or structure-based [25] methods, in which pathway

structures are taken into account to calculate a topology-
weighted score for the whole gene set, MPA methods use path-
way topologies to define subnetworks within, based on different
criteria, which potentially constitute better descriptors of the
real functional activity of the cell. MPA methods differ mainly in
the way in which they define circuits within the pathways and
in the manner that they estimate the activity of such circuits. A
comprehensive collection of the available MPA methods is listed
in Table 1. The most pervasively used pathway definition across
all the methods is KEGG. Some methods use the KEGG pathway
map to define circuits within with a biological rationale (e.g.
receptor-to-effector circuits that effectively model signal trans-
duction events), whereas others use the pathway topology to
find subgraphs that behave differently among the compared
conditions (Table 1). Scoring methods are also diverse, and in
some cases, circuit activities can be calculated for individuals
and then a test can be performed if a comparison is necessary
(e.g. Pathiways [41, 42], HiPathia [40], developed by us, MinePath
[52], TAPPA [39]), whereas other methods require of a compari-
son either to use differentially expressed genes (DEG) or to find
subgraphs that explain the comparison. Another interesting as-
pect is that almost half of the methods do not distinguish be-
tween activations and inhibitions in the calculation of the
score, despite the availability of this information and its poten-
tial importance (Table 1). Since circuit definition and scoring
methods used will potentially have an impact on the relative
performances of the methods, we have carried out a compara-
tive benchmark to study their relative importance. From the
methods listed in Table 1, nine were selected that satisfy three
basic conditions: they can be applied to RNA-seq data, they
have a common definition of pathway (KEGG pathways consti-
tuted the unique common pathway definition) and there is soft-
ware available for running them.

MPA algorithms

• TAPPA [39] was the first MPA method proposed by 2007. Although

originally proposed as a PT-based algorithm, its implementation

in the ToPASeq package [63] allows using it on not only whole

pathways but also subpathways. The method is based on the con-

cept of molecular connectivity, a well-known topological descrip-

tor of chemical compounds in chemioinformatics [64]. In essence,

the method calculates a score of gene co-expression, taking into

account the adjacency in the topology of the pathway. Here, cir-

cuits are defined as all the possible subnetworks in the pathway.

This method does not take into account activation/inhibition

activities of the genes. Circuits with a molecular connectivity asso-

ciated to the conditions compared by means of a Mann–Whitney

test (for binary traits) or a Spearman correlation (for continuous

traits) are considered to have a significant differential activity.

Significant circuits that do not connect receptors to effector pro-

teins are most probably not involved in triggering changes of cell

functionality and consequently they will not be relevant to explain

changes in cell behavior.
• PWEA [61] was proposed in 2010. Similarly to TAPPA, this

method was originally proposed as a PT-based algorithm, but the

ToPASeq [63] implementation allows using it on subpathways.

The method calculates for each gene its mutual influence with

respect to the rest of genes within the pathway (or subpathway),

obtained as a function of the correlation in their expression val-

ues. Then, for each pathway (or subpathway), it calculates a cu-

mulative function based on all the genes within. The significance

of this cumulative function is tested by means of a permutation

test to compare the intrapathway with respect to the background

Mechanistic pathway activity methods | 1657
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(out of the pathway cumulative mutual influence). In these

calculations, activation or inhibition gene activities are ignored.

In the ToPASeq implementation, the circuits made out of KEGG

pathways were defined as any subnetwork within the pathways,

which again can define circuits not linked to the activation of cell

functions.
• CLIPPER [37], published in 2012, is a generalization of

TopologyGSA [38]. The first step of the method converts pathways

into gene–gene networks. Given that CLIPPER method only works

on acyclic graphs, self-loops and cycles are solved by removing

the weakest edge of the cycle based on expression data (with min-

imum expression profile correlation between nodes [65]). Then,

the circuits are defined as receptor-to-effector subnetworks. Gene

expression values are assigned to the nodes of the circuits, and

the algorithm compares portions (any possible subnetwork) of the

circuit between the conditions studied, with the aim of identifying

subgroups of genes that appear to drive differences (deregulations)

between them. CLIPPER does not distinguish between activation

and inhibition activities in the proteins of the pathway. If the por-

tion found as significant does totally connect receptors to effector

proteins, the subnetworks detected could not have any relevance

in terms of cell functionality.
• PRS [58] was proposed in 2012. The algorithm maps discretized

values of differential gene expression (a threshold of twofold is

taken as differential expression and value is set to 1, otherwise

to 0, without any further statistical assessment) at the nodes of

the gene–gene directed network extracted from KEGG pathways,

without considering their activation or inhibition roles. Then,

the network is traversed with a depth-first search algorithm that

essentially seeks for subnetworks of connected differentially

expressed nodes by means of a normalized weighted sum of

node values. A permutation test is used to assess the reliability

of the subnetworks found. These significant subnetworks consti-

tute the circuits defined by PRS, which, as in CLIPPER, could lack

any mechanistic link with changes in cell functionality, if they

do not connect receptors to effector proteins.
• DEGraph [36] was proposed in 2012. This is a complex statistical

approach in which first the topology of the graph representing

the pathway undergoes Fourier analysis in which some addition-

al information based on gene expression correlations is incorpo-

rated. Then, the method performs a Hotelling’s test in the graph–

Fourier space for discovering non-homogeneous subgraphs with-

in the whole pathway topology that exhibit a significant shift in

means, by means of a pruning approach to reduce testing time

and multiple testing. The way in which the algorithm defines cir-

cuits as significant subnets, extracted from the analysis of the

graph–Fourier space, does not take into account activation/inhib-

ition gene activities and do not specifically focus on circuits that

can mechanistically explain cell activity.
• DEAP [55] was proposed in 2013. The algorithm superimposes ex-

pression data onto the pathway graph. Every possible path that

can be formed within the graph is independently examined by

using a recursive function that calculates the differential expres-

sion for each path by adding or subtracting the discretized differ-

ential expression value of all downstream nodes with catalytic

or inhibitory relationships, respectively. DEAP focuses on discov-

ering the most differentially expressed portion of the pathway.

Again, from a pure mechanistic point of view, it could be argued

that the activity of some portions of the pathway does not neces-

sarily involve a functional activity within the pathway.
• SubSPIA [53] was proposed in 2015. SubSPIA maps the DEG into

the pathway structure. Then, the method tries to connect all the

possible DEG using the minimum possible number of non-DEGs

by using a minimum spanning tree strategy. Activations and

inhibitions are not taken into account. Circuits defined in this

way do not necessarily involve a functional activity within the

pathway.
• MinePath [63] was proposed in 2016. The method first discretizes

the expression values of the genes to active/inactive categories.

Then, each pathway is decomposed in all the possible subgraphs,

over which the gene expression categories are mapped. The

functional status of any subgraphs is assessed by the Boolean al-

gorithm that takes into account the activity of the involved genes

and the type of relationship among them (activations and inhibi-

tions). When the activity status changes between the conditions

are compared, the subgraph is considered to be a differentially

activated circuit. Again, the circuits found under this strategy do

not necessarily involve a functional activity within the pathway.
• HiPathia [40] was proposed by us in 2017. The method defines

circuits as subgraphs that connect receptor proteins to effector

proteins in the pathways. These types of circuits represent the

logic of signal transduction in the cell and are related to the

mechanistic of cell functionality. HiPathia uses the normalized

gene expression values as proxies of protein activity and, taking

into account the relationships among proteins (activation/inhib-

ition) along the pathway, it uses a propagation algorithm to esti-

mate the amount of signal that arrived to the effector protein

from the receptor protein. Then, the profiles of circuit activity are

compared by means of a conventional Wilcoxon test.

Data source

A total of 6246 samples, including 5647 tumor samples and 598
samples taken from the healthy reference tissue, belonging to
12 cancer types from The Cancer Genome Atlas (TCGA) data
portal (https://tcga-data.nci.nih.gov/tcga/) were used for the
benchmarking. The following cancers were used: bladder uro-
thelial carcinoma [66], breast invasive carcinoma [67], colon
adenocarcinoma [68], head and neck squamous cell carcinoma
[69], kidney renal clear cell carcinoma [70], kidney renal papil-
lary cell carcinoma [71], liver hepatocellular carcinoma, lung
adenocarcinoma [72], lung squamous cell carcinoma [73], pros-
tate adenocarcinoma [74], thyroid carcinoma [75] and uterine
corpus endometrial carcinoma [76].

Fourteen KEGG [26] pathways belonging to the subcategory
of ‘Pathways in cancer’ were used to detect changes when can-
cers versus control comparisons were made. These are MAPK
signaling pathway (hsa04010), Wnt signaling pathway
(hsa04310), TGF-beta signaling pathway (hsa04350), VEGF sig-
naling pathway (hsa04370), Jak-STAT signaling pathway
(hsa04630), cAMP signaling pathway (hsa04024), PI3K-Akt sig-
naling pathway (hsa04151), mTOR signaling pathway
(hsa04150), cell cycle (hsa04110), apoptosis (hsa04210), p53 sig-
naling pathway (hsa04115), focal adhesion (hsa04510), adherens
junction (hsa04520) and PPAR signaling pathway (hsa03320).

Data processing

The COMBAT method [77] was used to remove non-biological
experimental variations (batch effect) associated to a Genome
Characterization Center (GCC) and plate ID from the RNA-seq
data. Then, the trimmed mean of M-values normalization method
(TMM) method [78] was used for data normalization. The resulting
normalized values were used as input for the MPA methods.

Sensitivity of the methods

To estimate sensitivity or the true positive rate (TPR), we used
the 12 cancer types mentioned earlier. In any of the 12 normal
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versus tumor comparison, we expect to detect changes of activ-
ity in the 14 cancer KEGG pathways. As different methods have
different circuit definitions, the comparison of the methods was
carried out at the level of the whole pathway definition. This is
a quite liberal estimation because the detection of activity with-
in a pathway by two methods does not mean that the activity
detected really corresponds to the same cell behavioral out-
come. However, possible overoptimistic TPRs obtained by this
approximation will be compensated by low specificity determi-
nations. Therefore, for each method, we estimated a rate of true
positive as the number of cancer pathways in which the method
discovered one or more differentially activated circuits divided
by 12, the total number of cancer pathways. The distributions
were ranked by TPR value and compared by means of a
Wilcoxon test with Bonferroni correction to detect significant
differences among them.

Specificity of the methods

The false positive rate (FPR) is estimated by comparing two
groups composed by identical individuals for discovering differ-
entially activated circuits in any of the cancer KEGG pathways.
As the individuals compared belong to the same cancer type,
any differentially activated circuit would be a false positive de-
tection. For each comparison, we used two data sets of 25 tumor
samples, each randomly chosen from each of the cancer types
analyzed. Comparisons between both data sets were repeated
100 times per method and cancer. Similarly to the case of TPR,
the FPR of any method is calculated as the number of cancer
KEGG pathways in which the method finds one or more circuits
significantly activated divided by the total number of pathways
analyzed (14 pathways). Again, the distributions were ranked by
FPR value and compared by means of a Wilcoxon test with
Bonferroni correction to detect significant differences among

them. If a method has a too liberal detection of active pathways,
its high sensibility will be compensated with a low specificity.

Results
Data pre-processing

A large data set of RNA-seq counts for 12 cancer types analyzed
was used for the benchmark provided in this review. The data
were downloaded from TCGA data portal (https://tcga-data.nci.
nih.gov/tcga/). The data were normalized using TMM [78] to ac-
count for RNA composition bias. Batch effect was corrected by
the application of the COMBAT [77] method. Normalized data
were used as input for the MPA methods.

Estimation of the sensitivity of the MPA methods

To estimate the relative TPR of the MPA methods analyzed, we
compared cancer samples versus the corresponding healthy tis-
sue for the 12 cancer types analyzed. In all these cancer versus
control comparisons, statistically significant differences in the
KEGG cancer-associated pathways are expected. Figure 2 shows
how only HiPathia was able to detect changes in activity in cir-
cuits belonging to all the cancer pathways analyzed across the
12 cancer types analyzed. Other group of three methods
(TAPPA, DEGraph and subSPIA), with a significantly different
performance (P-value¼ 3� 10�4), was able to detect between
50% and 75% of the cancer pathways used here. The rest of
methods detected differential activity in less than 50% of the
cancer pathways.

Estimation of the specificity of the MPA methods

To check whether the high sensitivity of HiPathia, TAPPA,
DEGraph and subSPIA is real or is only the consequence of a low
specificity, we estimated the FPR for them. To achieve this, data

Figure 2. TPR or sensitivity was computed as the number of significant cancer pathways found, when cancer samples are compared with samples of the tissue of refer-

ence, divided by the total number of cancer pathways (14 for HiPathia and DEAP and 13 for the rest of methods, because PPAR signaling pathway [hsa03320] was not

implemented in them) per method and cancer. Violin plots obtained using 12 cancer types show for any method the mean TPR in the central dot, all possible results,

with thickness indicating how common, in the outer shape and the layer inside, represents the values that occur 95% of the time. The figure shows the methods ranked

by TPR value. A Wilcoxon test with Bonferroni correction was used to compare successive TPR distributions to detect significant differences among them. Black lines

denote significant differences between consecutive methods. Brackets define groups of methods with no significant differences in their performances.
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sets of identical samples were compared and significant differ-
ences in circuit activity found by a particular method in the
comparisons are considered false positives. A total of 10,800
comparisons (100 times � 9 methods � 12 cancer types) be-
tween pairs of data sets of 25 samples each, randomly sampled
among cancer samples, were performed. The FPR was com-
puted as the mean of the number of significant cancer path-
ways divided by the total number of cancer pathways per
method and cancer. Figure 3 shows how most of the methods
have a low FPR (below the conventional 5% P-value), except
PWEA, which displays a high ratio of false positives (over 30%).
The best performer is SubSPIA (P-value¼ 0.005), which, together
with CLIPPER and HiPathia methods, showed the highest speci-
ficity (P-value¼ 0.001).

An example of MPA analysis of death and postmortem
cold ischemia of blood transcriptome

Beyond the typical cancer study applications showed in all the
MPA method articles, other biological systems can be studied at
an unprecedented functional detail with the application of MPA
methods. In a recent article [79], we studied the changes of
blood transcriptome after death and subsequent postmortem
cold ischemia and the functional consequences using the data
available in the GTEx project [80]. Although changes in the tran-
scriptome are expected as a response to the death, little is
known about how death and the postmortem cold ischemia
interval affect gene expression [81, 82]. In principle, gene ex-
pression measurements in postmortem samples will be affected
both by biological responses to organism death and RNA deg-
radation. MPA methods can help to understand the mecha-
nisms of these effects and how they are dependent on the
postmortem interval. This knowledge is essential for the proper
use of postmortem gene expression measures as a proxy for
antemortem physiological gene expression levels [83].

In the study, most of the changes in gene expression occur
between 7 and 14 h after death, followed by a relative stabiliza-
tion, between 14 and 24 h. The use of an enrichment method
pointed to several processes affected by the gene expression
changes, which include gene ontology terms related to immune
response such as response to bacterium, response to other
organisms, response to biotic stimulus, regulation of leukocyte
migration, regulation of cytokine production and acute-phase
response, to DNA replication, such as DNA packaging process,
as well as some metabolic processes related to hypoxia, such as
reactive oxygen process, peroxidase activity, oxidoreductase ac-
tivity, carbohydrate binding and response to lipopolysaccharide
[79]. All of them are very general processes and most of them
can have an opposite outcome depending on the specific activ-
ity of the process (e.g. regulation of cytokine production can be
positive or negative and there is no way of discovering the sense
of the regulation from the pure enrichment of this ambiguous
term).

However, the application of the HiPathia [40] MPA method
revealed significant changes in several relevant functional
activities. Actually, HiPathia reveal a detailed picture on the ul-
timate mechanisms that cause the deactivation of the immune
system. Regulation of interferon production is inhibited from
several circuits of the apoptosis RIG-I-like receptor and the RIG-
I-like receptor signaling pathways. Response to interleukin-1 is
inhibited from the MAPK signaling pathway. Neutrophil activa-
tion is inhibited by a circuit of the Fc epsilon RI signaling
pathway, whereas negative activity of natural killer cells is trig-
gered from the natural killer cell-mediated cytotoxicity pathway
(Figure 4A). As suggested by enrichment carbohydrate metabol-
ism is affected, but MPA detects the mechanism behind, which
involves a severe deactivation of the tricarboxylic acid cycle,
while glycolysis is activated (FDR-adjusted P-value<10�27; [79]
Figure 4D), and points to a major role in the initial pre- to
postmortem transition for the hypoxia process (FDR-adjusted

Figure 3. FPR or specificity was computed as the mean of the number of significant cancer pathways found, when cancer samples are compared with cancer samples,

divided by the total number of KEGG cancer pathways along 100 bootstraps, per method and cancer. Violin plots show average values and distributions of the propor-

tions of false discoveries made by any method. The figure shows the methods ranked by FPR value. A Wilcoxon test with Bonferroni correction was used to compare

successive FPR distributions to detect significant differences among them. Black lines denote significant differences between consecutive methods. Brackets define

groups of methods with no significant differences in their performances.
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P-value 7.2� 10�67), by the activation of HIF-1, mTOR, platelet
activation and cGMP-PKG signaling pathways [79].

Finally, activation of processes related to blood coagulation
(FDR-adjusted P-value 1.52� 10�54) and response to stress trig-
gered by specific circuits in NF-kappa B, cAMP and HIF-1 signal-
ing pathways (Figure 4B) are also detected by the MPA method.

Discussion
MPA, a new paradigm for the interpretation of
genomic data

Transcriptomic experiments are affordable nowadays and pro-
vide a wealth of data that must be interpreted in the light
of their biological consequences and implications. Different

functional profiling methods have been proposed for this inter-
pretation, such as over-representation methods or gene-set en-
richment methods [15–18], that focus on the collective activity
of genes within biologically relevant entities such as pathways.
However, given that most pathways are multifunctional enti-
ties, these methods, even in their most sophisticated versions
that consider the internal structure of the pathway, are simply
illustrative and fail to provide real mechanistic information on
specific behavioral outcomes of the cell. MPA methods provide
an innovative, biologically inspired alternative for the interpret-
ation of transcriptomic experiments. These methods use bio-
logical knowledge available on the interrelation among the
genes that compose the pathways to provide hypothesis on
how their perturbations ultimately cause diseases, responses
to treatments or other complex phenotypes, such as the effects

Figure 4. Schema of the mechanisms behind the deactivation of the immune system (A) and the changes in the metabolism (B) caused by changes of blood transcrip-

tome after death and subsequent postmortem cold ischemia [73].
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of death and postmortem cold ischemia on human tissues [78].
Therefore, MPA methods provide a link between gene perturba-
tions (measured as gene expression changes) and disease
mechanisms or drug MoAs [83, 84]. To understand how the dif-
ferent pathway definition and scoring strategies used by the dif-
ferent MPA methods capture biological information that
account for cell behavior (such as signal transduction circuit
activities) and relate them to phenotypic conditions, we have
produced a benchmarking of nine MPA methods that could be
compared in similar conditions.

Possible factors that determine the relative performance
of MPA methods

Figure 5 offers a combined view of both specificity and sensitiv-
ity of the methods analyzed in this review. Whereas most of the
MPA methods show an excellent specificity (below the typical
5% conventional P-value threshold, with the exception of
PWEA), the differences in terms of sensitivity are more pro-
nounced. According to their relative sensitivity and specificity,
we could distinguish four groups of methods. The first group of
high sensitive and specific methods would include HiPathia, the
only one able to detect differences in the activities of all the
cancer pathways across all the cancer types analyzed while
maintaining a high specificity as well. A second group of meth-
ods with medium sensitivity but still high specificity, which
includes TAPPA, DEGraph and SubSPIA, detects changes in only
75%–50% of the cases (P-value¼ 0.08). A third group of methods,
with low sensitivity but still high specificity, which includes
CLIPPER, DEAP, MinePath and PRS, shows poorer performance,
detecting changes in circuit activities in less than 25% of the
cases. Finally, the conceptually most different method, PWEA,
does not only present a low specificity but also a low sensitivity.

It is difficult to attribute the relative performance of the
methods to a unique factor and it rather seems to be a combin-
ation of several of them. Apparently, the use of receptor-to-
effector definition of circuit and the distinction between
activations and deactivations seem to be important factors that
differentiate HiPathia from the rest of methods in terms of sen-
sitivity. MinePath and DEAP also use activation/inhibition infor-
mation to calculate the score and DEAP uses receptor-to-

effector circuit definitions, but in both cases, the scoring algo-
rithm uses discretized values of differential gene expression,
which seem to reduce drastically the sensitivity. The most rep-
resentative feature of the second group of methods seems to be
the use of differential gene expression or co-expression to ob-
tain scores for circuits. These circuits that can effectively separ-
ate the conditions compared are chosen as differentially
activated. In the third group, showing poorer sensitivity (below
25%), the discretization of differential gene expression values
seems to represent a hurdle for obtaining a better sensitivity for
two of the methods (DEAP and MinePath). The case of CLIPPER
and PRS is probably related to a combination between the scor-
ing strategy and the circuit definition. Finally, the PWEA
presents, in addition, a low specificity. Probably, the PWEA case
is a combination of the circuit definition and a scoring algo-
rithm, based on mutual influence among genes, which is not
capturing properly the underlying biology of the pathway activ-
ity. It must be stated that all the methods included in the three
first groups discover differentially activated circuits efficiently
and with a low rate of false positives, thus providing a more in-
formative interpretation than the simple description of differ-
ential gene expression. Moreover, all the methods in their
original publications demonstrated to be more sensitive than
the conventional ORA and GSEA methods [36, 37, 39, 40, 52, 53,
55, 58, 61].

Receptor-to-effector subpathways are relevant circuit defini-
tions from a biological standpoint, as they represent the pos-
sible routes taken from the beginning of a pathway, where the
signal is originated, to its end, where a function is triggered.
Within the context of signaling pathways, such circuit defini-
tions effectively model signal transduction events. MPA meth-
ods implementing these circuit definitions model more
realistically biological events and consequently produce better
results. In addition, an interesting feature of the methods that
use receptor-to-effector circuits is that the changes in the activ-
ity of such circuits can be easily associated to cell functionalities
triggered by the effector protein [40]. Contrarily, given the fact
that many genes and subnetworks can be shared by several
pathways, pathway definitions based in subnetworks are, in
principle, more prone to false positives.

Figure 5. Simultaneous comparison of sensitivities and specificities of the different MPA methods. The results obtained in the 12 cancers are used to obtain a mean

value and an error. The x-axis represents 1 � the FPR. Horizontal bars represent in each point 1 SD of the FPR for the corresponding method.
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Most of the MPA methods are based on the use of differential
gene expression or on any type of comparison-derived scoring
system, which restricts its analytic use only to comparison
scenarios. An interesting feature for a MPA method is the possi-
bility of producing circuit values for each individual sample.
This allows transforming an uninformative matrix of [samples
� gene] expression values into a more informative matrix [sam-
ples � circuit activities] that can be used for detecting differen-
tially active circuits, but also for many other types of analysis
such as clustering, predictors, time-series analysis, survival
analysis, patient stratification, etc. For example, the Pathiways
method [41, 42] was used to predict cell response to different
drugs [85].

Because most of the methods only accept KEGG pathways as
input (Table 1), it is not possible to test potential biases of the
different methods under different pathway definitions. In prin-
ciple, given the way that the methods tested work, the two
most important factors prone to cause any bias would be the
length of the pathways and the existence of more or less loops.
In principle, longer pathways would affect the performance in
terms of runtime and, in some cases, could introduce a multiple
testing issue in methods that decompose the pathway in all the
possible subpathways. TAPPA and MinePath will probably be
affected in their runtimes, and methods such as PRS of DEGraph
even more and could even be impracticable for large pathway
definitions, given the algorithm behind the definition of cir-
cuits. On the other hand, CLIPPER accuracy could be compro-
mised by pathways with many loops, given that this algorithm
breaks the loops to linearize the circuits.

Mechanistic biomarkers and systems medicine

Despite its unquestionable clinical utility, single-gene bio-
markers and gene signatures are not exempt of problems [3, 4]
due to the lack of any mechanistic link to the fundamental cellu-
lar processes that account for the mechanism of the disease [84].
Today’s empirical methods of diagnosis and therapeutic
decision-making need to be transformed in ways that consider
important facts such as the heterogeneity of the patients [86]
and the modular nature of diseases [7], which are overlooked
today. To achieve this transformation, the current method of
classifying diseases needs to be modified from a phenotypic de-
scription to one that incorporates the different molecular drivers
that created the observed phenotype. This can only be achieved
through a deeper, systems-based understanding of these dis-
ease drivers [84]. Within this context, a mechanistic biomarker
would be a multigenic biomarker that uses genes involved in the
mechanism of a specific phenotype to estimate an activity value
for cell functionalities related to, or directly accounting for, such
a mechanism. The prediction of a complex phenotype such as
patient survival based on a mechanism that is conceptualized
as a mathematical model of the activity of the JNK signaling sub-
pathway represents an example of a mechanistic biomarker
[35]. MPA methods open the door to the systematic definition
and use of mechanistic biomarkers [35]. Moreover, mechanistic
biomarkers are not only diagnostic but also can be actionable
entities that can efficiently and realistically address the problem
of patient heterogeneity [86]. In fact, the concept of actionability
within a systems medicine context is related to the activity of
the mechanistic biomarker, rather than with the specific activity
of a particular gene, and could require distinct interventions in
different patients [35, 40]. Thus, MPA methods can be used to
suggest and predict the effect of interventions (Knock Outs
(KOs), drug inhibitions, over-expressions, etc.) on specific genes

within circuits so as to find suitable clinical targets, predict side
effects, speculate off-target activities, etc. This is the case of the
PathAct application [87] that uses the HiPathia algorithm [40] to
explore the effects of interventions that are simulated by direct-
ly changing the expression level of the genes, which can be con-
sidered an in silico equivalent to KOs, drug inhibitions or gene
over-expressions, and can be carried out as individual interven-
tions or in combinations. The use of actionable mechanistic bio-
markers can pave the way for personalized and individualized
therapies, especially in cancer, where many targeted therapies
are already available. Another obvious area of application is
drug discovery [83], where patient heterogeneity is behind the
failure of many drugs [88].

In addition, the systems biology perspective provided by
MPA approaches can be used to address other biological prob-
lems with an unprecedented mechanistic detail. An interesting
problem is the assumption that the use of postmortem samples
for transcriptomic studies provides a good representation of the
antemortem transcriptome [81], despite the fact that changes in
gene expression levels are expectable and actually little is
known about how death and the postmortem cold ischemia can
affect gene expression measurements [81, 82]. A recent study
using data available from the GTEx project [80] revealed import-
ant changes of blood transcriptome after death and subsequent
postmortem cold ischemia with relevant functional consequen-
ces such as deactivation of the immune system, metabolic
changes as response to hypoxia, DNA synthesis arrest, diverse
responses to stress and the activation of blood coagulation [79].

Conclusion

MPA methods constitute an evolution of pathway analysis
methods in which pathways are decomposed into elementary
subpathways or circuits that potentially account for cell out-
comes that can help to explain mechanistic features of pheno-
types (disease mechanism, drug MoA, etc.). Here we provide a
review of MPA methods that include a limited benchmarking of
sensitivity and specificity. From this comparison we concluded
that, although most of the methods were highly specific, they
presented remarkable differences in terms of sensitivity. From
their relative performances it can be concluded that a biologic-
ally realistic definition of the circuits within the pathways ana-
lyzed is a major determinant of the success of the method.
However, the scoring methodology, which accounts for the ac-
tivity of the circuit, must also be representative of the biological
activity of the cell. Thus, the propagation method used by
HiPathia seems to be the most efficient solution, followed
by scores based on differential gene expression, implemented
by subSPIA, DEGraph and TAPPA. In any case, MPA methods
have demonstrated to be more sensitive than the conventional
functional analysis (ORA or GSEA) and represent a promising al-
ternative for the interpretation of genomic measurements.
Actually, the increasing importance of systems medicine to face
the challenges of diagnosis and treatment of complex diseases
[45] will increase the relevance and make more mainstream the
use of approaches such as MPA methods.

Key Points

• MPA methods focus on the activity of pathway sub-
structures defined in different ways.

• Biologically inspired pathway substructures like
receptor-to-effector circuits and methods to score their
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activity are relevant for the performance of MPA
methods.

• MPA can help to discover actionable mechanistic
biomarkers.
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