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Abstract: Coreset is usually a small weighted subset of an input set of items, that provably approx-
imates their loss function for a given set of queries (models, classifiers, hypothesis). That is, the
maximum (worst-case) error over all queries is bounded. To obtain smaller coresets, we suggest a
natural relaxation: coresets whose average error over the given set of queries is bounded. We provide
both deterministic and randomized (generic) algorithms for computing such a coreset for any finite
set of queries. Unlike most corresponding coresets for the worst-case error, the size of the coreset
in this work is independent of both the input size and its Vapnik–Chervonenkis (VC) dimension.
The main technique is to reduce the average-case coreset into the vector summarization problem,
where the goal is to compute a weighted subset of the n input vectors which approximates their
sum. We then suggest the first algorithm for computing this weighted subset in time that is linear
in the input size, for n� 1/ε, where ε is the approximation error, improving, e.g., both [ICML’17]
and applications for principal component analysis (PCA) [NIPS’16]. Experimental results show
significant and consistent improvement also in practice. Open source code is provided.

Keywords: coreset; average case analysis; big data; sparsification; dimensionality reduction; approxi-
mation algorithms

1. Introduction

In this paper, we assume that the input is a set P of items, called points. Usually, P is
simply a finite set of n points in Rd or other metric space. In the context of PAC (probably
approximately correct) learning [1], or empirical risk minimization [2] it represents the
training set. In supervised learning every point in P may also include its label or class.
We also assume a given function w : P → (0, ∞) called weights function that assigns a
“weight” w(p) > 0 for every point p ∈ P. The weights function represents a distribution
of importance over the input points, where the natural choice is uniform distribution,
i.e., w(p) = 1/|P| for every p ∈ P. We are also given a (possibly infinite) set X that is
the set of queries [3] which represents candidate models or hypothesis, e.g., neural net-
works [4], SVMs [5] or a set of vectors in Rd with tuning parameters as in linear/ridge/lasso
regression [6–8].

In machine learning and PAC-learning in particular, we often seek to compute the
query that best describes our input data P for either prediction, classification, or clustering
tasks. To this end, we define a loss function f : P × X → R that assigns a fitting cost
f (p, x) to every point p ∈ P with respect to a query x ∈ X. For example, it may be a kernel
function [9], a convex function [10], or an inner product. The tuple (P, w, X, f ) is called a
query space and represents the input to our problem. In this paper, we wish to approximate
the weighted sum of losses fw(P, x) = ∑p∈P w(p) f (p, x).

Methodology.

Our main tool for approximating the sum of losses above is called a coreset, which is
a (small) weighted subset of the (potentially huge) input data, from which the desired sum
of losses can be recovered in a very fast time, with guarantees on the small induced error;
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see Section 1.2. To compute such a coreset, we utilize the famous Frank–Wolfe algorithm.
However, to compute a coreset in fast time, we first provide a scheme for provably boosting
the running time of the Frank–Wolfe algorithm for our special case, without compromising
its output accuracy; see Section 3.1. We then utilize the boosted version in order to compute
a deterministic coreset in time faster than the state of the art.

1.1. Approximation Techniques for the Sum of Losses

Approximating the loss of a single query via uniform sampling. Suppose that we
wish to approximate the mean f (P, x) = 1

n ∑p∈P f (p, x) for a specific x in sub-linear
time. Picking a random point p uniformly at random from P would give this result in
expectation as E[ f (p, x)] = ∑p∈P f (p, x)/n = f (P, x). By Hoeffding inequality, the mean
f (S, x) = 1

|S| ∑p∈S f (p, x) of a uniform sample S ⊆ P would approximate f (P, x) with high

probability. More precisely, for a given ε ∈ (0, 1), if the size of the sample is |S| ∈ O(M/ε2)
where M = maxp∈P | f (p, x)| is the maximum absolute value of f , then with constant
probability our approximation error is

err f (x) = | f (P, x)− f (S, x)| ≤ ε.

ε-Sample. Generally, we are interested in such data summarization S of P that approx-
imates every query x ∈ X. An ε-sample is a pair (S, u) where S is a subset of P (unlike,
e.g., sketches [11]), and u : S→ [0, ∞) is its weights function such that the weighted loss
fu(S, x) = ∑p∈S u(p) f (p, x) of the (hopefully small) weighted subset S approximates the
original weighted loss fw(P, x) [12], i.e.,

∀x ∈ X : | fw(P, x)− fu(S, x)| ≤ ε. (1)

We usually assume that the input is normalized in the sense that w is a distribution,
and f : P×X → [−1, 1]. By defining the pair of vectors fw(P, X) = (∑p∈P w(p) f (p, x))x∈X
and fu(S, X) = (∑p∈S u(p) f (p, x))x∈X, we can define the error for a single x by err(x) =
| fw(P, x)− fu(S, x)|, and then the error vector for the coreset err(X) = (err(x))x∈X. We
can rewrite (1) by

‖err(X)‖∞ = ‖ fw(P, X)− fu(S, X)‖∞ ≤ ε. (2)

PAC/DAC learning for approximating the sum of losses for multiple queries. Prob-
ably approximately correct (PAC) randomized constructions generalizes the Hoeffding
inequality above from a single to multiple (usually infinite) queries and returns an ε-sample
for a given query space (P, w, X, f ) and δ ∈ (0, 1), with probability at least 1− δ. Here, δ
corresponds to the “probably” part, while “approximately correct” corresponds to ε in (2);
see [13,14]. Deterministic approximately correct (DAC) versions of PAC-learning suggest
deterministic construction of ε-samples, i.e., the probability of failure of the construction is
δ = 0.

As common in machine learning and computer science in general, the main advantage
of deterministic constructions is smaller bounds (in this case, on the size of the resulting
ε-sample), and their disadvantage is usually the slower construction time that may be
unavoidable. When the query set X if finite, the Caratheodory theorem [15,16] suggests
a deterministic algorithm that returns a 0-sample (S, u) (i.e., fw(P, X) = fu(S, X)) of size
|S| ≤ |X|+ 1. Deterministic constructions of ε-sample are known for infinite sets of queries
even when the VC-dimension is unbounded [17,18].

Sup-sampling: reducing the sample size via non-uniform sampling. As explained
above, Hoeffding inequality implies an approximation of fw(P, x) by fu(S, x) where
u(p) = 1/|S| and S is a random sample according to w whose size depends on M( f ) =
maxp∈P | f (p, x)|. To reduce the sample size we may thus define g(p, x) = f (p,x)

| f (p,x)| ∈ {−1, 1},

and s(p) = w(p)| f (p,x)|
∑q∈P w(q)| f (q,x)| . Now, M(g) = maxp∈P |g(p, x)| = 1, and by Hoeffding’s in-

equality, the error of approximating gs(P, x) via non-uniform random sample of size 1/ε2
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drawn from s, is ε. Define T = ∑q∈P w(q)| f (q, x)|. Since fw(P, x) = T · gs(P, x), approxi-
mating gs(P, x) up to ε error yields an error of εT for fw(p, x). Therefore, the size is reduced
from M( f )/ε2 to T2/ε2 when T2 ≤ M( f ). Here, we sample |S| = O(T2/ε2) points from P
according to the distribution s, and re-weight the sampled points by u′(p) = T

|S|| f (p,x)| .
Unlike traditional PAC-learning, the sample now is non-uniform, and is propor-

tional to s(p), rather than w, as implied by Hoeffding inequality for non-uniform dis-
tributions. For sets of queries we generalize the definition for every p ∈ P to s(p) =

supx∈X
w(p)| f (p,x)|

∑q∈P w(q)| f (p,x)| as in [19], which is especially useful for coresets below.

1.2. Coresets: A Data Summarization Technique for Approximating the Sum of Losses

Coreset for a given query space (P, w, X, g), in this and many other papers, is a pair
(C, u) that is similar to ε-sample in the sense that C ⊆ P and u : C → [0, ∞) is a weights
function. However, the additive error ε is now replaced with a multiplicative error 1± ε,
i.e., for every x ∈ X we require that, |gw(P, X) − gu(C, X)| ≤ ε · gw(P, X). Dividing by
gw(P, X) and assuming gw(P, X) > 0, yields

∀x ∈ X :
∣∣∣∣1− gu(C, X)

gw(P, x)

∣∣∣∣ ≤ ε. (3)

Coresets are especially useful for learning big data since an off-line and possibly
inefficient coreset construction for “small data" implies constructions that maintains coreset
for streaming, dynamic (including deletions) and distributed data in parallel. This is via
a simple and easy to implement framework that is sometimes called merge–reduce trees;
see [20,21]. The fact that a coreset approximates every query (and not just the optimal one
for some criterion) implies that we may solve hard optimization problems with non-trivial
and non-convex constraints by running a possibly inefficient algorithm such as exhaustive
search on the coreset, or running existing heuristics numerous times on the small coreset
instead of once on the original data. Similarly, parameter tuning or cross validation can be
applied on a coreset that is computed once for the original data as explained in [22].

An ε-coreset for a query space (P, w, X, g) is simply an ε-sample for the query space
(P, w, X, f ), after defining f (p, x) := g(p,x)

gw(P,x) , as explained, e.g., in [19]. By defining the
error for a single x by err′(x) = |1− gu(C, x)/gw(P, x)| = | fw(P, x)− fu(C, x)| = err f (x),
we obtain an error vector for the coreset err′(X) = (err′(x))x∈X. We can then rewrite (3)
as in (2): ∥∥err′(X)

∥∥
∞ ≤ ε.

In the case of coresets, the sup
x∈X

w(p) f (p, x) = sup
x∈X

w(p)g(p, x)
gw(P, x)

of a point p ∈ P is

called sensitivity [14], leverage score (in `2 approximations) [23], Lewis weights (in `p
approximations), or simply importance [24].

1.3. Problem Statement: Average Case Analysis for Data Summarization.

Average case analysis (e.g., [25]) was suggested about a decade ago as an alternative
to the (sometimes infamous) worst-case analysis of algorithms in theoretical computer
science. The idea is to replace the analysis for the worst-case input by the average input
(in some sense). Inspired by this idea, a natural variant of (2) and its above implications is
an ε-sample that approximates well the average query. We suggest to define an (ε, ‖·‖)-
sample as

‖err(X)‖ = ‖ fw(P, X)− fu(S, X)‖ ≤ ε, (4)

which generalizes (2) from ‖·‖∞ to any norm, such as the `z norm ‖err(X)‖z. For example,
for the `2, MSE or Frobenius norm, we obtain
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√
∑

x∈X

(
fw(P, x)− fu(S, x)

)2 ≤ ε. (5)

A generalization of the Hoeffding Inequality from 1963 with tight bounds was sug-
gested relatively recently for the `z norm for any z ≥ 2 and many other norms [26,27].
Here we assume a single query (|X| = 1), a distribution weights function, and a bound on
supp∈P| f (p, X)| that determines the size of the sample, as in Hoeffding inequality.

A less obvious question, which is the subject of this paper, is how to compute de-
terministic ε-samples that satisfies (4), for norms other than the infinity norm. While the
Caratheodory theorem suggests deterministic constructions of 0-samples (for any error
norm) as explained above, our goal is to obtain coreset whose size is smaller or independent
of |X|.

The next question is how to generalize the idea of sup-sampling, i.e., where the
function f is unbounded, for the case of norms other than ‖·‖∞. Our main motivation for
doing so is to obtain new and smaller coresets by combining the notion of ε-sample and
sup-sampling or sensitivity as explained above for the ‖·‖∞ case. That is, we wish a coreset
for a given query space, that would bound the non-`∞ norm error∥∥∥∥(1− gu(C, x)

gw(P, x)

)
x∈X

∥∥∥∥ =
∥∥err′(X)

∥∥ ≤ ε.

To summarize, our questions are: How can we smooth the error function and ap-
proximate the “average” query via: (i) Deterministic ε-samples (for DAC-learning )? (ii)
Coresets (via sensitivities/sup sampling for non-infinity norms)?

1.4. Our Contribution

We answer affirmably these questions by suggesting ε-samples and coresets for the
average query. We focus on the case z = 2, i.e., the Frobenius norm, and finite query set X
and hope that this would inspire the research and applications of other norms and general
sets. For suggestions in this direction and future work see Section 5.2. The main results of
this paper are the following constructions of an (ε, ‖·‖2)-sample (S, u) for any given finite
query space (P, w, X, f ) as defined in (5):

(i) Deterministic construction that returns a coreset of size |S| ∈ O(1/ε2) in time
O
(
min

{
nd/ε2, nd + d log(n)2/ε4}); see Theorem 2 and Corollary 4.

(ii) Randomized construction that returns such a coreset (of size |S| ∈ O(1/ε2)) with

probability at least 1− δ in sub-linear time O
(

d
(

log ( 1
δ )

2
+

log ( 1
δ )

ε2

))
; see Lemma 5.

Algorithm. This result is of independent interest for faster and sparser convex op-
timization. To our knowledge, this is also the first application of sensitivity outside the
coreset regime.

1.5. Overview and Organization

The rest of the paper in organized as follows. First in Section 2, we list the applications
of our proposed methods, such as a faster coreset construction algorithm for least mean
squares solver. We also compare our results to the state of the art to justify our practical
contribution.

In Section 3, we first give our notations and relevant mathematical definitions, we
explain the relation between the problem of computing an (ε, ‖·‖2)-sample (average-case
coreset) to the problem of computing a vector summarization coreset, where the goal (of
the vector summarization coreset problem) is to compute a weighted subset of the n input
vectors which approximates their sum. Here, we suggest a coreset for this problem of size
O(1/ε) in O(nd/ε) time; see Theorem 2 and Algorithm 2. Then, in Section 3.1 we show
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how to improve the running time of this result and compute a coreset of the same size
in O(nd + d log2(n)/ε2) time; see Corollary 4 and Algorithm 3. In addition, we suggest a
non-deterministic coreset of the same size but in time that is independent of the number of
points n; see Lemma 5 and Algorithm 4.

In Section 4, we explain how our vector summarization coreset results can be used
to improve all the previously mentioned applications (from Section 2). In Section 5 we
conduct various experiments on real world datasets, where we apply different coreset
construction algorithms presented in this paper to a variety of applications, in order to
boost their running time, or reduce their memory storage. We also compare our results
to many competing methods. Finally, we conclude our paper and discuss future work at
Section 5.2. Due to space limitations and simplicity of the reading, the proofs of the claims
are placed in the Appendixes A–I.

2. On the Applications of Our Method and the Current State of the Art

In what follows, we will present some of the applications of our theoretical contribu-
tions as well as discussing the current state of the art coreset/sketch methods in terms of
running time for each of application. Figure 1 summarizes the main applications of our
result.

(i) Vector summarization: the goal is to maintain the sum of a (possibly infinite) stream
of vectors in Rd, up to an additive error of ε multiplied by their variance. This is a
generalization of frequent items/directions [28].
As explained in [29], the main real-world application is extractions and compactly
representing groups and activity summaries of users from underlying data exchanges.
For example, GPS traces in mobile networks can be exploited to identify meetings, and
exchanges of information in social networks sheds light on the formation of groups of
friends. Our algorithm tackles these application by providing provable solution to
the heavy hitters problem in proximity matrices. The heavy hitters problem can be
used to extract and represent in a compact way friend groups and activity summaries
of users from underlying data exchanges.
We propose a deterministic algorithm which reduces each subset of n vectors into
O(1/ε) weighted vectors in O(nd + d log(n)2/ε2) time, improving upon the nd/ε
of [29] (which is the current state of the art in terms of running time), for a sufficiently
large n; see Corollary 4, and Figures 2 and 3. We also provide a non-deterministic
coreset construction in Lemma 5. The merge-and-reduce tree can then be used to
support streaming, distributed or dynamic data.

(ii) Kernel Density Estimates (KDE): by replacing ε with ε2 for the vector summarization,
we obtain fast construction of an ε-coreset for KDE of Euclidean kernels [17]; see more
details in Section 4. Kernel density estimate is a technique for estimating a probability
density function (continuous distribution) from a finite set of points to better analyse
the studied probability distribution than when using a traditional [30,31].

(iii) 1-mean problem: a coreset for 1-mean which approximates the sum of squared
distances over a set of n points to any given center (point) in Rd. This problem arises in
facility location problems (e.g., to compute the optimal location for placing an antenna
such that all the customers are satisfied). Our deterministic construction computes
such a weighted subset of size O(1/ε2) in O(min

{
nd/ε2, nd + d log(n)2/ε4}) time.

Previous results of [19,32–34] suggested coresets for such problem. Unlike our results,
these works are either non-deterministic, the coreset is not a subset of the input, or
the size of the coreset is linear in d.

(iv) Coreset for LMS solvers and dimensionality reduction: for example, a deterministic
construction for singular value decomposition (SVD) that gets a matrix A ∈ Rn×d

and returns a weighted subset of k2/ε2 rows, such that their weighted distance to any
k-dimensional non-affine (or affine in the case of PCA) subspace approximates the
distance of the original points to this subspace. The SVD and PCA are very common
algorithms (see [35]), and can be used for noise reduction, data visualization, cluster
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analysis, or as an intermediate step to facilitate other analyses. Thus, improving
them might be helpful for a wide range of real-world applications. In this paper,
we propose a deterministic coreset construction that takes O(nd2 + d2k4 log(n)2/ε4)
time, improving upon the state of the art result of [35] which requires O(nd2k2/ε2)
time; see Table 1. Many non-deterministic coresets constructions were suggested for
those problems, the construction techniques apply non-uniform sampling [36–38],
Monte-Carlo sampling [39], and leverage score sampling [23,40–45].

Table 1. Known deterministic subset coresets for LMS solvers. Our result has the fastest running
time for sufficiently large n and d.

Error Size Time Citation Notes

ε O(k2/ε2) O(nd2k2/ε2) [35] N/A
ε O(d/ε2) poly(n, d, ε) [46] inefficient for large n
0 O(d2) O(nd2 + log(n)poly(d)) [22] inefficient for large d
ε O(k/ε2) poly(n, d, k, ε) [47] inefficient for large n
ε O(k2/ε2) O(nd2 + log(n)2d2k4/ε4) ? N/A

3. Vector Summarization Coreset

Notation 1. We denote by [n] = {1, · · · , n}. For a vector v ∈ Rd, the 0-norm is denoted by
‖v‖0 and is equal to the number of non-zero entries in v. We denote by e(i) the ith standard basis
vector in Rn and by 0 the vector (0, · · · , 0)T ∈ Rn. A vector w ∈ [0, 1]n is called a distribution
vector if all its entries are non-negative and sums up to one. For a matrix A ∈ Rm×n and
i ∈ [m], j ∈ [n] we denote by Ai,j the jth entry of the ith row of A. A weighted set is a pair
(Q, m) where Q = {q1, · · · , qn} ⊆ Rd is a set of n points, and m = (m1, · · · , mn)T ∈ Rn is a
weights vector that assigns every qi ∈ Q a weight mi ∈ R. A matrix A ∈ Rd′×d is orthogonal if
AT A = I ∈ Rd×d.

Adaptations. To adapt to the notation of the following sections and the query space
(P, w, X, f ) to the techniques that we use, we restate (4) as follows. Previously, we denote
the queries X = {x1, · · · , xd}, and the input set by P = {p1, · · · , pn}. Now, each input
point pi in the input set P corresponds to a point qi =

(
f (pi, x1), · · · , f (pi, xd)

)
∈ Rd,

i.e., each entry of qi equals to f (pi, x) for a different query x. Throughout the rest of
the paper, for technical reason and simplicity, we might alternate between the weights
function notation and a weights vector notation. In such cases, the weights function
w : P → [0, ∞) and weight w(qi) of qi, i ∈ [m] are replaced by a vector of weights
m = (m1, · · · , mn) ∈ [0, ∞)n and mi, respectively, and vice versa. In such cases, the ε-
sample is represented by a sparse vector u ∈ [0, ∞) where S = {pi ∈ P | ui > 0, i ∈ [n]} is
the chosen subset of P.

Hence, fw(P, X) = ∑p∈P w(p)
(

f (p, x1), · · · , f (p, xd)
)
= ∑n

i=1 miqi, and fu(S, X) =

∑n
i=1 uiqi.

From (ε, ‖·‖2)-samples to ε-coresets. We now define an ε-coreset for vector summa-
rization, which is a re-weighting of the input weighted set (Q, m) by a new weights vector
u, such that the squared norm of the difference between the weighted means of (Q, u) and
(Q, m) is small. This relates to Section 1.3, where an (

√
ε, ‖·‖2)-sample there (in Section 1.3)

is an ε-coreset for the vector summarization here.

Definition 1 (vector summarization ε-coreset). Let (Q, m) and (Q, u) be two weighted sets
of n points in Rd, and let ε ∈ [0, 1). Let µ = ∑n

i=1
mi
‖m‖1

qi, σ2 = ∑n
i=1

mi
‖m‖1
‖qi − µ‖2, and

µ̃ = ∑n
i=1

ui
‖u‖1

qi. Then (Q, u) is a vector summarization ε-coreset for (Q, m) if ‖µ̃− µ‖2
2 ≤ εσ2.

Analysis flow. In what follows we (first) assume that the points of our input set P lie
inside the unit ball (∀p∈P : ‖p‖ ≤ 1). For such an input set, we present a construction of a
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variant of a vector summarization coreset, where the error is ε and does not depend on the
variance of the input. This construction is based on the Frank–Wolfe algorithm [48]; see
Theorem 1 and Algorithm 1. This is by reducing the problem to the problem of maximizing
a concave function f (x) over every vector in the unit simplex. Such problems can be solved
approximately by a simple greedy algorithm known as the Frank–Wolfe algorithm.

Algorithm 1: FRANK-WOLFE( f , K); Algorithm 1.1 of [48]
1: Input: A concave function f : Rn → R, and the number of iterations K.
2: Output: A vector x ∈ Rn that satisfies Theorem 1.
3: x(0) := the unit n-simplex vertex with largest f value.
4: for k ∈ {0, · · · , K} do
5: i′ := arg maxi∇ f (x(k))i

6: α′ := arg max
α[0,1]

f
(

x(k) + α(e(i′) − x(k))
)

7: x(k+1) := x(k) + α′(e(i′) − x(k))
8: end for
9: Return x(k+1)

We then present a proper coreset construction in Algorithm 2 and Theorem 2 for a
general input set Q in Rd. This algorithm is based on a reduction to the simpler case of
points inside the unit ball; see Figure 1 for illustration. This reduction is inspired by the
sup-sampling (see Section 1), there (in Section 1) the functions are normalized (to obtain
values in [−1, 1]) and reweighted (to obtain a non-biased estimator), then the bounds were
easily obtained using the Hoeffding inequality. Here, we apply different normalizations
and reweightings, and instead of the non-deterministic Hoeffding inequality, we suggest a
deterministic version using the Frank–Wolfe algorithm. Our new suggested normalizations
(and reweightings) allow us to generalize the result to many more applications as in
Section 4.

Figure 1. Illustration of Algorithm 2, its normalization of the input, its main applications (red boxes) and their plugged
parameters. Algorithm 2 utilizes and boosts the run-time of the Frank–Wolfe algorithm for those applications; see Section 1.4.

For brevity purposes, all proofs of the technical results can be found at the Appendixes A–I.

Theorem 1 (Coreset for points in the unit ball). Let P = {p1, · · · , pn} be a set of n points in
Rd such that ‖pi‖ ≤ 1 for every i ∈ [n]. Let ε ∈ (0, 1) and w = (w1, · · · , wn)T ∈ [0, 1]n be
a distribution vector. For every x = (x1, · · · , xn)T ∈ Rn, define f (x) = −‖∑n

i=1(wi − xi)pi‖2.
Let ũ be the output of a call to FRANK-WOLFE( f ,

⌈ 8
ε

⌉
); see Algorithm 1. Then:

(i) ũ is a distribution vector with ‖ũ‖0 ≤
⌈ 8

ε

⌉
,

(ii) ‖∑n
i=1(wi − ũi)pi‖2 ≤ ε, and

(iii) ũi is computed in O
(

nd
ε

)
time.
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We now show how to obtain a vector summarization ε-coreset of size O(1/ε) in O( nd
ε )

time for any set P ⊆ Rd.

Theorem 2 (Vector summarization coreset). Let (Q, m) be a weighted set of n points in Rd,
ε ∈ (0, 1), and let u be the output of a call to CORESET(Q, m, ε

16 ); see Algorithm 2. Then, u ∈ Rn

is a vector with ‖u‖0 ≤ 128
ε non-zero entries that is computed in O( nd

ε ) time, and (Q, u) is a vector
summarization ε-coreset for (Q, m).

Algorithm 2: CORESET(Q, m, ε)

1: Input: A weigthed set (Q, m) of n ≥ 2 points in Rd and an error parameter
ε ∈ (0, 1).

2: Output: A weight vector u ∈ [0, ∞)n with O(1/ε) non-zero entries that satisfies
Theorem 2.

3: w := m
‖m‖1

4: µw := ∑n
i=1 wiqi

5: σw :=
√

∑n
i=1 wi‖qi − µ‖2

6: for every i ∈ {1, · · · , n} do
7: pi := qi−µ

σ

8: p′i :=
(pT

i | 1)T∥∥(pT
i | 1)

∥∥2 {Notice:
∥∥p′i
∥∥ ≤ 1.}

9: w′i :=
wi
∥∥(pT

i | 1)
∥∥2

2
10: end for
11: Compute a sparse vector u′ with O(1/ε) non-zero entries, such that∥∥∑n

i=1(w
′
i − u′i)p′i

∥∥2 ≤ ε
{E.g., using Algorithm 1 (see Theorem 1).}

12: ui := ‖m‖1 ·
2u′i∥∥(pT

i | 1)
∥∥2 for every i ∈ {1, · · · , n}

13: Return u

3.1. Boosting the Coreset’s Construction Running Time

In this section, we present Algorithm 3, which aims to boost the running time of
Algorithm 1 from the previous section; see Theorem 3. The main idea behind this new
boosted algorithm is as follows: instead of running the Frank–Wolfe algorithm on a (full)
set of input data, it can be more efficient to partition the input into a constant number k
of equal-sized chunks, pick some representative for each chunk (its mean), run the Frank–
Wolfe algorithm only on the set of representatives (the set of means) to obtain back a
subset of those representative, and then continue recursively only with the chunks whose
representative was chosen by the algorithm. Although the Frank–Wolfe algorithm is now
applied multiple times (rather than once), each of those runs is much more efficient since
only the small set of representatives is considered.

This immediately implies a faster construction time of vector summarization ε-coresets
for general input sets; see Corollary 4 and Figure 1 for illustration.

Theorem 3 (Faster coreset for points in the unit ball). Let P be a set of n points in Rd such that
‖p‖ ≤ 1 for every p ∈ P. Let w : P → (0, 1) be a weights function such that ∑p∈P w(p) = 1,
ε ∈ (0, 1), and let (C, u) be the output of a call to FAST-FW-CORESET(P, w, ε); see Algorithm 3.
Then

(i) |C| ≤ 8/ε and ∑p∈C u(p) = 1,

(ii)
∥∥∥∑p∈P w(p)p−∑p∈C u(p)p

∥∥∥2
≤ 2ε, and
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(iii) (C, u) is computed in O
(

nd +
d·log (n)2

ε2

)
time.

Corollary 4 (Faster vector summarization coreset). Let (Q, m) be a weighted set of n points

in Rd, and let ε ∈ (0, 1). Then in O
(

nd + d · log (n)2

ε2

)
time, we can compute a vector u =

(u1, · · · , un)T ∈ Rn, such that u has ‖u‖0 ≤ 128/ε non-zero entries and (Q, u) is a vector
summarization (2ε)-coreset for (Q, m).

Algorithm 3: FAST-FW-CORESET(P, w, ε)

1: Input: A weighed set (P, w) of n ≥ 2 points in Rd and an error parameter
ε ∈ (0, 1).

2: Output: A pair (C, u) that satisfies Theorem 3
3: k := 2 log(n)

ε
4: if |P| ≤ k then
5: Return: A vector summarization ε-corset for (P, w) using Theorem 1.
6: end if
7: {P1, · · · , Pk} := a partition of P into k disjoint subsets, each contains at most
dn/ke points.

8: for every i ∈ {1, · · · , k} do

9: µi :=
1

∑q∈Pi
w(q)

· ∑
p∈Pi

w(p) · p {The weighted mean of Pi}

10: w′(µi) := ∑p∈Pi
w(p)

11: end for
12: (µ̃, ũ) := a vector summarization

(
ε

log(n)

)
-corset for the weighted set

({µ1, · · · , µk}, w′) using Theorem 1.
13: C :=

⋃
µi∈µ̃

Pi {C is the union over all subsets Pi whose mean µi was chosen in µ̃.}

14: for every µi ∈ µ̃ and p ∈ Pi do

15: u(p) :=
ũ(µi)w(p)
∑q∈Pi

w(q)
16: end for
17: (C, u) := FAST-FW-CORESET(C, u, ε)
18: Return: (C, u)

In what follows, we show how to compute a vector summarization coreset with
high probability in a time that is sublinear in the input size |Q| = n. This is based on
the geometric median trick, that suggests the following procedure: (i) sample k > 1 sets
{S1, · · · , Sk} of the same (small) size from the original input set Q, (ii) for each such
sampled set Si (i ∈ [k]), compute its mean si, and finally, (iii) compute and return the
geometric median of those means s = {s1, · · · , sk}. This geometric median is guaranteed
to approximate the mean of the original input set Q.

We show that there is no need to compute this geometric median, as it is a difficult
computational task. We prove that there exists a set Si∗ from the sampled subsets such that
its mean si∗ is very close to this geometric median, with high probability. Thus, si∗ is a good
approximation to the desired mean of the original input set. Furthermore, we show that si∗

is simply the point in s that minimizes its sum of (non-squared) distances to this set s, i.e.,
i∗ ∈ arg minj∈[k] ∑k

i=1
∥∥si − sj

∥∥
2. An exhaustive search over the points of s can thus recover

si∗ . The corresponding set Si∗ is the resulted vector summarization coreset; see Lemma 5
and Algorithm 4.

Lemma 5 (Fast probabilistic vector summarization coreset). Let Q be a set of n points in Rd,
µ = 1

n ∑p∈P q, and σ2 = 1
n ∑p∈P‖q− µ‖2. Let ε ∈ (0, 1), δ ∈ (0, 0.9], and let S ⊆ Rd be the

output of a call to PROB-WEAK-CORESET(Q, ε, δ); see Algorithm 4. Then:
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(i) S ⊆ Q and |S| = 4
ε ,

(ii) with probability at least 1− 3δ we have
∥∥∥ 1
|S| ∑p∈S p− µ

∥∥∥2
≤ 33 · εσ2, and

(iii) S is computed in O
(

d log ( 1
δ )

2
+

d log ( 1
δ )

ε

)
time.

Algorithm 4: PROB-WEAK-CORESET(Q, ε, δ)

1: Input: A set Q of n ≥ 2 points in Rd, ε ∈ (0, 1), and δ ∈ (0, 1).
2: Output: A subset S ⊆ P that satisfies Lemma 5.
3: k := b3.5 log

(
1
δ

)
c+ 1.

4: S := an i.i.d sample of size 4k
ε .

5: {S1, · · · , Sk} := a partition of S into k disjoint subsets, each contains 4
ε points .

6: si := the mean of the i’th subset Si for i ∈ [k].
7: i∗ := arg minj∈[k] ∑k

i=1
∥∥si − sj

∥∥
2.

8: Return Si∗

4. Applications

Coreset for 1-mean. A 1-mean ε-coreset for (Q, m) is a weighted set (Q, u) such
that for every x ∈ Rd, the sum of squared distances from x to either (Q, m) or (Q, u), is
approximately the same. To maintain the above property, we prove that it suffices for (Q, u)
to satisfy the following: the mean, the variance, and the sum of weights of (Q, u) should
approximate the mean, the variance, and the sum of weights of (Q, m), respectively, up to
an additive error that depends linearly on ε. Then note that when plugging ε2 (rather than
ε) as input to Algorithm 2, the output is guaranteed to satisfy the above 3 properties, by
construction of u.

The following theorem computes a 1-mean ε-coreset.

Theorem 6. Let (Q, m) be a weighted set of n points in Rd, ε ∈ (0, 1). Then in

O
(

min
{

nd + d · log(n)2

ε4 ,
nd
ε2

})
time we can compute a vector u = (u1, · · · , un)T ∈ Rn, where ‖u‖0 ≤ 128

ε2 , such that:

∀x ∈ Rd :

∣∣∣∣∣ n

∑
i=1

(mi − ui)‖qi − x‖2

∣∣∣∣∣ ≤ ε
n

∑
i=1

mi‖qi − x‖2.

Coreset for KDE. Given two sets of points Q and Q′, and a kernel K : Rd ×Rd → R
that is defined by the kernel map φ, the maximal difference

sup
x∈Rd

∣∣∣∣∣∣∑q∈Q

K(x, q)
|Q| − ∑

q′∈Q′

K(x, q′)
|Q′|

∣∣∣∣∣∣
between the kernel costs of Q and Q′ is upper bounded by

∥∥∥µQ̂ − µQ̂′

∥∥∥
2
, where µQ̂ and

µQ̂′ are the means of Q̂ = {φ(q) | q ∈ Q} and Q̂′ = {φ(q) | q ∈ Q′}, respectively, [49].

Given Q̂, we can compute a vector summarization ε2-coreset Q̂′, which satisfies that∥∥∥µQ̂ − µQ̂′

∥∥∥2

2
≤ ε2. By the above argument, this is also an ε-KDE coreset.

Coreset for dimensionality reduction and LMS solvers. An ε-coreset for the k-SVD
(k-PCA) problem of Q is a small weighted subset of Q that approximates the sum of squared
distances from the points in Q to every non-affine (affine) k-dimensional subspace of Rd,
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up to a multiplicative factor of 1± ε; see Corollary 7. Coreset for LMS solvers is the special
case of k = d− 1.

In [35], it is shown how to leverage an (ε/k)2-coreset for the vector summarization
problem in order to compute an ε-coreset for k-SVD. In [45], it is shown how to compute
a coreset for k-PCA via a coreset for k-SVD, by simply adding another entry with some
value r ∈ R to each vector of the input. Algorithm 5 combines both the above reductions,
along with a computation of a vector summarization (ε/k)2-coreset to compute the desired
coreset for dimensionality reduction (both k-SVD and k-PCA). To compute the vector
summarization coreset we utilize our new algorithms from the previous sections, which
are faster than the state of the art algorithms.

Algorithm 5: DIM-CORESET(A, k, ε)

1: Input: A matrix A ∈ Rn×d, an integer k ∈ [d], and an error parameter ε ∈ (0, 1).
2: Output: A diagonal matrix W ∈ Rn×n that satisfies Corollary 7.

3: r := 1 + max
i∈[n]

4‖ai‖2

ε4 {where ai is the ith row of A}

4: U, Σ, V := the full SVD of [A | (r, · · · , r)T ] ∈ Rn×(d+1)

5: vi :=
(

Ui,1, · · · , Ui,k, Ui,k+1:dΣk+1:d,k+1:d

‖Σk+1:d,k+1:d‖F

)
for every i ∈ [n]

6: ṽi:= the row stacking of vivT
i ∈ Rd×d for every i ∈ [n]

7: ({ṽ1, · · · , ṽn}, u) := a vector summarization ( ε
5k )

2-coreset for
({ṽ1, · · · , ṽn}, (1, · · · , 1)).

8: W := a diagonal matrix in Rn×n, where Wi,i =
√

ui, ∀i ∈ [n].
9: Return W

Corollary 7 (Coreset for dimensionality reduction). Let Q be a set of n points in Rd, and let
A ∈ Rn×d be a corresponding matrix containing the points of Q in its rows. Let ε ∈ (0, 1

2 ) be an
error parameter, k ∈ [d] be an integer, and W be the output of a call to DIM-CORESET(A, k, ε).
Then:

(i) W is a diagonal matrix with O
(

k2

ε2

)
non-zero entries,

(ii) W is computed in O
(

min
{

nd2 +
d2 log(n)2k4

ε4 , nd2k2

ε2

})
time, and

(iii) there is a constant c, such that for every ` ∈ Rd and an orthogonal X ∈ Rd×(d−k) we have∣∣∣∣∣1− ‖W(A− `)X‖2
F

‖(A− `)X‖2
F

∣∣∣∣∣ ≤ cε.

Here, A− ` is the subtraction of ` from every row of A.

Where do our methods fit in? Theoretically speaking, the 1-mean problem (also
known as the arithmetic mean problem), is a widely used tool for reporting central ten-
dencies in the field of statistics, as it is also used in machine learning. As for the practical
aspect of such problem, it can be either used to obtain an estimation of the mathematical
expectation of signal strength in a area [50], or as an imputation technique used to fill
in missing values, e.g., in the context of filling in missing values of heart monitor sensor
data [51]. Note that a variant of this problem is widely used in the context of deep learn-
ing, namely, the moving averages. Algorithms 3 and 4 can boost such methods when
given large-scale datasets. In addition, our algorithms extend also to SVD, PCA, and
LMS where these methods are known for their usages and efficiencies in discovering a
low dimensional representation of high dimensional data. From a practical point of view,
SVD showed promising results when dealing with on calibration of a star sensor on-orbit
calibration [52], denoising a 4-dimensional computed tomography of the brain in stroke
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patients [53], removal of cardiac interference from trunk electromyogram [54], among many
other applications.

We propose a summarization technique (see Algorithm 5) that aims to compute
an approximation towards the SVD factorization of large-scale datasets where applying
the SVD factorization on the dataset is not possible due to insufficient memory or long
computational time.

5. Experimental Results

We now apply different coreset construction algorithms presented in this paper to
a variety of applications, in order to boost their running time, or reduce their memory
storage. We note that a complete open source code is provided [55].

Software/Hardware. The algorithms were implemented in Python 3.6 [56] using
“Numpy” [57]. Tests were conducted on a PC with Intel i9-7960X CPU @2.80 GHz x 32 and
128 Gb RAM.

We compare the following algorithms: (To simply distinguish between our algo-
rithms and the competing ones in the graphs, observe that the labels of our algorithms
starts with the prefix “Our-”, while the competing methods do not.)

(i) Uniform: Uniform random sample of the input Q, which requires sublinear time to
compute.

(ii) Sensitivity-sum: Random sampling based on the “sensitivity” for the vector sum-
marization problem [58]. Sensitivity sampling is a widely known technique [19],
which guarantees that a subsample of sufficient size approximates the input well. The

sensitivity of a point q ∈ Q is 1
n + ‖q‖2

∑q′∈Q‖q′‖
2 . This algorithm takes O(nd) time.

(ii) ICML17: The vector summarization coreset construction algorithm from [29] (see
Algorithm 2 there), which runs in O(nd/ε) time.

(iv) Our-rand-sum: Our coreset construction from Lemma 5, which requires

O
(

d log ( 1
δ )

2
+

d log ( 1
δ )

ε

)
time.

(v) Our-slow-sum: Our coreset construction from Corollary 2, which requires O(nd/ε)
time.

(vi) Our-fast-sum: Our coreset construction from Corollary 4, which requires O(nd +

d log(n)2/ε2) time.
(vii) Sensitivity-svd: Similar to Sensitivity-sum above, however, now the sensitivity

is computed by projecting the rows of the input matrix A on the optimal k-subspace
(or an approximation of it) that minimizes its sum of squared distances to the rows
of A, and then computing the sensitivity of each row i in the projected matrix A′ as
‖ui‖2, where ui is the ith row the matrix U from the SVD of A′ = UDVT ; see [37].
This takes O(ndk) time.

(viii) NIPS16: The coreset construction algorithm from [35] (see Algorithm 2 there) which
requires O(nd2k2/ε2) time.

(ix) Our-slow-svd: Corollary 7 offers a coreset construction for SVD using Algorithm 5,
which utilizes Algorithm 2. However, Algorithm 2 either utilizes Algorithm 1 (see
Theorem 2) or Algorithm 3 (see Theorem 4). Our-slow-svd applies the former option,
which requires O(nd2k2/ε2)) time.

(x) Our-fast-svd: Corollary 7 offers a coreset construction for SVD using Algorithm 5,
which utilizes Algorithm 2. However, Algorithm 2 either utilizes Algorithm 1 (see
Theorem 2) or Algorithm 3 (see Theorem 4). Our-fast-svd uses the latter option,
which requires O(nd2 + d2 log(n)2k4/ε4) time.

Datasets. We used the following datasets from the UCI ML library [59]:

(i) New York City Taxi Data [60]. The data covers the taxi operations at New York City.
We used the data describing n = 14.7M trip fares at the year of 2013. We used the
d = 6 numerical features (real numbers).



Sensors 2021, 21, 6689 13 of 31

(ii) US Census Data (1990) [61]. The dataset contains n = 2.4M entries. We used the
entire d = 68 real-valued attributes of the dataset.

(iii) Buzz in social media Data Set [62]. It contains n = 0.5M examples of buzz events
from two different social networks: Twitter, and Tom’s Hardware. We used the entire
d = 77 real-valued attributes.

(iv) Gas Sensors for Home Activity Monitoring Data Set [63]. This dataset has n = 919, 438
recordings of a gas sensor array composed of 8 MOX gas sensors, and a temperature
and humidity sensor. We used the last d = 10 real-valued attributes of the dataset.

Discussion regarding the chosen datasets. The Buzz in social media data set is
widely used in the context of Principal Component Regression (or, PCR in short), that is
used for estimating the unknown regression coefficients in a standard linear regression
model. The goal of PCR in the context of this dataset, is to predict popularity of a certain
topic on Twitter over a period. It is known that the solution of the PCR problem can be
approximated using the known SVD decomposition problem. Our techniques enable us to
benefit from the coreset advantages, e.g., to boost the PCR approximated solution (PCA)
while using low memory, and supporting the streaming model by maintaining a coreset
for the data (tweets) seen so far; each time a new point (tweet) is received, it is added to
current stored coreset in memory. Once the stored coreset is large enough, our compression
(coreset construction algorithm) is applied. This procedure is repeated until the stream of
points is empty.

The New York City taxi data contains information about the locations of passengers
as well as the locations of their destinations. Thus, the goal is to find a location which is
close to the most wanted destinations. This problem can be formulated as a facility location
problem, which can be reduced to an instance of the 1-mean problem. Hence, since our
methods admit faster solution as well as provable approximation for the facility location
problem, we can leverage our coreset to speed up the computations using this dataset.

Finally, regarding the remaining datasets, PCA has been widely used either for low-
dimensional embedding or, e.g., to compute the arithmetic mean. By using our methods,
we can boost the PCA while admitting an approximated solution.

The experiments.

(i) Vector summarization: The goal is to approximate the mean of a huge input set,
using only a small weighted subset of the input. The empirical approximation error is
defined as ‖µ− µs‖2, where µ is the mean of the full data and µs is the mean of the
weighted subset computed via each compared algorithm; see Figures 2 and 3.
In Figure 2, we report the empirical approximation error ‖µ− µs‖2 as a function of
the subset (coreset) size, for each of the datasets (i)–(ii), while in Figure 3 we report
the overall computational time for computing the subset (coreset) and for solving the
1-mean problem on the coreset, as a function of the subset size.

(ii) k-SVD: The goal is to compute the optimal k-dimensional non-affine subspaces of
a given input set. We can either compute the optimal subspace using the original
(full) input set, or using a weighted subset (coreset) of the input. We denote by S∗

and S′ the optimal subspace when computed either using the full data or using the
subset at hand, respectively. The empirical approximation error is defined as the ratio
|(c∗ − c′)/c∗|, where c∗ and c′ are the sum of squared distances between the points
of original input set to S∗ and S′, respectively; see Figures 4–6. Intuitively, this ratio
represents the relative SSD error of recovering an optimal k-dimensional non-affine
subspace on the compression, rather than using the full data.
In Figure 4 we report the empirical error |(c∗ − c′)/c∗| as a function of the coreset
size. In Figure 5 we report the overall computational time in took to compute the
coreset and to recover the optimal subspace using the coreset, as a function of the
coreset size. In both figures we have three subfigures, each one for a different chosen
value of k (the dimension of the subspace). Finally, in Figure 6 the x axis is the size
of the dataset (which we compress to a subset of size 150), while the y-axis is the
approximation error on the left hand side graph, and on the right hand side it is the
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overall computational time it took to compute the coreset and to recover the optimal
subspace using the coreset.
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(b) Dataset (ii).
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(c) Dataset (iv).

Figure 2. Experimental results for vector summarization. The x axis is the size of the subset (coreset), while the y axis is the
approximation error ‖µ− µs‖2. The difference between the two graphs is the chosen dataset.
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(a) Dataset (i).
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(b) Dataset (ii).
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Figure 3. Experimental results for vector summarization. The x axis is the size of the subset (coreset), while the y axis is
the overall time took to compute the coreset and to solve the problem on it. The difference between the two graphs is the
chosen dataset.

100 200 300 400 500
Sample size

20

22

24

26

Ap
pr

ox
im

at
io

n 
er

ro
r

Uniform
Sensitivity-SVD
NIPS16
Our-slow-SVD
Our-fast-SVD

(a) k = 40, Dataset (iii).
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(b) k = 50, Dataset (iii).
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(c) k = 60, Dataset (iii).

Figure 4. Experimental results for k-SVD, we used Dataset (iii). The x axis is the size of the subset (coreset), while the y axis
is the approximation error ε. The difference between the 3 graphs is the chosen low dimension k.
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(a) k = 40, Dataset (iii).
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(b) k = 50, Dataset (iii).
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(c) k = 60, Dataset (iii).

Figure 5. Experimental results for k-SVD, we used Dataset (iii). The x axis is the size of the subset (coreset), while the y axis
is the overall time took to compute the coreset and to solve the problem on it. The difference between the 3 graphs is the
chosen low dimension k.
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(b) k = 40, Dataset (iii).

Figure 6. Experimental results for k-SVD, we used Dataset (iii). The x axis is the size of the dataset which we compress to
subsample of size 150, while the y-axis is the approximation error in the left hand side graph, and in the right hand side it is
the overall time took to compute the coreset and to solve the problem on it.

5.1. Discussion

Vector summarization experiment: As predicted by the theory and as demonstrated
in Figures 2 and 3, our fast and deterministic algorithm Our-fast-sum (the red line in the
figures) achieves either the same or smaller approximation errors in most cases compared
to the deterministic alternatives Our-slow-sum (orange line) and ICML17 (green line), while
being up to ×10 times faster. Hence, when we seek a fast time deterministic solution for
computing a coreset for the vector summarization problem, our algorithm Our-fast-sum
is the favorable choice.

Compared to the randomized alternatives, Our-fast-sum is obviously slower, but
achieves an error more than 3 orders of magnitude smaller. However, our fast and random-
ized algorithm Our-rand-sum (brown line) constantly achieves better results compared
to the other randomized alternatives; It yields approximation error up to ×50 smaller,
while maintaining the same computational time. This is demonstrated on both datasets.
Hence, our compression can be used to speed up tasks, e.g., computing the PCA or PCR, as
described above.

k-SVD experiment: Here, in Figures 4–6 we witness a similar phenomena, where our
fast and deterministic algorithm Our-fast-svd achieves the same or smaller approximation
errors compared to the deterministic alternatives Our-slow-svd and NIPS16, respectively,
while being up to×4 times faster. Compared to the randomized alternatives, Our-fast-svd
is slower as predicted, but achieves an error up to 2 orders of magnitude smaller. This is
demonstrated for increasing sample sizes (as in Figures 4 and 5), for increasing dataset size
(as in Figure 6), and for various values of k (see Figures 4–6).
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5.2. Conclusions and Future Work

This paper generalizes the definition of ε-sample and coreset from the worst case
error over every query to average `2 error. We then showed a reduction from the problem
of computing such coresets to the vector summarization coreset construction problem.
Here, we suggest deterministic and randomized algorithms for computing such coresets,
the deterministic version takes O(min

{
nd/ε, nd + d log(n)2/ε2}), and the randomized

O(d log ( 1
δ )

2
+

d log ( 1
δ )

ε ). Finally, we showed how to leverage an (ε2)-coreset for the vector
summarization problem in order to compute an ε-coreset for the 1-mean problem, and
similarly for k-SVD and k-PCA problem via computing an (ε/k)2 vector summarization
coreset after some reprocessing on the data.

Open problems include generalizing these results for other types of norms, or other
functions such as M-estimators that are robust to outliers. We hope that the source code
and the promising experimental results would encourage also practitioners to use these
new types of approximations. Normalization via this new sensitivity type reduced the
bounds on the number of iterations of the Frank–Wolfe algorithm by orders of magnitude.
We believe that it can be used more generally for provably faster convex optimization,
independently of coresets or ε-samples. We leave this for future research.
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Appendix A. Problem Reduction for Vector Summarization ε-Coresets

First, we define a normalized weighted set, which is simply a set which satisfies three
properties: weights sum to one, zero mean, and unit variance.

Definition A1 (Normalized weighted set). A normalized weighted set is a weighted set (P, w)
where P = {p1, · · · , pn} ⊆ Rd and w = (w1, · · · , wn)T ∈ Rn satisfy the following properties:

(a) Weights sum to one: ∑n
i=1 wi = 1,

(b) The weighted sum is the origin: ∑n
i=1 wi pi = 0, and

(c) Unit variance: ∑n
i=1 wi‖pi‖2 = 1.

Appendix A.1. Reduction to Normalized Weighted Set

In this section, we argue that in order to compute a vector summarization ε-coreset for
an input weighted set (Q, m), it suffices to compute a vector summarization ε-coreset for its
corresponding normalized (and much simpler) weighted set (P, w) as in Definition A1; see
Corollary A1. However, first, in Observation A1, we show how to compute a corresponding
normalized weighted set (P, w) for any input weighted set (Q, m).

Observation A1. Let Q = {q1, · · · , qn} be a set of n ≥ 2 points in Rd, m ∈ (0, ∞)n, w ∈ (0, 1]n

be a distribution vector such that w = m
‖m‖1

, µ = ∑n
i=1 wiqi and σ =

√
∑n

i=1 wi‖qi − µ‖2. Let

P = {p1, · · · , pn} be a set of n points in Rd, such that for every j ∈ [n] we have pj =
qj−µ

σ . Then,
(P, w) is the corresponding normalized weighted set of (Q, m), i.e., (i)–(iii) hold as follows:
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(i) ∑n
i=1 wi = 1,

(ii) ∑n
i=1 wi pi = 0, and

(iii) ∑n
i=1 wi‖pi‖2 = 1.

Proof.
n

∑
i=1

wi = 1, immediately holds by the definition of w.

n

∑
i=1

wi pi =
n

∑
i=1

wi ·
qi − µ

σ
=

1
σ

(
n

∑
i=1

wiqi −
n

∑
i=1

wiµ

)

=
1
σ

(
µ−

n

∑
i=1

wiµ

)
=

1
σ

µ

(
1−

n

∑
i=1

wi

)
= 0,

where the first equality holds by the definition of pi, the third holds by the definition of µ,
and the last is since w is a distribution vector.

n

∑
i=1

wi‖pi‖2 =
n

∑
i=1

wi

∥∥∥∥ qi − µ

σ

∥∥∥∥2
=

1
σ2

n

∑
i=1

wi‖qi − µ‖2

=
∑n

i=1 wi‖qi − µ‖2

∑n
i=1 wi‖qi − µ‖2 = 1,

where the first and third equality hold by the definition of pi and σ, respectively.

Corollary A1. Let (Q, m) be a weighted set, and let (P, w) be its corresponding normalized
weighted set as computed in Observation A1. Let (P, u) be a vector summarization ε-coreset for
(P, w) and let u′ = ‖m‖1 · u. Then (Q, u′) is a vector summarization ε-coreset for (Q, m).

Proof. Put x ∈ Rd and let y = x−µ
σ . Now, for every j ∈ [n], we have that∥∥qj − x
∥∥2

=
∥∥σpj + µ− (σy + µ)

∥∥2

=
∥∥σpj − σy

∥∥2

= σ2||pj − y||2,

(A1)

where the first equality is by the definition of y and pj.
Let (P, u) be a vector summarization ε-coreset for (P, w). We prove that (Q, u′) is a

vector summarization ε-coreset for (Q, m). We observe the following∥∥∥∥∥ n

∑
i=1

mi
‖m‖1

qi −
n

∑
i=1

u′i
‖u′‖1

qi

∥∥∥∥∥
2

=

∥∥∥∥∥ n

∑
i=1

wiqi −
n

∑
i=1

ui
‖u‖1

qi

∥∥∥∥∥
2

=

∥∥∥∥∥ n

∑
i=1

(wi −
ui
‖u‖1

)(piσ + µ)

∥∥∥∥∥
2

=

∥∥∥∥∥ n

∑
i=1

(wi −
ui
‖u‖1

)piσ + µ
n

∑
i=1

(wi −
ui
‖u‖1

)

∥∥∥∥∥
2

=

∥∥∥∥∥ n

∑
i=1

(wi −
ui
‖u‖1

)(piσ)

∥∥∥∥∥
2

≤ εσ2

(A2)

where the first equality holds since w = m
‖m‖1

and u′
‖u′‖1

= mu
m‖u‖1

= ui
‖u‖1

, the second holds
by (A1), and the last inequality holds since (P, u) is a vector summarization ε-coreset for
(P, w).
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Appendix A.2. Vector Summarization Problem Reduction

Given a normalized weighted set (P, w) as in Definition A1, in the following lemma
we prove that a weighted set (P, u) is a vector summarization ε-coreset for the normalized
weighted set (P, w) if and only if the squared `2 norm of the weighted mean of (P, u) is
smaller than ε.

Lemma A2. Let (P, w) be a normalized weighted set of n points in Rd, ε ∈ (0, 1), and u ∈ Rn

be a weight vector. Let p = ∑n
i=1

wi
‖w‖1

pi, s = ∑n
i=1

ui
‖u‖1

pi, and σ2 = ‖pi − p‖2. Then, (P, u) is a

vector summarization ε-coreset for (P, w), i.e., ‖p− s‖2 ≤ ε ∑n
i=1 wiσ

2 if and only if ‖s‖2 ≤ ε.

Proof. The proof holds since (P, w) is a normalized wighted set, i.e., p = 0, and σ2 = 1.

Appendix B. Frank–Wolfe Theorem

Here, for completeness we state the Frank–Wolfe Theorem [48]. This theorem will be
used in the proof of Theorem 1 that shows how to compute a variant of vector summariza-
tion coreset for points inside the unit ball.

To do so, we consider the measure C f defined in [48]; see equality (9) in Section 2.2.
For a simplex S and concave function f , the quantity C f is defined as

C f := sup
1
α2 ( f (x) + (y− x)T∇ f (x)− f (y)), (A3)

where the supremum is over every x and z in S, and over every α so that y = x + α(z− x)
is also in S. The set of such α includes [0, 1], but α can also be negative.

Theorem A3 (Theorem 2.2 from [48]). For simplex S and concave function f , Algorithm 1
(Algorithm 1.1 from [48]) finds a point x(k) on a k-dimensional face of S such that

f (x∗)− f (x(k))
4C f

≤ 1
k + 3

,

for k > 0, where f (x∗) is the optimal value of f .

Appendix C. Proof of Theorem 1

Proof of Theorem 1. Let C f be defined for f and S as in (A3), and let f (x∗) be the maxi-
mum value of f in S. Based on Theorem A3 we have:

1. ũ is a point on a
⌈ 8

ε

⌉
-dimensional face of S, i.e., ‖ũ‖0 ≤

⌈ 8
ε

⌉
, u ∈ S ⊂ [0, 1]n and

∑n
i=1 ũi = 1. Hence, claim (i) of this theorem is satisfied.

2.
f (x∗)− f (x(k))

4C f
≤ 1

k+3 , for every k ∈
{

0, · · · ,
⌈ 8

ε

⌉}
.

Since f (x) ≤ 0 for every x ∈ S, we have that,

f (x∗) = f (w) = −
∥∥∥∥∥ n

∑
i=1

(wi − wi)pi

∥∥∥∥∥
2

= 0.
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Define A to be the matrix of d× n such that the i-th column of A is the i-th point in P,
and let µ = ∑n

i=1 wi pi. We get that

f (x) = −
∥∥∥∥∥ n

∑
i=1

(wi − xi)pi

∥∥∥∥∥
2

= −
∥∥∥∥∥µ−

n

∑
i=1

xi pi

∥∥∥∥∥
2

= −‖µ‖2 + 2µT(
n

∑
i=1

xi pi)−
∥∥∥∥∥ n

∑
i=1

xi pi

∥∥∥∥∥
2

= −‖µ‖2 + 2µT Ax− ‖Ax‖2 = −‖µ‖2 + 2xT ATµ− xT AT Ax,

(A4)

where the second equality holds by the definition of µ, and the fourth equality holds by
since ∑n

i=1 xi pi = Ax for every x ∈ Rn.
At Section 2.2. in [48], it was shown that for any quadratic function f ′ : Rn → R that

is defined as
f ′(x) = a + xTb + xT Mx, (A5)

where M is a negative semidefinite n× n matrix, b ∈ Rn is a vector, and a ∈ R, we have that
C f ′ ≤ diam(A′S)2, where A′ ∈ Rd×n is a matrix that satisfies M = A′T A′; see equality (12)
at [48].

Hence, plugging a = −‖µ‖2, b = 2ATµ, and M = AT A in (A5) yields that for the
function f we have C f ≤ diam(AS)2, and

diam(AS)2 = sup
a,b∈AS

‖a− b‖2
2 = sup

x,y∈S
‖Ax− Ay‖2

2.

Observe that x and y are distribution vectors, thus

sup
x,y∈S
‖Ax− Ay‖2

2 = sup
i,j

∥∥pi − pj
∥∥2

2.

Since ‖pi‖ ≤ 1 for each i ∈ [n], we have that

sup
i,j

∥∥pi − pj
∥∥2

2 ≤ 2.

By substituting C f ≤ 2, k = 8/ε, f (x(k)) = f (ũ) = −‖∑n
i=1(wi − ũi)pi‖2, and f (x∗) =

0 in (2) we get that,

‖∑n
i=1(wi − ũi)pi‖2

8
≤ 1

8/ε + 3
. (A6)

Multiplying both sides of the inequality by 8 and rearranging prove Theorem (ii) as∥∥∥∥∥ n

∑
i=1

(wi − ũi)pi

∥∥∥∥∥
2

≤ 8
8/ε + 3

≤ 8
8/ε

= ε. (A7)

Running time: We have K =
⌈ 8

ε

⌉
iterations in Algorithm 1, where each iteration

takes O(nd) time, since the gradient of f based on the vector x = (x1, · · · , xn)T ∈ S is

−2AT
n
∑

i=1
(wi − xi)pi. This term is the multiplication between an a matrix in Rn×d and

a vector in Rd, which takes O(nd) time. Hence, the running time of the Algorithm is
O( nd

ε ).
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Appendix D. Proof of Theorem 2

Proof of Theorem 2. Let (P, w) be the normalized weighted set that is computed at
Lines 3–5 of Algorithm 2 where P = {p1, · · · , pn}, and let ũ = u

‖m‖1
. We show that

(P, ũ) is a vector summarization ε-coreset for (P, w), then by Corrolary A1 we get that
(Q, u) is a vector summarization ε-coreset for (Q, m). For every i ∈ [n] let w′i ,u

′
i,ui and p′i

be defined as in Algorithm 2, and let ε′ = ε
16 . First, by the definition of u′ we have that

∥∥u′
∥∥

0 ≤
8
ε′

=
128

ε
, (A8)

and since ui = ‖m‖1 ·
2u′i

‖(pT
i |1)‖

2 for every i ∈ [n], we get that

‖u‖0 ≤
128

ε
. (A9)

We also have by Theorem 1 that

4ε′ ≥ 4

∥∥∥∥∥ n

∑
i=1

(w′i − u′i)p′
∥∥∥∥∥

2

(A10)

= 4

∥∥∥∥∥∥
n

∑
i=1

wi
∥∥(pT

i | 1)
∥∥2 − ui

‖m‖1

∥∥(pT
i | 1)

∥∥2

2
·

(pT
i | 1)T∥∥(pT
i | 1)

∥∥2

∥∥∥∥∥∥
2

(A11)

=

∥∥∥∥∥ n

∑
i=1

(wi − ũi) · (pT
i | 1)T

∥∥∥∥∥
2

=

∥∥∥∥∥
( n

∑
i=1

(wi − ũi) · pT
i |

n

∑
i=1

(wi − ũi)

)T
∥∥∥∥∥

2

(A12)

≥
∥∥∥∥∥ n

∑
i=1

(wi − ũi) · pi

∥∥∥∥∥
2

, (A13)

where the first derivative is by the definition of u′ in Algorithm 2 at line 11, the second
holds by the definition of p′, w′ and u at Lines 8, 9, and 12 of the algorithm, the third holds
since ũ = u

‖m‖1
, and the last inequality holds since ‖(x | y)‖2 ≥ x2 for every x ∈ Rd and

y ∈ R. Combining the fact that ∑n
i=1 wi pi = 0 with (A13) yields that

4ε′ ≥
∥∥∥∥∥ n

∑
i=1

ũi pi

∥∥∥∥∥
2

. (A14)

By (A12) and since w is a distribution vector we also have that

4ε′ ≥
∣∣∣∣ n

∑
i=1

(wi − ũi)

∣∣∣∣2 =

∣∣∣∣∣1− n

∑
i=1

ũi

∣∣∣∣∣
2

,

which implies

2
√

ε′ ≥
∣∣∣∣∣1− n

∑
i=1

ũi

∣∣∣∣∣. (A15)
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Combining (A15) and (A14) yields that:∥∥∥∥∑n
i=1 ũi pi

∑n
i=1 ũi

∥∥∥∥2

≤ 4ε′

(1− 2
√

ε′)2
≤ 16ε′ = ε, (A16)

where that second inequality holds since ε′ = ε/16 ≤ 1/16.
By Lemma A2, Corollary A1, and (A16), Theorem 2 holds as∥∥∥∥∥ n

∑
i=1

ui
‖u‖1

qi −
n

∑
i=1

mi
‖m‖1

qi

∥∥∥∥∥
2

2

= ‖µu − µm‖2
2 ≤ εσ2

m.

Appendix E. Proof of Theorem 3

Proof of Theorem 3. We use the notation and variable names as defined in Algorithm 3.
First, we assume that w(p) > 0 for every p ∈ P, otherwise we remove all the points

in P which have zero weight, since they do not contribute to the weighted sum. Identify
the input set P = {p1, · · · , pn} and the set C that is computed at Line 13 of Algorithm 3
as C =

{
c1, · · · , c|C|

}
. We will first prove that the weighted set (C, u) that is computed in

Lines 13–15 at an arbitrary iteration satisfies:

(a) C ⊆ P,
(b) ∑p∈C u(p) =1,

(c)
∥∥∥∑p∈P w(p) · p−∑p∈C u(p) · p

∥∥∥2
≤ ε

log (n) , and

(d) |C| ≤
⌈
|P|
2

⌉
.

Let (µ̃, ũ) be the vector summarization ε
log(n) -coreset of the weighted set

({µ1, · · · , µk}, w′) that is computed during the execution of the current iteration at Line 12.
Hence, by Theorem 1 ∥∥∥∥∥ ∑

µi∈µ̃

ũ(µi)µi −
k

∑
i=1

w′(µi) · µi

∥∥∥∥∥
2

≤ ε

log(n)
,

µ̃ ⊆ {µ1, · · · , µk}, and

|µ̃| ≤ 8 · log(n)
ε

.

(A17)

Proof of (a). Property (i) is satisfied by Line 13 as we have that C ⊆ P.
Proof of (b). Property (ii) is also satisfied since

∑
p∈C

u(p) = ∑
µi∈µ̃

∑
p∈Pi

ũ(µi)w(p)
w′(µi)

= ∑
µi∈µ̃

ũ(µi)

w′(µi)
∑

p∈Pi

w(p)

= ∑
µi∈µ̃

ũ(µi)

∑p∈Pi
w(p) ∑

p∈Pi

w(p) = ∑
µi∈µ̃

ũ(µi) = 1,
(A18)

where the first equality holds by the definition of C at Line 13 and w(p) for every p ∈ C
at Line 15, and the third equality holds by the definition of u′(µi) for every µi ∈ µ̃ as in
Line 10.
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Proof of (c). By the definition of w′ and µi, for every i ∈ {1, · · · , k}

k

∑
i=1

w′(µi) · µi =
k

∑
i=1

w′(µi) ·
(

1
w′(µi)

· ∑
p∈Pi

w(p) · p
)

=
k

∑
i=1

∑
p∈Pi

w(p)p = ∑
p∈P

w(p)p.

(A19)

The weighted sum of (C, u) is

∑
p∈C

u(p)p = ∑
µi∈µ̃

∑
p∈Pi

ũ(µi)w(p)
w′(µi)

· p

= ∑
µi∈µ̃

ũ(µi) ∑
p∈Pi

w(p)
w′(µi)

p = ∑
µi∈µ̃

ũ(µi)µi,
(A20)

where the first equality holds by the definitions of C and w, and the third equality holds by
the definition of µi at Line 9. Plugging (A19) and (A20) in (A17) satisfies (iii) as∥∥∥∥∥∑

p∈P
w(p) · p− ∑

p∈C
u(p) · p

∥∥∥∥∥
2

≤ ε

log (n)
. (A21)

Proof of (d). By (A17) we have that C contains at most log(n)
ε clusters from P and at

most |C| ≤ log(n)
ε ·

⌈ n
k
⌉

points, and by plugging k =
2 log(n)

ε we obtain that |C| ≤
⌈
|P|
2

⌉
as

required.
We now prove (i)–(iii) from Theorem 3.
Proof of Theorem 3 (i). The first condition |C| ≤ 8/ε in (i) is satisfied since at each

iteration we reduce the data size by a factor of 2, and we keep reducing until we reach
the stopping condition, which is O(

log(n)
ε ) by Theorem 1 (since we require a ε

log(n) error

when we use Theorem 1, i.e., we need coreset of size O(
log(n)

ε )). Then, at Line 5 when the if
condition is satisfied (it should be, as explained) we finally use Theorem 1 again to obtain a
coreset of size d8/εe with ε-error on the small data (that was of size O(log(n)

ε ).
The second condition in (i) is satisfies since at each iteration we either return such a

pair (C, u) at Line 18, we get by (b) that the sum of weight is always equal to 1.
Proof of Theorem 3 (ii). By (d) we also get that we have at most log(n) recursive

calls. Hence, by induction on (2) we conclude that last computed set (C, u) at Line 18
satisfies (ii) ∥∥∥∥∥∑

p∈P
w(p) · p− ∑

p∈C
w(p) · p

∥∥∥∥∥
2

≤ log(n) · ε

log (n)
= ε.

At Line we return an ε coreset for the input weighted set (P, w) that have reached the

size of ( log(n)
ε ). Hence, the output of a the call satisfies

∥∥∥∑p∈P w(p) · p−∑p∈C w(p) · p
∥∥∥2
≤

2ε.
Proof of Theorem 3 (iii). As explained before, there are at most log(n) recursive calls

before the stopping condition at Line 4 is met. At each iteration we compute the set of
means µ̃, and compute a vector summarization

(
ε

log n

)
-coreset for them. Hence, the time

complexity of each iteration is n′d + T(k, d, ε
log(n) ) where n′ is the number of points in the

current iteration, and T(k, d, ε
log(n) ) is the running time of Algorithm 1 on k points in Rd to
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obtain a ε
log(n) -coreset. Thus, the total running of time the algorithm until the "If" condition

at Line 4 is satisfied is

log(n)

∑
i=1

(
nd

2i−1 + T(k, d,
ε

log(n)
)

)

≤ 2nd + log(n) · T(k, d,
ε

log(n)
) ∈ O

(
nd +

kd
ε

log(n)

)
.

Plugging k =
2 log(n)

ε and observing the the last compression at Line 5 is done on a data

of size O(
log(n)

ε ) proves (iii) as the running time of Algorithm 3 is O
(

nd +
log(n)2d

ε2

)
.

Appendix F. Proof of Corollary 4

Proof. The corollary immediately holds by using Algorithm 2 with a small change. We
change Line 11 in Algorithm 2 to use Algorithm 3 and Theorem 3, instead of Algorithm 1
and Theorem 1.

Appendix G. Proof of Lemma 5

We first prove the following lemma:

Lemma A4. Let P be a set of n points in Rd, µ = 1
n ∑p∈P p, and σ2 = 1

n ∑p∈P‖p− µ‖2. Let
ε, δ ∈ (0, 1), and let S be a sample of m = 1

εδ points chosen i.i.d uniformly at random from P. Then,

with probability at least 1− δ we have that
∥∥∥ 1

m ∑p∈S p− µ
∥∥∥2
≤ εσ2.

Proof. For any random variable X, we denote by E(X) and var(X) the expectation and
variance of the random variable X, respectively. Let xi denote the random variable that is
the ith sample for every i ∈ [m]. Since the samples are drawn i.i.d, we have

var

(
1
m ∑

p∈S
p

)
=

m

∑
i=1

var
( xi

m

)
= m · var

( x1

m

)
= m

(
σ2

m2

)
=

σ2

m
= εδσ2.

(A22)

For any random variable X and error parameter ε′ ∈ (0, 1), the generalize Chebyshev’s
inequality [64] reads that

Pr(‖X− E(X)‖ ≥ ε′) ≤ var(X)

(ε′)2 . (A23)

Substituting X = 1
m ∑p∈S p, E(X) = µ and ε′ =

√
εσ in (A23) yields that

Pr

(∥∥∥∥∥ 1
m ∑

p∈S
p− µ

∥∥∥∥∥ ≥ √εσ

)
≤

var( 1
m ∑p∈S p)
σ2ε

. (A24)

Combining (A22) with (A24) proves the lemma as:

Pr

∥∥∥∥∥ 1
m ∑

p∈S
p− µ

∥∥∥∥∥
2

≥ εσ2

 ≤ εδσ2

σ2ε
= δ. (A25)

Now we prove Lemma 5
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Proof. Let {S1, · · · , Sk} be a set of k i.i.d sampled subsets each of size 4
ε as defined at

Line 5 of Algorithm 4, and let si be the mean of the ith subset Si as define at Line 6. Let

ŝ := arg min
x∈Rd

k

∑
i=1
‖si − x‖2 be the geometric median of the set of means {s1, · · · , sk}.

Using Corollary 4.1. from [65] we obtain that

Pr

(
‖ŝ− µ‖ ≥ 11

√
σ2 log(1.4/δ)

4k
ε

)
≤ δ,

from the above we have that

Pr
(
‖ŝ− µ‖2 ≥ 121

εσ2 log(1.4/δ)

4k

)
≤ δ. (A26)

Note that

Pr
(
‖ŝ− µ‖2 ≥ 121

εσ2 log(1.4/δ)

4k

)
(A27)

= Pr

‖ŝ− µ‖2 ≥ 30.25 · εσ2 log(1.4/δ)

b3.5 log
(

1
δ

)
c+ 1

 (A28)

≥ Pr
(
‖ŝ− µ‖2 ≥ 31 · εσ2

)
, (A29)

where (A28) holds by substituting k = b3.5 log
(

1
δ

)
c + 1 as in Line 3 of Algorithm 4,

and (A29) holds since log(1.4/δ)

b3.5 log ( 1
δ )c+1

< 1 for every δ ≤ 0.9 as we assumed. Combining (A29)

with (A26) yields,

Pr
(
‖ŝ− µ‖2 ≥ 31 · εσ2

)
≤ δ. (A30)

For every i ∈ [k], by substituting S = Si, which is of size 4
ε , in Lemma A4, we obtain

that
Pr(‖si − µ‖2 ≥ εσ2) ≤ 1/4.

Hence, with probability at least 1− (1/4)k there is at least one set Sj such that∥∥sj − µ
∥∥2 ≤ εσ2.

By the following inequalities:

(1/4)k = (1/4)b3.5 log ( 1
δ )c+1 ≤ (1/4)log(1/δ) = 4log(δ) ≤ 2log(δ) = δ

we get that with probability at least 1− δ there is a set Sj such that∥∥sj − µ
∥∥2 ≤ εσ2. (A31)

Combining (A31) with (A30) yields that with probability at least (1− δ)2 the set Sj
satisfies that ∥∥sj − ŝ

∥∥2 ≤ 32εσ2. (A32)
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Let f : Rd → [0, ∞) be a function such that f (x) = ∑k
i=1‖si − x‖2 for every x ∈ Rd.

Therefore, by the definitions of f and ŝ,

ŝ := arg min
x∈Rd

k

∑
i=1
‖si − x‖2 = arg min

x∈Rd
f (x).

Observe that f is a convex function since it is a sum over convex functions. By the
convexity of f , we get that for every pair of points p, q ∈ P it holds that:

if f (q) ≤ f (p) then ‖q− ŝ‖ ≤ ‖p− ŝ‖. (A33)

Therefore, by the definition of i∗ at in Algorithm 4 we get that

i∗ ∈ arg min
i∈[k]

‖si − ŝ‖. (A34)

Now by combining (A32) with (A34) we have that:

Pr
(
‖si∗ − ŝ‖2 ≤ 32εσ2

)
≥ (1− δ)2. (A35)

Combining (A35) with (A30) and noticing the following inequality

(1− δ)3 = (1− 2δ + δ2)(1− δ) ≥ (1− 2δ)(1− δ)

= 1− δ− 2δ + 2δ2 ≥ 1− 3δ,

satisfies Lemma 5 as,
Pr
(
‖si∗ − µ‖2 ≤ 33εσ2

)
≤ 1− 3δ.

Running time. It takes O
(

d log ( 1
δ )

ε

)
to compute the set of means at Line 6, and O

(
d log ( 1

δ )
2
)

time to compute Line 7 by simple exhaustive search over all the means. Hence, the total

running time is O
(

d
(

log ( 1
δ )

2
+

log ( 1
δ )

ε

))
.

Appendix H. Proof of Theorem 6

We first show a reduction to a normalized weighted set as follows:

Corollary A5. Let (Q, m) be a weighted set, and let (P, w) be its corresponding normalized
weighted set as computed in Observation A1. Let (P, u) be a 1-mean ε-coreset for (P, w) and let
u′ = ‖m‖1 · u. Then (Q, u′) is a 1-mean ε-coreset for (Q, m).

Proof. Let (P, u) be a 1-mean ε-coreset for (P, w). We prove that (Q, u′) is a 1-mean
ε-coreset for (Q, m). Observe that∣∣∣∣∣ n

∑
i=1

(mi − u′i)‖qi − x‖2

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
i=1

(mi − u′i)σ
2‖pi − y‖2

∣∣∣∣∣ (A36)

=

∣∣∣∣∣ n

∑
i=1
‖m‖1σ2(wi − ui)‖pi − y‖2

∣∣∣∣∣, (A37)
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where the first equality holds by (A1), and the second holds by the definition of w and u′.
Since (P, u) is a 1-mean ε-coreset for (P, w)∣∣∣∣∣ n

∑
i=1
‖m‖1σ2(wi − ui)‖pi − y‖2

∣∣∣∣∣ (A38)

≤ ε
n

∑
i=1
‖m‖1σ2wi‖pi − y‖2

= ε
n

∑
i=1

mi‖qi − x‖2,

where the equality holds by (A1) and since w = m
‖m‖1

. The proof concludes by combin-

ing (A36) and (A38) as
∣∣∣∑n

i=1(mi − u′i)‖qi − x‖2
∣∣∣ ≤ ε ∑n

i=1 mi‖qi − x‖2.

1-Mean Problem Reduction

Given a normalized weighted set (P, w) as in Definition A1, in the following lemma
we prove that a weighted set (P, u) is a 1-mean ε-coreset for (P, w) if some three properties
related to the mean, variance, and weights of (P, u) hold.

Lemma A6. Let (P, w) be a normalized weighted set of n points in Rd, ε ∈ (0, 1), and u ∈ Rn

such that,

1. ‖∑n
i=1 ui pi‖ ≤ ε,

2. |1−∑n
i=1 ui| ≤ ε, and

3.
∣∣∣1−∑n

i=1 ui · ‖pi‖2
∣∣∣ ≤ ε.

Then, (P, u) is a 1-mean ε-coreset for (P, w), i.e., for every x ∈ Rd we have that∣∣∣∣ n

∑
i=1

(wi − ui)‖pi − x‖2
∣∣∣∣ ≤ 2ε

n

∑
i=1

wi‖pi − x‖2. (A39)

Proof. First we have that,

n

∑
i=1

wi‖pi − x‖2 =
n

∑
i=1

wi‖pi‖2 − 2xT
n

∑
i=1

wi pi + ‖x‖2
n

∑
i=1

wi (A40)

= 1 + ‖x‖2, (A41)

where the last equality holds by the attributes (a)–(c) of the normalized weighted set (P, w).
By rearranging the left hand side of (A39) we get,∣∣∣∣∣ n

∑
i=1

(wi − ui)‖pi − x‖2

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
i=1

(wi − ui)(‖pi‖2 − 2pT
i x + ‖x‖2)

∣∣∣∣∣ (A42)

≤
∣∣∣∣∣ n

∑
i=1

(wi − ui)‖pi‖2

∣∣∣∣∣+
∣∣∣∣∣‖x‖2

n

∑
i=1

(wi − ui)

∣∣∣∣∣+
∣∣∣∣∣2xT

n

∑
i=1

(wi − ui)pi

∣∣∣∣∣ (A43)

=

∣∣∣∣∣1− n

∑
i=1

ui‖pi‖2

∣∣∣∣∣+ ‖x‖2

∣∣∣∣∣1− n

∑
i=1

ui

∣∣∣∣∣+
∣∣∣∣∣2xT

n

∑
i=1

ui pi

∣∣∣∣∣ (A44)

≤ ε + ε‖x‖2 + 2‖x‖
∥∥∥∥∥ n

∑
i=1

ui pi

∥∥∥∥∥, (A45)
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where (A43) holds by the triangle inequality, (A44) holds by attributes (a)–(c), and (A45)
holds by combining assumptions (2), (3), and the Cauchy-Schwarz inequality, respectively.
We also have for every a, b ≥ 0 that 2ab ≤ a2 + b2, hence,

2ab = 2
√

εa
b√
ε
≤ εa2 +

b2

ε
. (A46)

By (A46) and assumption (1) we get that,

2‖x‖
∥∥∥∥∥ n

∑
i=1

ui pi

∥∥∥∥∥ ≤ε‖x‖2 +
‖∑n

i=1 ui pi‖2

ε

≤ ε‖x‖2 +
ε2

ε

= ε‖x‖2 + ε. (A47)

Lemma A6 now holds by plugging (A47) in (A45) as,∣∣∣∣ n

∑
i=1

(wi − ui)‖pi − x‖2
∣∣∣∣ ≤ ε + ε‖x‖2 + ε‖x‖2 + ε

= 2ε + 2ε‖x‖2

= 2ε(1 + ‖x‖2)

= 2ε
n

∑
i=1

wi‖pi − x‖2, (A48)

where the last equality holds by (A41).
Observe that if assumptions (1), (2) and (3) hold, then (A48) hold. We therefore obtain

an ε-coreset.

To Proof Theorem 6, we split it into 2 claims:

Claim A7. Let (Q, m) be a weighted set of n points in Rd, ε ∈ (0, 1), and let u be the output of
a call to CORESET(Q, m, ( ε

4 )
2); see Algorithm 2. Then u = (u1, · · · , un) ∈ Rn is a vector with

‖u‖0 ≤ 128
ε2 non-zero entries that is computed in O( nd

ε2 ) time, and (Q, u) is a 1-mean ε-coreset for
(Q, m).

Proof. Let (P, w) be the normalized weighted set that is computed at Lines 3–5 of Al-
gorithm 2 where P = {p1, · · · , pn}, and let ũ = u

‖m‖1
. We show that (P, ũ) is a 1-mean

ε-coreset for (P, w), then by Corollary A5 we get that (Q, u) is a 1-mean coreset for (Q, m).

Let ε′ = ε
4 , let p′i := (pT

i |1)
T

‖(pT
i |1)‖

2 and w′i :=
wi‖(pT

i |1)‖
2

2 for every i ∈ [n]. By the definition

of u′ at line 11 in Algorithm 2, and since the algorithm gets ε′2 as input, we have that

∥∥u′
∥∥

0 ≤ 8/ε′
2
=

128
ε2 , (A49)

and ∥∥∥∥∥ n

∑
i=1

(w′i − u′i)p′i

∥∥∥∥∥
2

≤ ε′
2. (A50)
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For every i ∈ [n] let ui = ‖m‖1 ·
2u′i

‖(pT
i |1)‖

2 be defined as at Line 12 of the algorithm. It

immediately follows by the definition of u = (u1, · · · , un) and (A49) that

‖u‖0 ≤ 128/ε′
2. (A51)

We now prove that Properties (1)– (3) in Lemma A6 hold for (P, ũ). We have that

2ε′ ≥ 2

∥∥∥∥∥ n

∑
i=1

(w′i − u′i)p′i

∥∥∥∥∥ (A52)

= 2

∥∥∥∥∥∥
n

∑
i=1

wi
∥∥(pT

i | 1)
∥∥2 − ui

‖m‖1

∥∥(pT
i | 1)

∥∥2

2
·

(pT
i | 1)T∥∥(pT
i | 1)

∥∥2

∥∥∥∥∥∥
=

∥∥∥∥∥ n

∑
i=1

(wi − ũi) · (pT
i | 1)T

∥∥∥∥∥ (A53)

=

∥∥∥∥∥
( n

∑
i=1

(wi − ũi) · pT
i |

n

∑
i=1

(wi − ũi)

)T
∥∥∥∥∥ (A54)

≥
∥∥∥∥∥ n

∑
i=1

(wi − ũi) · pi

∥∥∥∥∥, (A55)

where the first derivation follows from (A50), the second holds by the definition of w′i ,u
′
i,ui

and p′i for every i ∈ [n], the third holds since ũ = u
‖m‖1

, and the last holds since ‖(x | y)‖ ≥
‖x‖ for every x, y such that x ∈ Rd and y ∈ R.

By (A54) and since w is a distribution vector we also have that

2ε′ ≥
∣∣∣∣ n

∑
i=1

(wi − ũi)

∣∣∣∣ =
∣∣∣∣∣1− n

∑
i=1

ũi

∣∣∣∣∣. (A56)

By Theorem 1, we have that u′ is a distribution vector, which yields,

2 = 2
n

∑
i=1

u′i =
n

∑
i=1

ũi

∥∥∥(pT
i | 1)T

∥∥∥2
=

n

∑
i=1

ũi‖pi‖2 +
n

∑
i=1

ũi,

By the above we get that 2−∑n
i=1 ũi = ∑n

i=1 ũi‖pi‖2. Hence,∣∣∣∣∣ n

∑
i=1

(wi − ũi)‖pi‖2

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
i=1

wi‖pi‖2 − (2−
n

∑
i=1

ũi)

∣∣∣∣∣
=

∣∣∣∣∣1− (2−
n

∑
i=1

ũi)

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
i=1

ũi − 1

∣∣∣∣∣ ≤ 2ε′
(A57)

where the first equality holds since ∑n
i=1 ũi‖pi‖2 = 2−∑n

i=1 ũi, the second holds since w
is a distribution and the last is by (A56). Now by (A57), (A56) and (A55) we obtain that
(P, ũi) satisfies Properties (1)–(3) in Lemma A6. Hence, by Lemma A6 and CorollaryA5 we
get that ∣∣∣∣∣ n

∑
i=1

(wi − ui)‖pi − x‖2

∣∣∣∣∣ ≤ 4ε′
n

∑
i=1

wi‖pi − x‖2

= ε
n

∑
i=1

wi‖pi − x‖2.
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The running time is the running time of Algorithm 1 with ε2 instead of ε, i.e., O(nd/ε2).

Now we proof the following claim:

Claim A8. Let (Q, m) be a weighted set of n points in Rd, ε ∈ (0, 1). Then in O(nd + d · log(n)2

ε4 )

we can compute a vector u = (u1, · · · , un)T ∈ Rn, such that u has ‖u‖0 ≤ 128
ε2 non-zero entries,

and (Q, u) is a 1-mean (2ε)-coreset for (Q, m).

Proof. The Claim immediately holds by using Algorithm 2 with a small change. We change
Line 11 in Algorithm 2 to use Algorithm 3 and Theorem 3, instead of Algorithm 1 and
Theorem 1.

Combining both Claim A7 with Claim A8 proves Theorem 6.

Appendix I. Proof of Corollary 7

Proof. We consider the variables defined in Algorithm 5. Let X ∈ Rd×(d−k) such that
XTX = I, and let A′ = [A|(r, · · · , r)T ]. Plugging A = A′ into Theorem 3 at [35]∣∣∣∣∣1− ‖WA′X‖2

‖A′X‖2

∣∣∣∣∣ ≤ 5

∥∥∥∥∥ n

∑
i=1

ṽi −W2
i,i ṽi

∥∥∥∥∥. (A58)

We also have by the definition of W and Theorem 2∥∥∥∥∥ n

∑
i=1

ṽi −W2
i,i ṽi

∥∥∥∥∥ ≤ (ε/k)

√
n

∑
i=1
‖ṽi‖2 ≤ (ε/k)

n

∑
i=1
‖ṽi‖, (A59)

where the first inequality holds since Wi,i = u2
i for every i ∈ [n], and the vector u ∈ Rn is a

vector summarization (ε/5k)2-coreset for ({ṽ1, · · · , ṽn}, (1, · · · , 1)).
Finally, at [35] they show that (ε/5k)∑n

i=1‖ṽi‖ ≤ ε. Hence, combining this fact
with (A58), and (A59) yields ∣∣∣∣∣1− ‖WA′X‖2

‖A′X‖2

∣∣∣∣∣ ≤ ε. (A60)

Finally, the corollary holds by combing Lemma 4.1 at [45] with (A60).
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