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hydrolyzing enzyme gluconolactonase, which is involved in vitamin

C biosynthesis. In this study, we investigated the effects of vitamin

C on insulin secretion from pancreatic β�cells using senescence

marker protein�30/gluconolactonase knockout mice. In intra�

peritoneal glucose tolerance tests, vitamin C�deficient senescence

marker protein�30/gluconolactonase knockout mice demonstrated

impaired glucose tolerance with significantly lower blood insulin

levels at 30 and 120 min post�challenge than in wild type mice

(p<0.01–0.05). In contrast, vitamin C�sufficient senescence marker

protein�30/gluconolactonase knockout mice demonstrated signifi�

cantly higher blood glucose and lower insulin only at the 30 min

post�challenge time point (p<0.05). Senescence marker protein�30/

gluconolactonase knockout mice showed enhanced insulin sensi�

tivity regardless of vitamin C status. Static incubation of islets

revealed that 20 mM glucose�stimulated insulin secretion and islet

ATP production were significantly decreased at 60 min only in

vitamin C�deficient SMP30/GNL knockout mice relative to wild

type mice (p<0.05). These results indicate that the site of vitamin

C action lies between glycolysis and mitochondrial oxidative

phosphorylation, while SMP30 deficiency itself impairs the distal

portion of insulin secretion pathway.
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IntroductionSenescence marker protein-30 (SMP30), a 34-kDa protein
originally identified in rat liver, is a novel molecule with

expression that decreases with age in a sex-independent manner.(1,2)

Recently, we determined that SMP30 is gluconolactonase (GNL),
which is involved in L-ascorbic acid biosynthesis in mammals.
Humans, nonhuman primates, and guinea pigs are unable to syn-
thesize vitamin C (VC) in vivo because there are many mutations
in their gulonolactone oxidase gene, which catalyzes the conver-
sion of L-gulono-γ-lactone to L-ascorbic acid.(3) Although the
physiological function of SMP30/GNL is still not entirely clear,
our studies using SMP30/GNL knockout (KO) mice have revealed
that a reduction in SMP30/GNL expression may contribute to age-
associated deterioration of cellular function and the enhanced
susceptibility to harmful stimuli in aged tissue.(4–11) SMP30/GNL
KO mice cannot synthesize ascorbic acid and display symptoms of
scurvy when fed a VC-deficient diet.(3,12,13) Furthermore, SMP30/
GNL KO mice have been used for the study of VC movement and
regulation of VC transporter expression.(14–16)

Guinea pigs have long been used for VC research, and the
essential role of VC in the release of insulin from pancreatic

islets was shown using scorbutic guinea pigs.(17–22) However, there
have been no previous reports on the role of VC in insulin secre-
tion in other animal species. In the present study, we demonstrate
impaired glucose tolerance in vivo and abnormal insulin release
from pancreatic islets in VC-deficient SMP30/GNL KO mice.

Materials and Methods

Animals. SMP30/GNL KO mice were generated as previously
described by gene targeting in C57BL/6 mice.(4) Male mice were
used for all studies. All studies were performed using age-
matched, wild type (WT) C57BL/6CrSlc mice (Shimizu Laboratory
Supplies Co., Ltd., Kyoto, Japan) as controls. Mice were fed VC-
deficient chow (CL-2; CLEA Japan, Tokyo Japan) for 8 weeks
starting at 7 weeks of age and then divided into two groups: a VC-
supplemented (VC (+)) group, and a VC-deficient (VC (−)) group.
The VC (+) group had free access to water containing 1.5 g/L VC
in 10 µM ethylenediaminetetraacetic acid (EDTA; pH 8.0), whereas
the VC (−) group had free access to water containing 37.5 mg/L
VC and 10 μM EDTA. Under VC (−) conditions, SMP30/GNL
KO mice do not manifest symptoms of scurvy and their body
weight gain is similar to that of WT mice. The water was changed
every 3 days until the experiment ended. Mice had free access
to food, and were maintained on a 12-h light/dark cycle in a
temperature-controlled room. At the end of the experiment, mice
were killed by an overdose of sodium aminobarbital after an
overnight fast, and the pancreas and liver were removed. All
experimental procedures were approved by the Committee for
Animal Research, Kyoto Prefectural University of Medicine.

Analytical procedures and glucose and insulin tolerance
tests. Blood glucose levels were measured using a glucometer
(GLUTEST ACE, Sanwa Kagaku Kenkyusho Co., Ltd., Nagoya,
Japan). Intraperitoneal glucose (2 g/kg body weight) and insulin
(0.75 U/kg body weight) tolerance tests were performed after 16 h
and 7 h fasts, respectively, and blood glucose was measured at the
indicated time points. To measure insulin release during glucose
tolerance testing, plasma collected at the 0, 30, and 120 min time
points was analyzed using an insulin enzyme immunoassay system,
the Morinaga Ultra Sensitive Mouse Insulin Assay kit (Morinaga
Institute of Biological Science, Inc., Kanagawa, Japan).

Measurement of pancreatic insulin content. Pancreatic 
insulin content was determined as previously described.(23) Briefly,
a portion of the pancreatic tail was homogenized in acidic ethanol
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(0.18 mol/L HCl in 95% ethanol), and extracted for 24 h at 4°C.
The homogenate was then centrifuged at 2,000 × g for 15 min.
Insulin levels in the supernatant were assayed as described above.

Measurement of total vitamin C levels in the liver.
Livers were homogenized in 14 volumes of 5.4% metaphosphonic
acid, and then the homogenate was centrifuged at 21,000 × g for
15 min at 4°C. Ascorbic acid in samples was treated with 350 mM
tris(2-carboxyethyl)phosphine hydrochloride to reduce the dehydro-
ascorbic acid to ascorbic acid and analyzed by HPLC using an
Atlantis dC18 5 μm column (4.6 × 150 mm, Nihon Waters, Tokyo,
Japan).(24) The mobile phase was 50 mM phosphate buffer (pH 2.8),
0.2 g/L EDTA, and 2% methanol at a flow rate of 1.3 mL/min, and
electrical signals were recorded using an electrochemical detector
with a glassy carbon electrode at +0.6 V.

Static insulin secretion from isolated islets. Pancreatic 
islets were isolated from VC (+) and VC (−) SMP30/GNL KO and
VC (−) WT mice. Islets were isolated using collagenase (Type V
collagenase, Sigma, St. Louis, MO), digested in Hanks’ buffer,
followed by separation of islets from exocrine tissue in a Histo-
paque (Histopaque 1077, Sigma) gradient.(25) Islets of similar size
were hand-picked under a stereomicroscope into triplicate groups
(n = 5) of 5 islets each. The islets were preincubated for 60 min at
37°C in Krebs-Ringer bicarbonate HEPES buffer (KRBH, equili-
brated with 95% O2 and 5% CO2, pH 7.4) supplemented with
2 mg/ml BSA (fraction V, Sigma) and 2 mM glucose. After prein-
cuation, the islets were incubated with 200 μl of the same buffer
for 60 min. After samples were removed from the buffer for
measurement of insulin, they were incubated in 20 mM glucose
for another 60 min, and then the supernatant was collected. All
samples were stored at −80°C until the insulin assay.

ATP measurement from isolated islets. Cultured islets
were preincubated at 37°C for 60 min in KRBH with 2 mM
glucose and then triplicate batches of 10 islets were incubated in 2
or 20 mM glucose for another 60 min. ATP was extracted from
islets using the methods described by Uchizono et al.(26) ATP levels
were measured using the Enliten ATP Assay System (Promega, WI)
with a bioluminometer (GloMax 20/20n Luminometer, Promega).

Statistical analysis. Data are expressed as means ± SE.
Significance was determined by one-way ANOVA with Dunn’s
multiple comparisons post-hoc. A two-way ANOVA was used to
compare glucose and insulin levels at the same time point for the
intraperitoneal glucose tolerance test. p<0.05 was considered to be
significant.

Results

Body weight, blood glucose, pancreatic insulin content,
and total liver vitamin C. There were no differences in body
weight, blood glucose, or pancreatic insulin content among the four
experimental groups (Table 1). However, as expected, total liver
VC in VC (−) SMP30/GNL KO mice were dramatically lower
than that in the other three groups. These results indicate that VC
deficiency (ad libitum access to water containing 37.5 mg/L VC)
did not affect normal growth as assessed by body weight gain.

Furthermore, VC supplementation (ad libitum access to water
containing 1.5 g/L VC) increased VC levels in SMP30/GNL KO
mice to a level comparable to that in WT mice (Table 1).

Intraperitoneal glucose tolerance test. Blood glucose
levels 30 min after glucose administration were significantly
higher in VC (+) SMP30/GNL KO mice than in VC (−) or VC (+)
WT mice (p<0.05, Fig. 1). In addition, blood glucose levels in VC
(−) SMP30/GNL KO mice 30, 60, and 120 min after glucose
administration were significantly higher than those of WT mice in
either group (p<0.01, Fig. 1). However, there were no significant
differences in blood glucose levels between VC (−) and VC (+)
SMP30/GNL KO mice at any time point. VC supplementation did
not affect glucose tolerance in WT mice. A significant increase in
area under the curve (AUC, 0–120 min) was detected only in VC
(−) SMP30/GNL KO mice when compared to VC (−) and VC (+)
WT mice (p<0.01, Fig. 1). No significant difference in AUC was
detected between VC (−) and VC (+) SMP30/GNL KO mice.

There were no significant differences in fasting insulin levels
among the four groups. However, insulin levels 30 min post-
glucose were significantly lower in VC (−) and VC (+) SMP30/
GNL KO mice than in either group of WT mice (p<0.01 and
<0.05, respectively, Fig. 2). Insulin levels 120 min post-glucose
were lower in VC (−) SMP30/GNL KO mice than in the other
three groups; however, the difference was significant only when
compared to VC (+) WT mice (p<0.05, Fig. 2). AUC (0–120 min)
for VC (−) SMP30/GNL KO mice was significantly lower than
that for VC (−) and VC (+) WT mice (p<0.05, Fig. 2); however,
while VC (+) SMP30/GNL KO mice also showed a trend towards
decreased AUC, it was not significant.

Insulin tolerance test. We next assessed insulin sensitivity
using an insulin tolerance test. Blood glucose levels in both groups
of SMP30/GNL KO mice were significantly lower than those in
WT mice after 30 and 60 min, indicating high peripheral insulin
sensitivity (Fig. 3). In VC (−) SMP30/GNL KO mice, the decrease
in blood glucose levels was significant at 30 and 60 min. VC
deficiency did not induce significant changes in insulin sensitivity
in SMP30/GNL KO or WT mice.

Measurement of insulin secretion and ATP from isolated
islets. To confirm β-cell dysfunction in SMP30/GNL KO mice,
we measured glucose-stimulated insulin secretion in isolated
islets. As described above, VC deficiency did not affect liver
VC content or glucose tolerance in WT mice, so we used islets
from VC (−) WT mice as a control. Similar to the in vivo results,
insulin secretion from VC (−) SMP30/GNL KO islets incubated
in 20 mM glucose for 60 min was significantly reduced compared
to that from VC (+) SMP30/GNL KO and WT islets (p<0.05,
Fig. 4). The insulin secretory response in VC (+) SMP30/GNL KO
islets was similar to that in WT islets (Fig. 4). This finding may
indicate that impaired insulin secretion in response to glucose in
VC (+) SMP30/GNL KO islets is due to selective impairment of
the early phase of insulin secretion (~30 min) but that by 60 min
after glucose stimulation this impairment is no longer evident. To
support this assumption, a previous report by our group demon-
strated significantly lower insulin secretion in response to 20 mM

Table 1. Body weight, blood glucose levels, pancreatic insulin content, and liver vitamin C content after 8 weeks of vitamin C deficiency (15 weeks of age)

KO: SMP30/GNL knockout mice. WT: wild type mice. VC (+): vitamin C�supplemented. VC (−): vitamin C�deficient. *p<0.01 vs VC (+) KO, VC (+) WT,
and VC (−) WT. Data are means ± SE from seven mice.

KO WT

VC (+) VC (−) VC (+) VC (−)

Body weight (g) 29.6 ± 0.6 31.4 ± 0.6 29.6 ± 0.9 30.1 ± 0.6

Fasting blood glucose (mg/dl) 99.7 ± 6.0 86.9 ± 5.7 82.6 ± 8.1 88.0 ± 3.1

Fed blood glucose (mg/dl) 145.1 ± 7.8 160.7 ± 6.2 142.7 ± 7.6 163.6 ± 7.3

Pancreatic insulin content (µg/g tissue) 44.4 ± 5.3 41.9 ± 3.4 38.6 ± 5.9 38.3 ± 4.9

Vitamin C content, liver (µg/g tissue) 143.7 ± 7.7 9.9 ± 1.3* 169.4 ± 9.9 160.2 ± 8.5
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glucose after 15 min in islets from VC-supplemented SMP30/
GNL KO mice compared to WT mice.(10)

There were no significant differences in islet ATP content in
2 mM glucose among the three groups. ATP content in 20 mM
glucose was significantly decreased in VC (−) SMP30/GNL KO
islets compared to VC (+) SMP30/GNL KO or WT islets
(p<0.05). ATP content in 20 mM glucose in VC (+) SMP30/GNL
KO islets was similar to that in WT islets (Fig. 5).

Discussion

This report has shown that, in SMP30/GNL KO mice, VC
deficiency without obvious signs of scurvy worsened glucose
tolerance and impaired insulin secretion after a glucose load. Our
in vitro data from isolated islets confirmed that VC deficiency was

responsible for the reduced insulin secretory response to glucose.
Furthermore, the observed decrease in glucose-stimulated ATP
generation in pancreatic islets indicates that the site of VC action
lies between glycolysis and mitochondrial oxidative phosphoryla-
tion. The modestly impaired glucose tolerance with an impairment
of acute insulin secretion seen here in VC-supplemented SMP30/
GNL KO mice is comparable to that in our previous report, which
demonstrated the role of SMP30/GNL in glucose homeostasis
without looking at the effects of VC deficiency.(10)

The essential role of VC in glucose-stimulated insulin secretion
was originally reported by Sigal and King,(17) and Banerjee,(18) who
looked at scorbutic guinea pigs. In a subsequent study, it was
shown that decreased insulin release from scorbutic islets was
not due to decreased insulin synthesis but rather due to abnormal
insulin secretion.(19,20) Further studies have demonstrated that

Fig. 1. Blood glucose levels in the intraperitoneal glucose tolerance test at 15 weeks of age. ● VC (+) SMP30/GNL knockout (KO), ○ VC (−)
SMP30/GNL knockout (KO), ▲ VC (+) wild type (WT), △ VC (−) wild type (WT). *p<0.01 VC (−) KO vs VC (−) WT and VC (+) WT. VC: vitamin C, VC (+):
free access to water containing 1.5 g/L VC for 8 weeks from 7 weeks of age, VC (−): free access to water containing 37.5 mg/L VC for 8 weeks from 7
weeks of age, AUC: area under curve. #p<0.05 VC (−) KO vs VC (−) WT and VC (+) WT. Data are means ± SE (n = 7).

Fig. 2. Blood insulin levels in the intraperitoneal glucose tolerance test at 15 weeks of age. ● VC (+) SMP30/GNL knockout (KO), ○ VC (−) SMP30/
GNL knockout (KO), ▲ VC (+) wild type (WT), △ VC (−) wild type (WT). VC: vitamin C, VC (+): free access to water containing 1.5 g/L VC for 8 weeks
from 7 weeks of age, VC (−): free access to water containing 37.5 mg/L VC for 8 weeks from 7 weeks of age, AUC: area under curve. *p<0.05,
**p<0.01 vs VC (−) WT and VC (+) WT. #p<0.05 vs VC (+) WT. Data are means ± SE (n = 7).
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VC is an essential cofactor for the activation of mitochondrial
glycerol-3-phosphate dehydrogenase (mGPDH), a key enzyme for
the glycerol phosphate NADH shuttle in pancreatic β-cells. They
assumed that mGPDH inactivation due to VC deficiency would
cause a reduction in shuttling of cytosolic NADH generated from
glycolysis and pyruvate into mitochondria, leading to a reduction
in ATP generation and thereby reducing insulin release.(21,22) The
present data from our study of VC-deficient SMP30/GNL KO mice
are consistent with these previous studies in scorbutic guinea pigs.

Because SMP30 is abundant in the kidney and also present in
lesser amounts in other organs,(27) this protein is presumed to have
some function other than VC synthesis, which does not occur at

all these sites. Our previous study of VC-supplemented SMP30/
GNL KO mice suggested that SMP30 deficiency itself induced
dysregulation of Ca2+ homeostasis, resulting in impairment of
glucose-induced Ca2+ influx and of Ca2+-dependent signaling
pathways, which are involved in the peripheral portion of the
insulin secretion pathway. These results suggest that SMP30 could
be implicated in the impairment of β-cell function with age in
humans.(10) Therefore, it should be noted that the decreased insulin
secretion demonstrated here in VC-deficient SMP30/GNL KO
mice is a consequence of impairment of both the peripheral and
proximal portions of the insulin secretion pathway.

Surprisingly, there have been no previous reports on the effects
of VC deficiency on insulin sensitivity. In the present study,
despite impaired glucose tolerance, SMP30/GNL KO mice showed
greater insulin sensitivity, regardless of VC status. Although the
mechanism has not been studied, inactivation of mGPDH due to
VC deficiency could partially explain this phenomenon, consid-
ering that previous reports showed that mGPDH KO mice manifest
increased insulin sensitivity and impaired insulin secretion, similar
to SMP30/GNL KO mice.(28,29)

The inability of guinea pigs to synthesize VC due to mutations
in the L-gulono-g-lactone oxidase gene is well known.(30) Because
they share this trait with humans, guinea pigs have long been used
for VC research. Most of our knowledge of the role of VC in
insulin secretion and glucose tolerance in vivo has come from
studies of VC-deficient guinea pigs.(17–22) This is the first study
examining insulin secretion in a VC-deficient mouse model.
These laboratory animals have advantages over guinea pigs in
terms of breeding, care, and size. L-gulono-g-lactone oxidase KO
mice, which cannot synthesize VC in vivo, represent another VC-
deficient mouse model.(31)

In summary, VC-deficient SMP30/GNL KO mice have modestly
impaired glucose tolerance with impaired acute insulin secretion
due to decreased glucose-stimulated ATP production in β-cells.
These results suggest that the site of VC action is between glycolysis
and mitochondrial oxidative phosphorylation. SMP30/GNL KO
mice are a useful VC-deficient animal model, and further studies
will bring us new insights into the mechanism of insulin secretion
in pancreatic β-cells.

Fig. 3. Intraperitoneal insulin tolerance test at 15 weeks of age. Data
are expressed as % of basal (0 min) glucose levels. ● VC (+) SMP30/GNL
knockout (KO), ○ VC (−) SMP30/GNL knockout (KO), ▲ VC (+) wild type
(WT), △ VC (−) wild type (WT). VC: vitamin C, VC (+): free access to
water containing 1.5 g/L VC for 8 weeks from 7 weeks of age, VC (−):
free access to water containing 37.5 mg/L VC for 8 weeks from 7 weeks
of age. *p<0.05, **p<0.01 vs VC (−) WT and VC (+) WT. Data are means ±
SE (n = 7).

Fig. 4. Static islet incubation for 60 min in 20 mM glucose. Data are
expressed as ratios of 60 min insulin to basal insulin (pg/islet/60 min).
KO: SMP30/GNL knockout mice at 15 weeks of age, WT: wild type mice
at 15 weeks of age, VC: vitamin C, VC (+): free access to water containing
1.5 g/L VC for 8 weeks from 7 weeks of age, VC (−): free access to water
containing 37.5 mg/L VC for 8 weeks from 7 weeks of age. *p<0.05 vs VC
(+) KO and WT. Data are means ± SE (n = 5).

Fig. 5. Islet ATP content in 2 mM and 20 mM glucose. KO: SMP30/GNL
knockout mice at 15 weeks of age, WT: wild type mice at 15 weeks of
age, VC: vitamin C, VC (+): free access to water containing 1.5 g/L VC for
8 weeks from 7 weeks of age, VC (−): free access to water containing
37.5 mg/L VC for 8 weeks from 7 weeks of age. *p<0.05 vs VC (+) KO
and WT. Data are means ± SE (n = 5).
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ATP adenosine triphosphate
BSA bovine serum albumin
EDTA ethylenediaminetetraacetic acid
GNL gluconolactonase
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HPLC high performance liquid chromatography
KO knockout
VC vitamin C
mGPDH mitochondrial glycerol-3-phosphate dehydrogenase
NADH nicotinamide adenine dinucleotide
WT wild type
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