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Abstract: Reactive oxygen species (ROS) such as superoxide anion (O2
•−) and hydrogen peroxide

(H2O2) are generated endogenously by processes such as mitochondrial oxidative phosphorylation,
or they may arise from exogenous sources like bacterial invasion. ROS can be beneficial (oxidative
eustress) as signaling molecules but also harmful (oxidative distress) to cells when ROS levels become
unregulated in response to physiological, pathological or pharmacological insults. Indeed, abnormal
ROS levels have been shown to contribute to the etiology of a wide variety of diseases. Transcriptional
control of metabolic genes is a crucial mechanism to coordinate ROS homeostasis. Therefore, a better
understanding of how ROS metabolism is regulated by specific transcription factors can contribute
to uncovering new therapeutic strategies. A large body of work has positioned the estrogen-related
receptors (ERRs), transcription factors belonging to the nuclear receptor superfamily, as not only
master regulators of cellular energy metabolism but, most recently, of ROS metabolism. Herein,
we will review the role played by the ERRs as transcriptional regulators of ROS generation and
antioxidant mechanisms and also as ROS sensors. We will assess how the control of ROS homeostasis
by the ERRs can be linked to physiology and disease and the possible contribution of manipulating
ERR activity in redox medicine.

Keywords: estrogen-related receptor; metabolism; mitochondria; nuclear receptors; redox signal-
ing; transcription

1. Introduction

Reactive oxygen species (ROS) is a generic term that includes several derivatives of
molecular oxygen such as the superoxide anion radical (O2

•−) and hydrogen peroxide
(H2O2), two key redox signaling agents. In mammalian cells, mitochondria are an important
source of ROS. The generation of ROS takes place mainly in the electron transport chain
(ETC) on the inner mitochondrial membrane during oxidative phosphorylation (OXPHOS).
To protect against ROS accumulation, various redox systems are operational, such as the
glutathione or thioredoxin redox couples that participate in cell signaling. When ROS
exceed the cellular antioxidant defense system, either through an increase in ROS levels
or a decrease in the antioxidant capacity, oxidative stress occurs, a process referred to
as oxidative distress. ROS engender oxidative modification of macromolecules such as
nucleic acids, proteins, and lipids. In particular, oxidative stress-induced impairments
in protein function may ultimately lead to cell death and has thus been implicated in a
myriad of pathologies [1]. Consequently, knowledge of how cellular ROS signaling is
regulated is key to understand the etiology of many diseases and explore novel possible
applications of redox medicine. On the other hand, ROS also contribute to the proper
functioning of the cell. The physiological role of H2O2 and associated redox-dependent
signaling are referred to as oxidative eustress [2]. Indeed, H2O2 occurs at a low level
in normally respiring cells and contributes to mild mitochondrial stress that leads to an
enhancement of health and longevity [3]. Low levels of H2O2 also induce the reversible
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oxidation of proteins and therefore influences many cellular and inter-organ processes
such as cell proliferation, differentiation and migration, often through direct regulation
of gene expression [4]. Several transcription factors have been shown to be regulated by
ROS but also to regulate the response to oxidative stress. These include nuclear factor
kappa-light chain-enhancer of activator B cells (NF-κB), hypoxia inducible factor-1α (HIF-
1α), nuclear factor (erythroid derived 2)-like 2 (Nrf2) and activator protein-1 (AP-1) [5–8].
Recently, the estrogen-related receptors (ERRs), a sub-class of nuclear receptors well-
known as central transcriptional regulators of energy homeostasis and mitochondrial
biogenesis and function [9,10], were also shown to play direct roles in the control of ROS
homeostasis [11,12]. Herein, we will first highlight the properties and function of the ERRs
linking them to ROS production and metabolism, then the phenomena linking ERR and
ROS during oxidative eustress and distress, and lastly, we will discuss how manipulating
the activity of the ERRs could potentially participate in redox medicine.

2. The ERRs

The ERR subfamily is part of the superfamily of nuclear receptors and comprised of
three members referred to as ERRα (NR3B1), ERRβ (NR3B2), and ERRγ (NR3B3) [13–16].
Most nuclear receptors are ligand-regulated transcription factors that recognize small
lipophilic hormones, vitamins and metabolites, and thus provide a direct link between
extracellular signals and regulation of gene expression. However, the ERRs are referred
to as orphan nuclear receptors as specific endogenous ligands are yet to be identified for
these receptors. The inclusion of estrogen in their name relates only to the similarity in
amino acid sequences that ERRs share with the classical estrogen receptors (ERs) [13,17].
In spite of being structurally related to the ERs, the ERRs do not bind naturel estrogens.
Moreover, the ERRs and ERs recognize different binding sites on chromatin [18]. The
consensus sequence of DNA recognized by the ERRs and generally present in the promoter
of ERR-regulated genes has the consensus sequence TNAAGGTCA and is referred to as
an estrogen-related response element (ERRE) [19,20]. While being classified as orphan
receptors, the ERRs do possess a functional ligand-binding pocket proper to nuclear
receptors as synthetic pharmacological agents can activate or inhibit the transcriptional
activity of ERRs, indicating that the activity of the three ERR isoforms could indeed be
controlled by one or more natural ligands [21–25]. Moreover, the three ERR members share
a strong structural homology including a non-conserved amino terminal domain (NTD)
that is the target of post-translational modifications and a central DNA-binding domain
(DBD) composed of two zinc finger motifs that recognize ERRE sequences [9]. Several
ligand-independent mechanisms have also been uncovered that regulate the activities of
the ERRs. These mechanisms include direct interactions with coactivator and corepressor
proteins, post-translational modifications (PTMs) and regulation of their expression by
microRNAs [26–42]. In particular, the coactivators known as peroxisome proliferator-
activated receptor γ (PPARγ)-coactivator 1 α and β (PGC-1α, β) are potent activators
of all three ERR isoforms and have often been referred to as protein ligands for these
receptors [43–47]. PGC-1α/β can interact with the ERRs via their activation function-2
(AF-2) domain which is located within the carboxy-terminal ligand-binding domain [9].
Indeed, the PGC-1/ERR transcriptional axis has been implicated in the control of vast
metabolic gene networks associated with mitochondrial biogenesis, OXPHOS, fatty acid
metabolism, glucose uptake, and gluconeogenesis in various tissues [48–55].

One or more members of the ERR family are expressed in every tissue, suggesting
a vital role for these factors in the proper maintenance of cellular function [56]. ERRα
is ubiquitously expressed and the most abundantly expressed isoform whereas ERRβ
and ERRγ display more specific patterns of expression and are generally expressed at
lower levels compared to ERRα. When present in the same cell, the three ERR isoforms
can form heterodimers [19,57]. In support of this observation, comparison of chromatin
immunoprecipitation coupled with DNA microarrays (ChIP-chip) or massively parallel
sequencing (ChIP-seq) datasets revealed over 80% overlap in ERRα and ERRγ binding
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peaks in distinct cell types [12,19,58]. Indeed, ERR isoforms can compensate for each
other’s activity as knockdown of two or more ERR isoforms are required to suppress
mitochondrial biogenesis, abrogate the transcriptional response to adrenergic stimulation
in brown fat and disrupt normal cardiac bioenergetics [59–61]. ERRα knockout mice, while
displaying a variety of metabolic deficiencies, are alive and can reproduce normally [62].
Nonetheless, gene knockouts in mice have demonstrated that loss of each ERR isoform
results in distinct developmental and tissue-specific phenotypes, demonstrating that each
ERR isoform has also specific roles to play in the control of cellular metabolism and other
biological processes [58,63–65]. Indeed, ERRα-null mice have been well-studied over
time for their multiple metabolism-related phenotypes [58,62]. The ERRβ-null mouse
model is embryonic lethal due to a placental formation defect [63]. ERRγ-null mice die
shortly after birth due to a combination of heart, gastric, and renal potassium homeostatsis
defects [60,64,66].

3. Transcriptional Control of ROS Metabolism by the ERRs
ROS-Generating ERR Targets

ROS generation can come from a variety of intracellular compartments including mito-
chondria, the endoplasmic reticulum, peroxisomes, nuclei, the cytosol, plasma membranes
and even extracellular spaces. ROS are mainly generated during mitochondrial OXPHOS
or they can come from interactions with exogenous sources such as bacterial invasion. The
initial ROS formed by the respiratory chain and other enzymatic components within mito-
chondria is superoxide O2

− and can be released towards both the mitochondrial matrix
and the intermembrane space. The respiratory chain, which is an ETC, is composed of
transmembrane protein complexes (I to IV) located in the inner mitochondrial membrane
and the freely mobile electron transfer carriers ubiquinone and cytochrome c [67]. The
respiratory chain allows for OXPHOS, a process involving the phosphorylation of ADP into
ATP via the energy released by the oxidation of electron donors through the respiratory
chain. The electrons eliminated from the Krebs cycle (tricarboxylic acid cycle, TCA) and
transported by nicotinamide adenine dinucleotide hydrogen (NADH) and flavin adenine
dinucleotide hydroquinone (FADH2) are used to feed the pumping of protons from the
matrix to the intermembrane space, generating a gradient of protons through the internal
mitochondrial membrane. Complexes I and III are generally regarded as the main ROS
sources. Complex I can generate superoxide in the presence of NADH [68]. Complex II can
also produce ROS but its importance was underestimated for a long time [69]. Complex
III is considered as the main ROS producer under both basal and stress conditions [70].
Interestingly, it has been demonstrated that ERRα regulates the transcription of all of
the enzymes that constitute the TCA cycle and a significant number of target genes that
code for proteins involved in OXPHOS [71]. Integration of ChIP-based experiments in
combination with specific gene-targeted studies revealed that ERRα binds to over 85% of
the nuclear genes that code for complex I (GO:0045271), to 100% of the nuclear genes that
code for complexes II (GO:0045273) and III (GO:0045275), to 75% of the nuclear genes that
code for complex IV (GO:0045277) and to 66% of the nuclear genes that code for complex V
(GO:0005753) [10,19,34,47,72–75]. ERRα also regulates genes that code for coenzyme Q and
cytochrome c. Of note, it was reported that ERRγ targets the same set of promoters of genes
encoding TCA cycle proteins and OXPHOS machinery [19]. Moreover, it has been shown
that ERRα and ERRγ act collectively and in a redundant manner to promote mitochondrial
oxidative capacity in brown adipose tissue [61]. Increasing ERRα expression by PGC1α
overexpression leads to a rise in mitochondrial activity, found to stimulate the respiratory
capacity fibroblasts [76]. Moreover, in a transgenic muscle-specific ERRγ overexpression
mouse model, genes associated with oxidative metabolism are increased [77]. Furthermore,
activation of the PGC-1β/ERRα axis by c-MYC in breast cancer cells induces the expression
of all the enzymes involved in the TCA cycle [73]. Conversely, when ERRα activity is im-
paired via the use of knockout mice [47,78,79] or knockdown in cells [71,80], mitochondrial
integrity, activity and ATP production have been demonstrated in different tissues to be
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decreased. In addition, genetic and pharmacological silencing of ERRα activity in mouse
liver downregulates the expression of TCA cycle genes leading to the accumulation of
various TCA intermediates and hepatic hyperlipidemia [34]. Interestingly, this function of
the ERRs is profoundly conserved as a mutant of the drosophila ortholog of ERR (dERR)
exhibits a similar reduction in TCA intermediates as well as a decrease in ETC components,
resulting in a two-fold decrease in ATP levels in second-instar larvae [81,82].

Another endogenous source of superoxide is owned to nicotinamide adenine din-
ucleotide phosphate (NADPH) oxidases (NOX), enzymes that catalyze the production
of O2

− or H2O2 using NADPH as a reductant. For many years, superoxide generation
through NOX was thought to occur only in phagocytes. However, the seven members of
the NOX family have various tissue distributions and activation mechanisms [83]. Cross-
examination of genome-wide location analyses found Nox4 and Nox5 as ERR target genes
(Figure 1).

The passage of electrons from fatty acids to the ETC is also a source of reducing
equivalents responsible for increasing the ROS production chain due to the actions of
electron transfer flavoprotein (ETF) and fatty acid β-oxidation (FAO) [84]. The first dehy-
drogenase reaction in FAO by acyl-CoA dehydrogenases (ACAD) generates FADH2, with
the electrons donated to ETF. ETF is linked to ETF-coenzyme Q oxidoreductase (ETF-QOR)
and provides an alternative pathway to pass electrons to coenzyme Q in the ETC [84].
During these reactions, some superoxide can be produced. Remarkably, the first identified
genomic target of ERRα was Acyl-CoA dehydrogenase medium chain (ACADM), which
codes for the enzyme that catalyzes the first stage of FAO [20,85]. Further genomic profiling
experiments not only confirmed the recruitment of ERRα to the ACADM promoter in vivo
but also to over 65% of genes implicated in FAO (GO:0006635) [19,34]. In response to
ERRα overexpression, additional genes encoding enzymes of mitochondrial very long
chain acyl-coenzyme A dehydrogenase (ACADVL) and long-chain hydroxyacyl coenzyme
A dehydrogenase (HADHA) are also activated in parallel with ACADM [79]. Conversely,
in brown adipocytes, FAO was decreased by 30–50% in ERRα knockout mice [86]. Ad-
ditional ERRα targets include genes that code for the two subunits of ETF (ETFA and
ETFB), the gene encoding ETF-QOR (ETFDH), and to one regulator of the electron transfer
flavoprotein (ETFBKMT) (Figure 1). In an interesting way, these genes have been shown
to be upregulated in cardiac ventricles of ERRα knockout mice and downregulated in
renal epithelial cells of ERRγ knockout mice (Figure 1). The ERRs can also target genes
encoding a variety of enzymes that are generating ROS. These include acyl-CoA oxidase
(ACOX1), involved in peroxisome β-oxidation, D-aspartate oxidase (DDO) that partici-
pates in alanine and aspartate metabolism, hydroxyacid oxidase (HAO1) that oxidizes
glycolic acid to glyoxylate and glyoxylate into oxalate, pyridoxamine 5′-phosphate oxidase
(PNPO) that catalyzes several reactions in the vitamin B6 metabolic pathway, and xanthine
dehydrogenase (XDH) involved in the oxidative metabolism of purines (Figure 1). Most of
these genes have been shown to be differentially regulated by ERRs in at least one tissue
or cell line in the current literature (Figure 1). In summary, the ERRs possess the potential
to regulate at the transcriptional level all the mitochondrial actors of ROS production
including the TCA cycle, ETC complexes I, II and III, β-oxidation and the ETF complexes as
well as a large number of ROS-generating enzymes (Figures 1 and 2). These findings clearly
indicate that the ERRs play a pleiotropic role as transcription factors in the regulation of
ROS metabolism3.2. ROS-Counteracting ERR Targets.

There is a variety of enzymatic and nonenzymatic scavengers that serve to counter-
balance the effects of oxidants. For enzymatic antioxidants, superoxide dismutase (SODs),
catalase (CAT), glutathione peroxidase (GPx) and redox proteins such as thioredoxins
(TRXs) and peroxiredoxins (PRXs), have been found to play crucial roles in the antioxidant
defenses [87]. The enzymatic antioxidants can directly or indirectly catabolize ROS to
protect the cells. Once again, the ERRs have been found to bind to regulatory regions
of genes encoding the vast majority of the components of antioxidant defense systems
(Figures 1 and 2). A wide variety of these enzymes have been shown to be upregulated
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or downregulated in several contexts including ERRα-null mouse heart, kidney, and
skeletal muscle, mouse ERRγ-null kidney, ERRα-knockdown in breast cancer cells and
ERRγ-knockdown in prostate cancer cells (Figure 1). The superoxide dismutase family
is composed of three members, CuZn-SOD (superoxide dismutase Cu–Zn), Mn-SOD (su-
peroxide dismutase Mn, mitochondrial) and EC-SOD (extracellular superoxide dismutase
Cu-Zn). Mn-SOD is localized in the mitochondrial matrix whereas EC-SOD is primarily
localized in the extracellular matrix. They allow for the detoxification of superoxide O2−
by their conversion into H2O2. The three ERRs directly target and regulate SOD2 that codes
for MnSOD [11] and SOD1 in different tissues and cell lines (Figure 1). Moreover, ERRα
regulates SIRT3 which in turn increases the expression of the ROS-detoxifying enzyme
SOD2 to decrease ROS levels [87].Antioxidants 2021, 10, x FOR PEER REVIEW 6 of 19 

 

 

Figure 1. ERR-targeted enzymes implicated in ROS metabolism. Schemes follow the same formatting.
Both human and mouse gene names are shown, the latter in parentheses. Genes implicated in both
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ROS generation and antioxidant response were manually curated from the literature and only genes
found targeted (58 out of 63) by the estrogen-related-receptors (ERRs) in at least one cell or tissue
from ChIP-based technologies are shown in a heatmap representation. Of the 58 ERR-targeted genes,
those found differentially regulated by the ERRs based on available RNA-seq and microarray datasets
are shown in a heatmap representation. Red boxes indicate ERR-occupied genes. Pink and blue boxes
indicate upregulated and downregulated genes, respectively, that are ERR-regulated. For ChIP-seq,
genes with binding peaks within±20 kb from the transcriptional start sites were considered. For ChIP-
chip, genes with a cutoff of p < 0.001 were considered. The ERR-targeted datasets shown are ordered
as follows: (1) BCa-BT474 ERRα ChIP-seq (untreated) [48]; (2) BCa-BT474 + AICAR ERRα ChIP-seq
(AICAR-treated) [48]; (3) BCa-SKBR3 ERRα ChIP-seq (untreated, serum-starved) [11]; (4) BCa-MCF7
ERRα ChIP-seq (untreated, serum-starved) [Deblois G, unpublished]; (5) B lymphocytes-GM12878
ERRα ChIP-seq [88]; (6) CRC-LoVo ERRα ChIP-seq [89]; (7) HCC-HepG2 ERRα ChIP-seq [90];
(8) mouse liver ERRα ChIP-chip [71]; (9) mouse liver ERRα ChIP-seq [34]; (10) mouse kidney ERRα
ChIP-chip [91]; (11) mouse skeletal muscle ERRα ChIP-chip (gastrocnemius and soleus) [Dufour CR,
unpublished]; (12) mouse frontal cortex ERRα ChIP-seq [92]; (13) mouse ESC ERRβ ChIP-seq [93];
(14) mouse ESC ERRβ ChIP-seq [94]; (15) BCa-BT474 ERRγ ChIP-seq [12]; (16) mouse kidney ERRγ
ChIP-seq [95]. The ERR-regulated datasets shown are ordered as follows: (1) BCa-SKBR3 siERRa vs.
siCtrl microarray [11] cutoff: p < 0.05; (2) BCa-SKBR3 siERRa vs. siCtrl microarray (untreated, serum-
starved) cutoff: p < 0.05 [11]; (3) mouse kidney ERRα KO vs. WT (basal) microarray [91] cutoff: FC
1.2 and p < 0.05; (4) mouse skeletal muscle ERRα KO vs. WT (basal) microarray (gastrocnemius) [96]
cutoff: FC 1.2 and p < 0.05; (5) mouse heart ERRα KO vs. WT (basal) microarray [19] p < 0.05;
(6) mouse cardiac ventricles ERRα/γ DKO vs. WT (basal) microarray [97] cutoff: FC 1.5 and p < 0.05;
(7 and 8) mouse RECs ERRα KO vs. WT (basal) RNA-seq in 3-month (7) or 3-week (8) old mice [95]
cutoff: logFC1.5 and p adjusted < 0.05; (9 and 10) PCa-LNCaP siERRγ vs. siCtrl basal (9) or R1881
(10) (synthetic androgen) microarray [98] p < 0.05. Abbreviations used: AICAR, 5-aminoimidazole-4-
carboxamide ribonucleotide); BCa, breast cancer; CRC, colorectal cancer; Ctrl, control; DKO, double
knockout; ESC, embryonic stem cell; FC, fold-change; HCC, hepatocellular carcinoma; KO, knockout;
N/A, non-applicable; PCa, prostate cancer; REC, renal epithelial cells; WT, wild type.

H2O2 produced by the action of SODs is reduced to water by CAT and GPx. The genes
encoding these enzymes are targeted and regulated by the ERRs (Figure 1). Members of
the GPx family have anti-oxidative functions within different cellular components. GPx
oxidizes reduced glutathione (GSH) to glutathione disulfide (GSSG) during oxidative
stress [99]. GSH is also a key determinant of redox signaling that regulates cell prolifera-
tion, apoptosis and immune function. Recently, our group showed that pharmacological
inhibition of ERRα leads to an induction of glutamine-driven glutathione production
and suppression of ROS in breast cancer cells via upregulation of ERRγ activity [12]. The
presence of ERRγ on DNA may be necessary for ERRα recruitment to certain genes since
the ERRγ inverse agonist GSK5182 also suppresses ERRα binding to target genes [12].
Therefore, ERRα and ERRγ, as ROS sensors, are codependent and rely on each other’s
activity to induce an antioxidant response. The exact mechanisms by which the ERRs act
as cellular ROS sensors remain to be defined. Deblois et al. also showed that pharmacolog-
ical inhibition of ERRα activity in a breast cancer cell line resistant to epidermal growth
factor receptor inhibition by the anti-cancer drug lapatinib leads to reduced detoxification
capacity and increased oxidative damage [11]. The role of the ERRs in ROS detoxifica-
tion by glutathione is therefore context- and tissue-dependent. Disposal of H2O2 is also
closely associated to the TRX and PRX antioxidant systems. The TRX system is composed
of NADPH, thioredoxin reductase (TrxR) and thioredoxin (Trx) [100]. Trx exists in two
isoforms, cytosolic Trx1 (Txn1) and mitochondrial Trx2 (Txn2), whose genes are targeted by
the ERRs and Txn2 has been shown to be upregulated by loss of ERRα in mouse skeletal
muscle (Figure 1). The PRX system is composed of six members, Prx1–6 (Prdx1–6). Prdx1,
2, and 4 are found primarily in the cytoplasm but are also expressed in nuclei. Prdx3 and
Prdx5 are localized in the mitochondria, but Prdx5 has also been found in the cytoplasm,
nuclei and peroxisomes [101]. Prdx1–6, with the exception of Prdx4, were all shown to be
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ERR targets in several tissues and cell lines and found differentially regulated by manipu-
lation of ERR activity (Figure 1). PRXs can transmit the oxidizing equivalents from H2O2
to other target proteins. Both the GSH and TRX/PRX system can protect against oxidative
stress via the efficient removal of various ROS.

Energetic substrates involved in several specific metabolic pathways can generate
redox cofactors (NADH and FADH) that can be readily used to maintain or restore redox
homeostasis. These metabolic pathways include glycolysis, glutaminolysis, FAO, one-
carbon metabolism and the pentose phosphate pathway [102], all found targeted by the
ERRs in breast cancer cells in a recent study [12].

Other antioxidant systems, such as mitochondrial nicotinamide nucleotide transhy-
drogenase (NNT), can also reduce H2O2 in water by shifting reducing equivalents from
NADH to NADPH, thereby supporting and strengthening the capacity of the TRX and
GSH systems [103]. The NNT-encoding gene is also an ERR target and has been shown
to be upregulated in cardiac ventricles of ERRα/γ double knockout mice and down-
regulated in the renal epithelium cells of ERRγ-null mice (Figure 1). Furthermore, the
mitochondrial Ca2+ independent phospholipase A2γ (iPLA2γ) plays an antioxidant role in
various tissues [104–106]. During oxidative stress, H2O2-activated phospholipase iPLA2γ
together with UCP2 provides an antioxidant function by releasing free fatty acids upon
the cleavage of lipids. UCP2 then attenuates mitochondrial superoxide formation by
mild uncoupling [105]. Uncoupling diminishes the production of mitochondrial O2

−. The
iPLA2γ-encoding genes PNPLA8 and UCP2 are both ERR-targeted genes (Figure 1).
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Figure 2. ERR pleiotropic roles in redox signaling. Orange: phenomena/actors implicated in ROS generation and transcrip-
tionally targeted by the estrogen-related-receptors (ERRs). Green: phenomena/actors implicated in ROS detoxification and
transcriptionally targeted by the ERRs. Abbreviations used: CAT, catalase; ETC, electron transport chain; FAO, fatty acid
oxidation; GPX, glutathione peroxidase; GSH, glutathione; NOX, NADPH oxidase; PRX, peroxiredoxin; SOD, superoxide
dismutase; TCA cycle, tricarboxylic acid cycle; TRX, thioredoxin.

Further evidence supporting that the ERRs not only target these genes but also modu-
late their regulation is that PGC-1α, whose action on gene expression depends essentially
on the ERRs, was shown to increase the levels of MnSOD/SOD2, CAT, PRX3/5, UCP2,
TRXR2, and TRX2 [107–109]. In fact, PGC-1α upregulation promotes cell survival by
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protecting cancer cells from excessive mitochondrial ROS generation [110,111]. It is in-
teresting to note that the antioxidant function of the ERRs is associated with their roles
enhancing mitochondrial electron transport in cells with high energy demands. There-
fore, the potent regulation of antioxidant defense through the ERRs is likely to ensure an
adequate response to the cytotoxic effects of ROS accumulation promoted via the active
ERR-dependent pathways involved in cellular energy production.

4. Influence of ROS in ERR Activity

One property of members of the nuclear receptor family is to be part of feedback or
feedforward loops regulating their activity. The previous section clearly established that a
major function of the ERRs is to regulate a vast array of genes that affect the concentration
of ROS within cells. Consequently, it could be assumed that ROS themselves could in turn
affect the activity of the ERRs. In most cases, ROS signaling can regulate transcription
factors by inducing reversible and irreversible PTMs like cysteine modifications or by direct
interactions with redoxins. These proteins are involved in redox reactions and can reverse
some oxidative stress-induced PTMs on cysteine thiols [112]. Several redox sensors have
been identified to transduce the signal to their respective transcription factors [113]. During
oxidative stress, it was shown that a change occurs in the levels of expression of two ERR
isoforms [12]. While the activity and levels of these two ERR isoforms are clearly redox-
sensitive, the exact mechanisms by which this mode of regulation occurs are currently
unknown. However, nuclear receptors contain redox-active thiol groups and changes in
cellular redox signaling can affect the ability of these nuclear receptors to regulate gene
expression. In particular, it has been shown that thiol oxidation negatively regulates ligand
and DNA binding for a number of nuclear receptors, including the closely related ERs [114].
Since nuclear receptors share a conserved molecular architecture, it can be speculated that
redox-dependent mechanisms that regulate the activity of the ERRs could be a feature
common to at least a subset of nuclear receptors involved in the regulation of cellular
energy metabolism.

5. ERR Activities and ROS during Oxidative Eustress and Distress

Intracellular ROS concentration is a fine equilibrium that enables redox signaling un-
der eustress (physiological) or distress (pathological) conditions that causes mitochondrial
damage and cell death. In the next section, we will explore the activities of the ERRs in
these two contexts.

5.1. ERRs and Oxidative Eustress

Low levels of ROS production, and therefore mild mitochondrial stress, has been
shown to play an important role in protecting health span and longevity by induction of
a process referred to as mitohormesis. Indeed, mitochondria can initiate and transduce
signals to the nucleus. These signals coordinate a transcriptional response resulting in
both mitochondrial and non-mitochondrial adaptations necessary to maintain cellular
homeostasis. For example, mild increased mitochondrial ROS caused by ETC mutations or
knockdown of SOD2 extends lifespan in the worm Caenorhabditis elegans and mice [115,116].
Interestingly, mild mitochondrial stress in liver of a mouse model of inducible Sod2 knock-
down results in the activation of mitochondrial signaling pathways which are dependent
on the key ERR co-activator, PGC-1α [116]. Furthermore, activation of mitochondrial
biogenesis by PGC-1α through the ERRs is downstream of the oxidant level-regulated
AMP kinase (AMPK) [117]. AMPK induces mitochondrial fusion, which may be important
as this process prevents mitochondrial dysfunction and excessive ROS formation [118].
These observations demonstrate the diversity in mechanisms to directly connect ROS levels
and transcriptional regulation of mitochondrial networks by the ERRs. The mitochon-
drional network is characterized by a large polymorphism of shapes as mitochondria
form a dynamic complex maintained in balance through a regulated equilibrium between
fusion and fission. The dynamin family of GTPases regulates mitochondrial dynamics.
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Interestingly, during oxidative eustress, mitochondrial dynamics is tightly coupled to
ROS signaling [119,120]. Aberrant mitochondrial morphology can lead to enhanced ROS
formation, which in turn may deteriorate mitochondrial health and further exacerbate
oxidative stress in a feedforward cycle. As expected, a large number of genes that code
for actors implicated in mitochondrial dynamics are targets of ERR. First, fusion of the
outer and inner mitochondrial membrane is mediated by mitofusin-1 and mitofusin-2
(MFN1 and MFN2) and optic atrophy 1 (OPA1) [121–123], and their genes are all ERRα
targets [34,124,125]. Second, it is interesting to note that during physical exercise when
the muscle requires sufficient energy, expression of MFN2 is increased in skeletal muscle
in an ERRα-dependent manner [124]. Third, a study showed that MFN2 expression is
also upregulated in skeletal muscle and brown adipose tissue by cold exposure or by
treatment with the β3-adrenergic agonist, and this upregulation is dependent on direct
ERRα binding to the MFN2 promoter [125]. Fourth, ERRα chemical inhibition increases
mitochondrial fragmentation in cultured renal tubular cells, possibly via the predomi-
nant mitochondrial fission process with decreased mitofusin-2 expression [126]. Notably,
the fission machinery of the outer membrane is composed of dynamin-related protein 1
(DRP1) and dynamin-2 (DYN2) [127,128], and their genes (Dnm1l and Dnm2) are compo-
nents of the ERRα-regulated mitochondrial biogenesis gene network. ERRα has also been
shown to induce the expression of the autophagy-regulating kinase ULK1, thus promoting
DRP1-mediated mitochondrial fission [80].

5.2. ERRs in Oxidative Distress

One of the most vivid consequences of oxidative distress is apoptosis due to the
opening of the mitochondrial permeability transition pore. Several essential players of
apoptosis, including pro-caspases, cytochrome c or apoptosis-inducing factor (AIF), are
released into the cytosol. In this context, ERRα-null hepatocytes have been shown to have a
defective apoptotic program that favors necrosis and inflammation [78]. In contrast, ERRα
overexpression has been shown to increase apoptosis in mesangial cells of the kidney [129].
In this study, the authors showed that ERRα overexpression induces a decrease in the
expression of the antiapoptotic gene BCL-2, whereas the proapoptotic markers BAX and
caspase-3 were significantly increased. At the same time, in mesenchymal stem cells, the
PGC-1α/ERRα axis upregulates the expression of Bcl-2 and promotes cell survival [130].
Furthermore, in endometrial cancer cell lines, upregulation of ERRα has been recently
shown to inhibit apoptosis through Bcl-2 upregulation and caspase-3 downregulation [131].
Thus, the anti- or pro-apoptotic function of the ERRs is likely context- and tissue-dependent
and could be related to ROS signaling. Indeed, ChIP-seq [34] and gene expression [131]
profiling have shown that ERRα binds to and regulates the expression of numerous genes
implicated in apoptosis including antiapoptotic (e.g., BCL2, MCL1, BCL2L1, BCL2L2) and
proapoptotic (e.g., BMF, BIK, BNIP3, BCL2L14, BBC3, BCL2L13) Blc2 family members.
ERRα also targets the caspase-3 gene (CASP3) as well as VDAC1-3, which encode VDAC
proteins, which are members of the mitochondrial permeability transition pore (mPTP),
whilst their roles in this process remain controversial.

A hypoxic state occurs when cells have low oxygen levels below that of normal
levels referred to as normoxia. Hypoxia and associated oxidative distress both lead to a
reprogramming of energy metabolism transcriptional programs. While it is still a matter
of debate, it has been hypothesized that hypoxia could promote ROS levels by acting on
complexes I, II, and III of the ETC. One major cellular adaptive response to hypoxia involves
the stabilization and activation of hypoxia-inducible factor (HIF), a key factor controlling
the transcriptional networks involved in reprogramming energy metabolism. HIF-1 is a
heterodimeric transcription factor consisting of a constitutively expressed β-subunit (HIFβ)
and an oxygen-regulated α-subunit (HIFα). HIFα has two isoforms, HIF-1α and HIF-2α
that have distinct roles despite sharing an important homology in structure [132]. Ao et al.
previously reported direct interactions between ERR family members and HIF-1 requiring
the AF-2 domain of ERRα [133]. This study showed that the three ERR family members
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can interact with the functional HIF-1 heterodimer, but not with the individual HIF-1α
or HIF-1β subunit. ERRα–HIF-1 interaction could inhibit ubiquitination of HIF-1α and
thus reduce its degradation. More recently, Zou et al. showed that ERRα could physically
interact with HIF-1α in a prostate cancer cell line [134]. An interaction that is conserved in
drosophila since dERR was also shown to interact with dHIFa [135]. Moreover, Zou et al.
reported that ERRα overexpression enhances HIF-1α protein expression by suppressing
HIF-1α ubiquitination [134]. This result suggests that ERRα could function to pre-adapt
cancer cells to meet hypoxia-induced stress. In bone-marrow derived macrophages, loss
of ERRα promoted HIF-1α stabilization [136]. Interestingly, in neural cell-derived tumors,
the transcription of HIF2A is regulated by ERRα under normoxia and hypoxia. Indeed,
inhibition of ERRα decreases HIF2A mRNA expression and high expression of the ERRα-
encoding gene ESRRA significantly correlates with poor overall and progression-free
survival in neuroblastoma [137]. In skeletal muscle, HIF-2α is also regulated by the PGC-
1α/ERRα axis during the response to exercise and during fiber-type switching [138].
In brief, the ERRs may play a key transcriptional role in response to hypoxia via their
interactions with HIF family members.

6. ERRs in Oxidative Stress-Related Physiopathology

Dysregulation of ROS production has been implicated in the development of various
chronic disorders such as cancer as well as respiratory, neurodegenerative and digestive
diseases. The role that ROS play in disease settings is well studied and can take different
forms by acting either positively or negatively in each distinct disease [1].

In cancer, ROS have a role in apoptosis of tumor cells as ROS production increases
with higher demand for cellular energy for growth and proliferation. Moreover, chemother-
apeutic agents provoke cytotoxic effects on cancer cells via the induction of oxidative stress
and associated cellular damage. ROS can also incite metastasis and radioresistance via
mechanisms to re-establish redox balance fueling drug resistance and cell survival. For
example, the ERRγ inverse agonist GSK5182 has been shown to inhibit an adaptive an-
tioxidant ERR-driven response thereby accentuating the chemotherapy-induced cytotoxic
effects of paclitaxel in breast cancer cells [12]. Moreover, pharmacological inhibition of
ERRα activity in a breast cancer cell line that is resistant to lapatinib treatment leads to
reduced detoxification capacity and increased oxidative damage [11]. Therefore, pharma-
cological inhibition of ERRα re-sensitizes the cells to lapatinib treatment leading to cell
death. Moreover, inhibition of ERRγ by GSK5182 was also found to suppress tumorigenesis
of hepatocellular carcinoma in part by inducing ROS [139]. In contrast, loss of ERRα in
mice exacerbated the development of hepatocellular carcinoma induced by the carcinogen
diethylnitrosamine which was associated with decreased ROS generation [78]. These dif-
ferences of action between ERRα inhibition in breast cancer and hepatocarcinoma could be
explained by a tissue-specific effect or acute loss (pharmacological) versus the chronic loss
(knockout mice) of ERRα. ERRs have been studied in other pathological contexts (Figure 3).
For example, during bacterial infections, ERRα has been shown to be a key component
of the innate immune response against intracellular bacterial pathogens [47,140]. Indeed,
ERRα-deficient macrophages showed lower intracellular ROS levels. The PGC-1α/ERRα
axis promotes mitochondrial function during macrophage activation and limits ROS pro-
duction. Moreover, in myocytes of muscle-specific ERRγ−/− mice, ROS production was
significantly elevated due to mitochondrial defects and this ROS increase impaired my-
otube formation through activation of skeletal muscle atrophy pathways [141]. Therefore,
the ERRγ pathway may have a protective role in age-related or disuse atrophy due in part
to its role in ROS homeostasis. Oxidative stress also plays a key role in the development
of diabetes-related complications. Indeed, mitochondrial dysfunction is associated with
diabetes, and this mitochondrial impairment may trigger oxidative stress [142,143]. It has
been shown that pharmacological inhibition of ERRα in a diet-induced model of obesity
improved insulin sensitivity [23] and similar results have been obtained in an ERRα-null
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mouse model [144]. Therefore, it will be interesting to study ERRα regulation of ROS
metabolism in the context of insulin resistance.
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7. Conclusions and Perspectives

In this review, we have presented a large body of evidence that the ERRs play
pleiotropic roles in the transcriptional control of ROS metabolism. The ERRs can have both
anti- and pro-oxidant effects. Indeed, we have documented that while the ERRs target and
regulate a large array of genes encoding antioxidant enzymes, they also contribute to the
production of cellular ROS via transcriptional control of mitochondrial biogenesis and the
ETC. Moreover, we have highlighted potential roles for the ERRs during both oxidative
eustress and distress, notably attributed to mitohormesis and mitochondrial dynamics
and apoptosis and hypoxia, respectively. As expected, a high degree of complexity charac-
terizes ROS interactions with ERR-regulated pathways, as ROS affect cellular functions
via numerous mechanisms and organelles. Another hurdle to our current understand-
ing of ROS–ERR interactions is that many of these interactions and downstream effects
appear to be cell type- and context-specific. Nonetheless, it has become apparent that
members of the ERR family should be added to the short list of transcription factors that
exert great influence on ROS metabolism and biology. It is therefore hoped that a greater
understanding of the complex interplay between ERR family members and oxidative stress
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may lead to the development of therapeutic strategies in redox medicine for the treatment
of human diseases.
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