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Abstract

Multi-compartmental models of neurons provide insight into the complex, integrative properties of dendrites. Because it is
not feasible to experimentally determine the exact density and kinetics of each channel type in every neuronal
compartment, an essential goal in developing models is to help characterize these properties. To address biological
variability inherent in a given neuronal type, there has been a shift away from using hand-tuned models towards using
ensembles or populations of models. In collectively capturing a neuron’s output, ensemble modeling approaches uncover
important conductance balances that control neuronal dynamics. However, conductances are never entirely known for a
given neuron class in terms of its types, densities, kinetics and distributions. Thus, any multi-compartment model will always
be incomplete. In this work, our main goal is to use ensemble modeling as an investigative tool of a neuron’s biophysical
balances, where the cycling between experiment and model is a design criterion from the start. We consider oriens-
lacunosum/moleculare (O-LM) interneurons, a prominent interneuron subtype that plays an essential gating role of
information flow in hippocampus. O-LM cells express the hyperpolarization-activated current (Ih). Although dendritic Ih
could have a major influence on the integrative properties of O-LM cells, the compartmental distribution of Ih on O-LM
dendrites is not known. Using a high-performance computing cluster, we generated a database of models that included
those with or without dendritic Ih. A range of conductance values for nine different conductance types were used, and
different morphologies explored. Models were quantified and ranked based on minimal error compared to a dataset of O-
LM cell electrophysiological properties. Co-regulatory balances between conductances were revealed, two of which were
dependent on the presence of dendritic Ih. These findings inform future experiments that differentiate between somatic and
dendritic Ih, thereby continuing a cycle between model and experiment.
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Introduction

Neurons possess diverse, elaborate morphologies that allow the

propagation of electrical signals through fine, intricate neuronal

structures [1]. Due to the pioneering work of Rall [2], many multi-

compartment mathematical models of different neurons have been

developed. Why do we build these models and what are they good

for? The answer to this of course depends on the modeling goals in

general, and specifically, on how the model will be used. Certainly,

having multi-compartment models in hand allows us to explore

aspects not possible or feasible to do experimentally, and to

provide mechanistic insights into experimental observations and

paradoxical results [3,4]. Nevertheless, our developed models are

limited by the lack of knowledge of the biological details. That is,

for any given neuron type, there are inevitable uncertainties

regarding the properties of each electrical compartment of the

modeled neuron that cannot be inferred from experimental

observations alone. Therefore, the use of multi-compartment

models allows us to simulate different possibilities in terms of ion

channel types and properties in order to test plausible mechanisms

of neuronal function and generate predictions that can be

experimentally examined.

An essential goal when building multi-compartment models of

neurons is to understand how the density, kinetics and distribution of

biophysical conductances give rise to the neuron’s observed

dynamical output. Given the nonlinear and multi-faceted nature of

neuronal dynamics, such a goal requires insight obtained from

analyzing developed models. However, with the high-dimensionality
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of multi-compartment model equations, mathematical analysis tools

are not available. Furthermore, it has become clear that several ion

channel types across multiple vertebrate and invertebrate species

have varying conductances for a given cell type [5]. For cells to

maintain consistent output across this variability in intrinsic

conductances, different conductances could balance against each

other in a homeostatic way to allow this as required for network

functioning [6]. This principle was conclusively demonstrated in a

recent study [7]. A clear implication of this variability is that it is

difficult to consider that a single, biophysically-based multi-

compartment model can capture the experimental data. As such,

there has been a shift towards developing populations, or ensembles

of models that can collectively capture a neuron’s physiological

essence. Analysis of these model ensembles can subsequently reveal

compensatory balances of conductances [8], and in this way,

ensemble modeling can be considered as a form of analysis for multi-

compartment models.

Inhibitory cells are a heterogeneous class of neurons [9,10].

Their cell type-specific characteristics are likely to be functionally

important [11–14]. Among the various interneuron subtypes in

the hippocampus, the oriens-lacunosum/moleculare (O-LM) cell

located in the CA1 region plays an important role in information

flow, neuronal rhythms, and synaptic plasticity [9,14–16]. O-LM

cells possess a distinct morphology. Their somata and dendrites

are located in the stratum oriens layer. In contrast, their dense

axonal arborizations project to the lacunosum/moleculare layer,

synapsing onto distal dendrites of pyramidal cells, where they are

thought to influence the efficacy of perforant path input [17,18].

O-LM cells have a variety of voltage-gated ion channels across

their somatodendritic and axonal compartments. In particular,

one hallmark feature of O-LM cells is that they exhibit a ‘‘sag’’

response to hyperpolarizing current steps, which indicates the

presence of hyperpolarization-activated cation currents or Ih [19].

Ih contributes to the spontaneous firing of O-LM cells allowing

them to play a pacemaker role, and models have suggested how

they could contribute to the generation of population theta

activities ([20], but see [21]). While the existence of Ih in O-LM

cells has been known for well over a decade, it is unknown whether

Ih is present in the dendrites of O-LM cells. This is essential to

consider as the integrative properties of the dendritic tree in

response to synaptic input could be modulated by dendritic Ih, and

given that synaptic plasticity is known to exist for these cell types

[9,15], this is even more critical. Unfortunately, in general,

performing non-somatic recordings on specific cell types is a

difficult endeavor in rats, and is particularly challenging in mice.

Although multi-compartment O-LM cell models that capture

salient features of experimental data have been developed [22–24],

they only include somatically located Ih. Thus, obtaining any

insights from modeling work would be beneficial.

In this paper, we apply ensemble modeling to hippocampal O-

LM cells in order to consider dendritic Ih. In doing this, we

propose an experiment-modeling cycling approach (Fig. 1). The

benefit of ensemble modeling has been demonstrated [5–8]. Our

intent with the cycling approach here is to take advantage of it in

the context of hippocampal interneurons. Importantly, we focus

on multi-compartment models to allow consideration of non-

somatic properties since, experimentally, this is where the most

challenging aspects lie, and where functionally relevant aspects due

to cellular and synaptic network interactions matter. A major

motivation in our approach is to solidify what should be the best

‘‘next step’’ to take in consideration of detailed, multi-compart-

ment models. Although more detail can always be added, having a

basis or rationale of what would make the most sense to consider

next is part of what underlies our approach. The cycling involves:

(1) model development, database design and simulations, (2)

database building and model extraction, (3) model analysis, and (4)

design examination, limitation determination and back to model

development, as schematized in Fig. 1.

In the present paper, the database design is focused on

examining whether Ih is present in the dendrites of O-LM cells.

We use experimental recordings to statistically rank and extract a

subset of O-LM models that conform to O-LM cell output. We

analyze the resulting ensemble using techniques for the visualiza-

tion of high-dimensional parameter spaces, and examining

conductance histogram plots. We find three co-regulatory

conductance balances, two of which are dependent on the

presence of dendritic Ih. Particular experiments are proposed as

well as consideration of possible next steps.

Results

A methodology for cycling between experiment and
modeling to investigate distributed biophysical
conductances in multi-compartment neuronal models

Developing detailed, multi-compartment neuron models is a

commitment. While it is clear that such models are needed to help

us understand many aspects in the nervous system, it is far from

clear how much detail one should – or needs to – include in such

models. Once a detailed, multi-compartment model is in hand, the

question of its biological correctness and appropriateness is an

evolving process, especially concerning densities, kinetics, and

distributions of voltage-gated ion channels on neuronal dendrites.

It is clear that one cannot take a purely mathematical approach

with such models as not only are there many model parameter

values that need to be determined, but also extracting estimates for

them from experimental data is not straightforward, and these

estimated values exhibit a wide range of variability. Furthermore,

well-defined functional outputs do not typically exist, especially

with regards to interneurons in the mammalian CNS [25]. Thus,

in this paper we propose and use a cycling approach that

encompasses ensemble modeling (Fig. 1) and is applied to a

Figure 1. The cyclical ensemble modeling approach. Schematic
highlighting the methodological links between stages in the ensemble
modeling approach.
doi:10.1371/journal.pone.0106567.g001
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specific, quantitative question. While the use of ensembles of

neuron models itself is not new, the difference and novelty here lies

in our overall approach, with a key aspect being the design of the

database of models to consider from the beginning. Specifically, it

is not mainly or only about obtaining a limited set of optimal

cellular models for subsequent use in network configurations

[26,27] but, rather, more about determining particular hypothe-

ses, finding particular cellular-based predictions to consider

experimentally, and evaluating what aspects in the model should

be addressed and improved next. In this way, we can progress

toward obtaining an understanding of the balanced contribution of

the various conductances in spatially extended models, and to

expose essential model limitations since our models are never

biologically complete. Thus, with our approach, we aim to provide

specific guidance for experimental work and a rationale for what

makes the most sense to consider next. This supports the overall

effort of determining essential balances of densities, types, kinetics

and distributions of biophysical conductances that control

dynamics in particular cell types for network functioning.

Our approach is described by a four-step cyclical process

(Fig. 1). Step 1 involves: (i) developing the base, reference model(s)

from which a database of models will be derived, (ii) designing the

database given the specific question being considered, and (iii)

performing the multiple simulations given the determined

database design and the experimental data protocols. Step 2
involves: (i) building the databases for model and experimental

comparisons and (ii) extracting appropriate models using some

principled criterion. Step 3 involves analyzing the good models to

gain mechanistic insight into their function. Finally, Step 4
involves: (i) examining the specific question considered in the

database design, (ii) determining limitations that would subse-

quently update the reference models of Step 1, and (iii) suggesting

and designing experiments for confirmation of the insights from

Step 3 as well as for further physiological investigation.

In the work here, we examined ion channel conductances and

distributions of hippocampal O-LM hippocampus. We note that

although we present and describe an overall cycling approach

(Fig. 1), aspects of all steps of the cycling approach are not given in

the present paper.

Experimental data usage in developing and designing
multi-compartment neuronal model databases

Experimental data was used as constraints for the model

development (Fig. 1, Step 1(i)). The conductance densities of the

voltage-gated ion channels in the model, the model’s passive

properties, and the morphologies of the model were all constrained

using O-LM cell data where possible, building on previously

developed multi-compartment O-LM cell models [22–24] (See

Methods for full details). Then, using reference models as a base

and with particular questions in mind to examine a neuron’s

character, a model database was designed (Fig. 1, Step 1(ii)). Here,

we were interested in examining whether Ih could be present in

dendrites and so distributions that included Ih in dendrites were

considered in the database design. Although it has long been

known that Ih exists in O-LM cells [19], its distribution along the

cell’s soma and dendrites is unknown, as compared to Ih in

pyramidal cells that have a non-uniform dendritic distribution

[28]. Two morphologies and a range of conductance densities and

distributions were used. We chose to use a brute-force, or coarse

grid database approach for our work both due to its simplicity in

implementation and relatively comprehensive coverage of the

conductance density parameter space [6,8]. For each combination

of model parameters, an instance of the multi-compartment O-

LM model was simulated (Fig. 1, Step 1(iii)) on a high-

performance computing cluster [29] by applying a current clamp

protocol identical to that performed on O-LM cells in mice. The

resulting model outputs – consisting of voltage traces recorded

from the soma – were saved and processed on a local multicore

computer running Ubuntu Linux.

Application of a quantitative metric to rank the ensemble
of O-LM models

We next processed raw voltage trace data from the total set of

models simulated, and extracted quantitative metrics from these

traces so as to enable direct comparisons between model and

physiological O-LM cell output (Fig. 1, Step 2(i)). The goal of this

step was to develop a principled way to determine which model

outputs best corresponded to O-LM cell voltage outputs. Toward

this goal, we used PANDORA, a MATLAB toolbox designed for

the statistical analysis of model and experimental voltage trace

data [30]. We imported both the model and O-LM cell

experimental data into PANDORA and performed a ranking

function on the model outputs, where each model was assigned a

distance (an error measure) with respect to the entire experimental

dataset (see Methods). As described in detail in the Methods, this

measure is a quantifiable distance metric that is a statistical

measure of all of the model’s electrophysiological features

compared with experimental ones and provides an objective test

of its goodness-of-fit to the experimental data. We used equal

weighing of the features to avoid the unintentional introduction of

bias that would result by considering one or multiple features to be

more important than others. We thought this reasonable to do at

this time since it is currently unknown which features are critical

for O-LM cell function in network and behavioural contexts. It is

also important to note that this distance metric takes into account

the biological variability as the various features are weighted by

their standard deviation. The models were sorted according to

their distance from the experimental dataset such that highly-

ranked models had low distance values, and poorly-ranked models

had high distance values (Fig. 2A). Voltage responses to 690 pA

current steps illustrated that a highly-ranked (Fig. 2A, red arrow)

O-LM cell model (Fig. 2B) better represented O-LM cell

properties than a poorly-ranked (Fig. 2A, black arrow) O-LM cell

model (Fig. 2C), as confirmed by comparing several features, since

the distance measure takes all features into consideration (see

Methods). Examples can be viewed in Fig. 2 where highly-ranked

models (Fig. 2B) better represented the empirical set of physio-

logical O-LM cell recordings (Fig. 2D, E), as compared to lower-

ranked ones (Fig. 2C). Thus, highly-ranked models seemed to

capture important intrinsic properties of O-LM cells which the

poorly-ranked models did not.

Consideration of principled criteria for determining
subsets of appropriate O-LM models in the ensemble

Although highly-ranked models better represented O-LM cells

than poorly-ranked models (Fig. 2), it is not obvious where a cut-

off point should be applied to distinguish the two sets as the

distance metric considers all features in a ranked fashion. A

principled criterion is therefore needed to extract appropriate

models (Fig. 1, Step 2(ii)). We first considered determining a cut-

off point from the distance measure itself, noting that the distance

measure incorporates consideration of a multitude of electrophys-

iological features (see Methods and Supplementary Materials). We

refer to this cut-off point as the general criterion. This was done by

plotting the slopes of the distance measure with respect to the

model rank, which is equivalent to the difference of distances

between adjacent models in the ranking. In order to test whether

Ensemble Modeling As an Investigative Tool: Application to O-LM Cells
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there were morphology-specific differences in the intrinsic

dynamics of the O-LM models, the models using each of the

two reconstructed O-LM cell morphologies were ranked and

analyzed separately. After plotting the slopes for models of both

morphologies, it was clear that the distance values changed rapidly

in the first few thousand models, after which they increased at a

relatively steady pace. In other words, model errors accumulated

at a constant rate (Fig. 3A, horizontal dashed line). Eventually, the

distance values of the ranked models for both morphologies started

changing again at a more rapid rate. We therefore set the point at

which the ranked models started to rapidly increase their distance

values as the cut-off (Fig. 3A, vertical dashed line), as chosen by

eye. For models of morphology 1, this resulted in the first 60,000

highly-ranked models counting as appropriate O-LM cell repre-

sentations (Fig. 3A); likewise, for models of morphology 2, the first

90,000 highly-ranked models were incorporated into the ensemble

of appropriate O-LM cell representations (not shown). This total

set of 150,000 models was considered the general subset of

appropriate O-LM models.

To assess the validity of the general criterion, we additionally

considered a more restricted criterion in order to check whether

the conductance density balances found in the two subsets would

overlap. For this, we chose representative electrophysiological

measures for both the depolarizing and hyperpolarizing current

step voltage traces. We used the firing frequency of the models

during the current injection step as a representative measure of

depolarizing current step traces and the time constant of the

hyperpolarization-induced sag response as a representative mea-

sure of hyperpolarizing current step traces (Fig. 3B–D). These

specific measures contributed to the overall distance measure

metric. When comparing the firing frequencies of the models for

both morphologies, we noticed that early on in the ranking, some

models exhibited behaviour which we termed failure-to-fire. These

models were characterized by a combination of conductance

densities that prevented the model cell from firing more than one

or two action potentials during the +90 pA current injection step

(Fig. 3C). Since none of the experimental O-LM cell voltage traces

had an observed instance of this failure-to-fire behaviour, we

deemed models that possessed this characteristic to be potentially

inappropriate O-LM cell representations, and set the restricted

cut-off at the rank prior to the first failure-to-fire model. In the case

of models of morphology 1, the first failure-to-fire model occurred

at rank 13,613 (Fig. 3B) whereas for models of morphology 2, the

first failure-to-fire model was found at rank 19,245 (not shown).

The resulting set of 32,856 models (13,612+19,244 models without

failure-to-fire behaviour) was considered one candidate for a

restricted subset of appropriate O-LM models as determined by

the firing frequency measure. For the representative measure of

the hyperpolarizing traces, the time constant of the sag response,

we plotted the time constants as a function of model rank (Fig. 3D)

and compared them to the time constants exhibited in the

experimental dataset, by plotting the histogram of time constants

for the latter (Fig. 3E). We observed that the time constants for the

models of either morphology exhibited appropriate values for the

first tens of thousands of models – as determined by being within

the range observed in the physiological O-LM cells (Fig. 3E).

However, at a certain point, the time constants became markedly

lower and fell outside the range of those observed in the

physiological O-LM cells (Fig. 3D, dashed line). We marked the

approximate rank at which the models started exhibiting

inappropriate time constants as another restricted cut-off point.

This point was much further down the ranking of models than the

restricted cut-off point for the firing frequency criterion, however

(compare the location of arrow in Fig. 3B and dashed line in

Fig. 3D; data for models of morphology 2 was similar and is not

shown). Therefore, we only considered the cut-off point deter-

mined by analyzing the firing frequency behaviour, above,

forming the restricted subset of appropriate O-LM models to be

Figure 2. Ranking of O-LM models against experimental data. (A) The ranking of models against O-LM cell experimental recordings shows a
gradual decrease of the goodness-of-fit of a given model as the rank of the model becomes poorer. Hyperpolarizing and depolarizing voltage
responses of two representative models, a highly-ranked one (B, red arrow in A) and poorly-ranked one (C, black arrow in A) are shown for
comparison purposes. Examples of experimental voltage traces are shown in (D, E).
doi:10.1371/journal.pone.0106567.g002
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used as a comparison to the more general subset determined by

the difference of distances metric.

Three co-regulatory balances were found between
conductances in the subsets of appropriate O-LM models
in the ensemble

Once the general and restricted subsets of appropriate O-LM

models were determined, we examined the conductance density

space of the models in each subset (Fig. 1, Step 3). For this, we

constructed conductance histogram plots (Figs. 4, 5). These plots

consist of histograms of the number of models contained in each

subset of appropriate O-LM models that possessed any combina-

tion of conductance density values for the two ion channel

conductances being considered. In order to avoid having to

consider a very large set of conductance histogram plots, we used

clutter-based dimension reordering (CBDR), an algorithm for the

visualization of high-dimensional data in two dimensions, as a way

to constrain which conductances we considered [31–33]. We

considered the conductance density values for all the ion channel

conductances of our models as the dimensions of the space, and

the distance as the value of any given point in the space. The

CBDR algorithm then determined an ordering of the conduc-

tances where the resulting structure of the distance space was most

sensitive to the high-order conductances, and least sensitive to the

low-order conductances. That is, changes in high-order conduc-

tance density values would result in large changes in the distance

value for models, whereas changes in low-order conductance

density values would not result in appreciable changes in the

distance values. We could thus eliminate the low-order conduc-

tances from further consideration, as they did not seem to affect

the behaviour of the models as exercised by the particular

depolarizing and hyperpolarizing current injection step protocols

used. The high-order conductances were gNad, gKA, gh, gKdrf, and

gKdrs, whereas the low-order conductances were gNas, gM, gAHP,

gCaL, and gCaT. We proceeded to compute the conductance

histogram plots for all pairwise combinations of the high-order

conductances as determined by CBDR analysis, in addition to one

conductance that straddled the boundary between high- and low-

order conductances, gAHP, that provided a check. The gAHP

conductance did not interact with any of the higher-order

conductances, which served as confirmation that it, and all

lower-order conductances, could be discounted from further

analysis. We found three resulting categories of relationships

between high-order conductances, similar to that found in

Figure 3. Extracting subsets of appropriate O-LM models from the database. (A) Plot showing the general subset cutoff determined by
visual examination of the derivative of the distance metric with respect to the model ranking in the database. Vertical dashed line shows cutoff point.
(B) The firing frequency plotted as a function of model rank demonstrates one restricted subset of O-LM models. The arrow points to the first failure-
to-fire model, thus marking the cutoff point for this restricted subset. (C) The voltage traces of the failure-to-fire model shown in (B). (D) The time
constant of the hyperpolarization-induced sag plotted as a function of model rank. The vertical dashed line shows the point in the ranking at which
the time constant starts to deviate from the experimentally observed time constants. (E) Histogram of hyperpolarization-induced sag time constants
within the experimental O-LM cell dataset.
doi:10.1371/journal.pone.0106567.g003
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previous work in an ensemble of model neurons of the crustacean

stomatogastric ganglion network [34]. Using similar terminology,

we found that conductances showed (1) no clear interaction, (2) a

local peak or preference of conductance density values, or (3) a co-

regulation. The first two cases were not deemed to be of interest in

terms of uncovering putative conductance density balances. In the

case of no clear interaction, any change in the maximum

conductance density of one or the other conductance had no

effect on the resulting models’ goodness-of-fit as measured by the

number of models contained within the general or restricted

subsets of appropriate O-LM models and that possessed those

conductance density values (Fig. 4A). For the second case of local

preference, more models in the general or restricted subsets of

appropriate O-LM models exhibited one particular combination

of conductance density values, with tapering-off numbers of

models exhibiting nearby combinations of conductance density

values (Fig. 4B). In this case, although there was a clear preference

for a particular value of one or both conductances, the two

conductances did not interact in a meaningful way. The third

category of relationships, that of co-ordinated regulation or co-

regulatory balance, was demonstrated by the highly-ranked

models exhibiting a distribution of pairwise conductances such

that models with higher values of one conductance also had higher

values of the other conductance. This is visually shown by a

characteristic ‘‘ridge’’ in the conductance histogram plots of the

two conductances in question (Fig. 5B,D,F). We elected not to do

any formal statistical analysis of the co-regulations due to the

sparseness of the data (3–5 maximal conductance considered) and

also because the ‘‘ridge’’ can be clearly seen. Of all the examined

pairwise combination of conductances, we only found three co-

regulatory balances. Intriguingly, these three co-regulations were

equally present in both the general as well as the restricted subsets

of appropriate O-LM models. This indicated that the general

subset, as determined by the general cut-off criterion using the

difference of distance metric, was not too liberal in producing a set

of models that best conformed to electrophysiological O-LM cell

recordings. An example can be seen in Fig. 5A–B of two

conductance histogram plots for the same two conductances, with

one plot obtained from the general subset and the other from the

restricted subset, and showing similar co-regulatory ‘‘ridges’’.

The first co-regulatory balance observed was that between gKdrf

and gNad in the case of all models of both morphologies (Fig. 5A–

B). This indicates that the fast inward sodium conductance in

dendrites is balanced against the fast outward delayed-rectifier

potassium conductance: when maximum conductance densities of

one of these conductances is increased or decreased, the maximum

conductance densities of the other is also increased or decreased in

a corresponding fashion in order to maintain physiological O-LM

cell output. The remaining two co-regulations were only observed

in those models that had Ih conductances distributed in their

dendrites – that of gh and gKdrs as well as gh and gKA (Fig. 5C–F).

In this case, inward Ih conductance was co-regulated against both

the slow outward delayed-rectifier potassium conductance as well

as the outward A-type potassium conductance such that increases

of gh occurred with decreases of gKdrs or gKA. For models that

expressed Ih in the somatic compartments only, no ‘‘ridge’’ (i.e.,

co-regulation) was seen between gh and both gKdrs and gKA

(Fig. 5C, E). On the other hand, models with Ih uniformly

distributed across all somatic and dendritic compartments

exhibited these co-regulations (Fig. 5D, F). In all cases, there were

no specific differences in the patterns of co-regulations found for

morphology 1 and 2, suggesting that the co-regulations were not

dependent on morphological details.

Ih may be present in dendrites and a virtual protocol
indicates that dendritic Ih may be detected
experimentally

Our database was designed to address the specific question of

whether Ih is present on O-LM cell dendrites, which is unknown at

present (Fig. 1, Step 4(i)). As a result, of particular interest to us was

the finding that two co-regulations between conductances in the

models depended on the presence of dendritic Ih as described in the

previous section. We found that in both the general (Fig. 6A) and

restricted (Fig. 6B) subsets of appropriate O-LM cell representa-

tions, somatic Ih only models preferentially expressed higher levels

of maximum conductance densities of Ih relative to those with Ih

conductances uniformly distributed in both soma and dendrites.

This makes sense since one would expect that a wider distribution

would not need as high a density to maintain overall balances.

Furthermore, there were similar amounts of highly-ranked models

Figure 4. Conductance histogram plots showing no clear
interaction or local preference. Pairwise conductance histogram
plots show the number of highly ranked models, expressed as a
percentage of the general subset of O-LM models, that possess the
parameter values for the two given combination of ion channel
maximum conductance densities shown on the x- and y-axes. (A)
Conductance histogram plot for the somatic sodium conductance and
AHP potassium conductance demonstrating no clear interaction. (B)
Conductance histogram plot demonstrating a local preference between
the fast delayed-rectifier potassium conductance and h conductance.
Note the peak in the middle of the conductance density range for both
conductances.
doi:10.1371/journal.pone.0106567.g004
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Figure 5. Conductance histogram plots for co-regulatory balances in the highly-ranked model database subsets. Histograms for
pairwise conductance density values show three co-regulations between four of the nine active conductances present in the highly-ranked model
subsets. Dendritic sodium is co-regulated with the fast delayed-rectifier potassium conductance as seen in both the general (A) and restricted (B)
database subsets. The h conductance is co-regulated with both slow delayed-rectifier potassium conductance and A-type potassium conductance, as
seen by the characteristic ridge in (D) and (F). These co-regulations are only present in the subset of models with h-current distributed uniformly
across the somatic and dendritic compartments (D, F) and not the models with h-current distributed within the soma only (C, E).
doi:10.1371/journal.pone.0106567.g005
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in both subsets of appropriate O-LM models, regardless of model

morphology, that had somatic Ih only (77,806 models in the general

subset) as well as somatodendritic Ih (76,194 models in the general

subset). The equal likelihood of models with either distribution of Ih

channels being ranked highly in the ensemble of O-LM models,

given that their Ih conductance densities were appropriately

balanced, therefore did not allow for a clear prediction of dendritic

Ih conductances in biological O-LM cells.

Close examination of our highly-ranked models revealed that

they did not adequately capture the hyperpolarization-induced

‘‘sag’’ response typically observed in O-LM cell experimental data.

This can be seen in Fig. 2, where the biological cells (Fig. 2D,E)

show larger sag as compared with the highly-ranked models (e.g.,

Fig. 2A). Specifically, this measure, PulsePotSag, has a mean of

14.2 mV and a standard deviation of 3.1 mV in the experimental

dataset (see Table S1), whereas its value maximally approaches

8 mV in any of the models. This is shown in Fig. 7 where this

measure is plotted for general and restricted sets, and for models

with or without dendritic Ih. Considering the models without

dendritic Ih, we see that as the Ih conductance density increases,

the sag amplitude also increases. One might think that if we simply

increased this value more, the sag amplitudes in the models could

better represent those seen in experiment. However, this is not the

case, as an earlier version of our model database, with larger Ih

conductances, exhibited unacceptable models (not shown) when

the Ih maximal conductance densities were larger than 0.5 pS/

mm2, which is the upper range of values in the current database. In

other words, this increase in sag amplitude with increasing Ih

conductance is due to a balanced increase of Ih conductance, as

other conductances in the variety of models are not the same.

Now, considering the models with dendritic Ih, a larger sag

amplitude can be obtained, but with the restricted set, models do

not possess Ih maximum conductance densites greater than

0.1 pS/mm2 (Fig. 7, green line). Again, this increase in sag

amplitude with larger Ih conductances is a balanced response.

We note that these observations are a result of our database

analyses, and would not have been feasible to uncover using hand-

tuned modeling. We further note that our database design of

models with and without dendritic Ih allowed us to easily examine

what differences might exist between the two cases and to clearly

show that dendritic Ih models are better at capturing the sag

amplitude feature. However, as noted above, the sag amplitude

feature is a clear limitation of the models (Fig. 1, Step 4(ii)).

Figure 6. Inverse relationship between Ih maximum conduc-
tance densities and Ih distribution. Histograms for highly-ranked
models in the general (A) and restricted (B) database subsets as a
function of Ih distribution and Ih maximum conductance densities
shows that highly-ranked models with somatic Ih only preferentially
exhibited higher maximum conductance densities, whereas models
with somatodendritic Ih preferentially exhibited lower maximum
conductance densities.
doi:10.1371/journal.pone.0106567.g006

Figure 7. Hyperpolarization-induced sag response varies as a
function of Ih maximum conductance density and somatoden-
dritic distribution in models. Plots of the average sag response (mV)
of model outputs as recorded in the soma as a function of different Ih
maximum conductance density values across different model subsets.
The general and restricted subsets of highly-ranked models with Ih in
soma and dendrites are shown in red and green, respectively (‘‘General
S+D’’ and ‘‘Restricted S+D’’, respectively, in the figure legend). The
general and restricted subsets of highly-ranked models with Ih in soma
only are shown in blue and black, respectively (‘‘General S’’ and
‘‘Restricted S’’, respectively, in the figure legend). Error bars denote
standard deviations of the sag response in the respective model
database subsets.
doi:10.1371/journal.pone.0106567.g007
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We next considered how one might assess whether dendritic Ih

is present in O-LM cells, noting that we already know that Ih is

present in O-LM cells [19], so it is not simply a matter of applying

pharmacological blockers. We developed a virtual experimental

protocol and applied it using highly-ranked models of both

morphologies, Ih distributions, and high vs. low Ih conductance

densities, that is, a total of eight different highly-ranked models.

The protocol consisted of a mixed voltage clamp/current clamp

virtual experimental protocol as follows: somata were held at a

resting membrane potential of 274 mV using a voltage clamp

while, simultaneously, a current clamp provided –5 nA (for

morphology 1) or –2 nA (for morphology 2) hyperpolarizing tonic

pulse in a proximal dendrite of the models 30 mm away from the

soma. A distance of 30 mm was chosen as it was deemed to be far

enough to consider for dendritic Ih presence, but not too far to be

too difficult, given the extreme challenges in performing dendritic

recordings on inhibitory cells. Applying this protocol to the eight

highly-ranked models in our ensemble of different characteristics

allowed us to evaluate the presence of dendritic Ih. The somatic

voltage responses did not demonstrate a sag both in cases of

models with somatodendritic Ih (Fig. 8A, black trace) and somatic

Ih only distributions (Fig. 8B, black trace). Only models with high

Ih in dendrites showed any demonstrable sag (Fig. 8A, colored

traces, with maximum gh of 0.5 pS/mm2), except in the case when

the dendritic Ih conductance was low (traces not shown).

Furthermore, voltage measurements further away from the soma

along the same dendritic branch showed less hyperpolarized

steady-state values with more pronounced sag (Fig. 8A). On the

other hand, lack of dendritic Ih consistently resulted in no sag

response even with high Ih conductance (Fig. 8B, colored traces,

with maximum gh of 0.3 pS/mm2). Crucially, no models with

somatic Ih only exhibited any sag response with the protocol,

indicating that any somatic sag current effects do not propagate to

dendrites. Thus, we conclude that for a sag to be measured in an

O-LM cell using the mixed VC/IC setup as outlined above, Ih

must be present in the dendrites at high enough densities. We note

that these ‘‘high densities’’ are consistently lower than those

measured in pyramidal cells [28].

Discussion

Summary and Predictions
We have proposed and used an approach in this work that is

contingent on, and emphasizes the close inter-dependence of

modeling and experiment for the model development, for the

model database design and for providing specific predictions from

the ensemble model analyses.

In the present study, we wished to investigate the question of

whether hyperpolarization-activated inward currents, Ih, (due to

HCN channels) could be present on the dendrites of oriens-

lacunosum moleculare (O-LM) inhibitory cells located in the CA1

region of hippocampus. This is currently unknown, and it is an

important aspect to consider as dendritic Ih could have a strong

impact on incoming synaptic input. Because it is difficult to

determine the answer to this question by direct experimental

approaches, we were motivated to develop a computational

modeling approach that could address this question. As such, we

developed a cyclical ensemble modeling approach (Fig. 1) for

investigating the interaction of voltage-gated conductance densities

and distributions that give rise to intrinsic, cellular output, and

applied it to O-LM cells. By examining the pairwise interactions of

maximum conductance densities for the eleven different voltage-

gated ion channels present in each model of the experimentally-

constrained resulting ensemble of O-LM models, treating somatic

and dendritic sodium conductances as well as somatic and

somatodendritic Ih separately, thus giving rise to 55 total

possibilities, we found only three instances of co-regulatory

balances between conductance densities. Two of these co-

regulations involved the Ih current, suggesting that O-LM cell

electrical activity may be sensitive to Ih conductances. The third is

between the dendritic fast inward sodium conductance and the fast

outward delayed-rectifier potassium conductance. Given that these

two conductances have similar fast kinetics and dendritic

distributions, but opposite polarities, it is perhaps not surprising

that this positive co-regulation emerges from our analysis. We

interpret this particular co-regulation observation as a validation of

our ensemble modeling analysis. We also developed a mixed

voltage/current clamp protocol and tested it on our highly-ranked

models in order to test for the presence of dendritic Ih, if

performed experimentally.

From both the co-regulations found and the experimental

protocol tested, we make three primary predictions regarding the

physiological character of Ih currents in O-LM cells. The first is

that the Ih conductance is smaller than that measured in CA1

pyramidal cells [28]. Our ensemble of models had 0.5 pS/mm2 as

the largest allowable value for the maximum conductance density

of gh. In a previous version of our ensemble, this was the lowest

value, and any larger values produced universally inappropriate

O-LM cell output (data not shown). Second, due to the observed

co-regulations of gh with both gKA and gKDRs in the case of models

with uniform somatodendritic gh conductance, if a positive

correlation is observed between gh and either of these two

potassium conductances in O-LM cells, we predict that it is likely

that Ih is present on those O-LM cell dendrites, as only the models

in our ensemble with dendritic Ih exhibited these co-regulations.

Third, using our mixed voltage/current clamp experimental

protocol, we predict that sag will be observed in the dendritic

compartment only when dendritic Ih is present; somatic Ih will not

propagate into the dendrites. It is critical to note that this

prediction arises because we had a set of appropriate O-LM

models with differing parameter values from which to apply the

protocol. With a single hand-tuned model, this would not have

been possible. These findings and predictions point to the utility of

the ensemble modeling approach as an investigative tool of a

neuron’s properties. We note the importance of determining the

physiological question at the outset of the approach in order to

design the appropriate model database to be built and analyzed for

insights and predictions.

Comparison to other ensemble modeling approaches
The approach taken in our work here can be thought of as a

combination of previous ensemble modeling studies such as that of

Günay and colleagues [35] as well as Hay and colleagues [26].

Günay and colleagues built model databases to show that they

could capture the variability seen in experimental recordings from

globus pallidus neurons. Their results suggested increased atten-

tion on dendritic fast sodium conductance characteristics that were

examined and proposed to have functional importance in

Parkinson’s disease [36,37]. The focus of this study, therefore,

was on the potential functional role of particular cell types and ion

channels, with the network contributions of globus pallidus

neurons in this case. On the other hand, sophisticated and

comprehensive approaches utilizing evolutionary algorithms, a

class of optimization algorithm that includes multiple objective

optimization (MOO) [26,27], have been developed to obtain

populations of models that represent the variable experimental

data. Hay and colleagues applied a MOO approach to layer 5b

(L5b) pyramidal cells in order to capture their experimental
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variability, as well as to maintain a limited set of output

characteristics identified a priori. This included both perisomatic

voltage-gated Na+ and dendritic Ca2+-generated action potentials.

These models were designed and constrained in order to broadly

capture interesting experimental features of L5b pyramidal cells

and therefore used as building blocks large-scale modeling studies

of cortical networks.

Since one never has the full extent of experimental data to fully

constrain multi-compartment models, along with the fact that

models will never fully encompass all biological details, our focus

here is on approaching the problem of considering specific

questions using a quantitative ensemble model approach. In the

work here, we mean the intrinsic behaviour of O-LM cells and

their role in hippocampal networks. In practice, this means having

back and forth considerations between model and experiment (i.e.,

the cycle schematic in Fig. 1), so that functional aspects and

potentially important characteristics, for example, Ih in dendrites,

can be examined. Thus, while our approach overlaps in some

respects with other brute-force ensemble modeling techniques as

per Günay and colleagues [35] as well as MOO approaches such

as Hay and colleagues [26], our methodology differs – we design

our ensemble databases to explore a specific question involving

distributed biophysical conductances (unlike Günay and col-

leagues), and we use brute-force methods and a ranked distance

metric (unlike Hay and colleagues) to build and evaluate our

ensemble models.

Although sophisticated evolutionary algorithms of which MOO

is an example are something that we could consider taking

advantage of, these have a slightly different emphasis from our

approach in that they inherently focus on model optimization.

Because evolutionary algorithms can find optimal solutions more

quickly than brute-force approaches, they are often considered to

be more computationally efficient. However, in our approach we

are interested in finding comprehensive subsets of appropriate

solutions (models) from the entire parameter space. This becomes

a more pressing issue as distributions of channels, which are not

typically known, also need to be considered. Because evolutionary

algorithms are subject to terminating at local minima, this means

that in order for the algorithm to cover the entire parameter space

reliably, many repeated runs are required, thus blurring the line

between evolutionary algorithm and brute-force methods. Fur-

thermore, a brute-force grid search may be more appropriate

when a ‘‘complete’’ multi-compartment model in terms of

biophysical ion channels is lacking. In other words, an approach

that can comprehensively provide guidance as to the appropriate

regions of parameter space, even if it initially covers a coarse grid

of parameters, may be more desirable when considering the

exploration of functionally relevant aspects of models. However,

evolutionary algorithm approaches could be useful in examining

more specific regions of the parameter space that are of interest.

The complementary use of coarse-grid and evolutionary algorithm

ensemble approaches should be considered in the future.

Using brute-force database techniques as a form of model

analysis was proposed by Prinz and colleagues [38], expanding on

the work in [39], where the point was made that analytical

techniques such as bifurcation analysis are not possible when the

systems under consideration, such as multi-compartment compu-

tational models, possess a large number of variables with

overlapping time scales. It may be that quantitative analysis of

large numbers of simulations could be used together with

simplified models that can be analyzed using bifurcation theory,

by linking particular balances and mechanisms in multi-compart-

ment and simplified models respectively. In a similar vein, Achard

and DeSchutter [40] showed that different parameter sets of a

cerebellar Purkinje neuron model could produce similar output,

and described the examination of the model’s parameter

landscape as an important consideration for understanding

neuronal homeostasis. Both brute-force and genetic algorithm

Figure 8. Virtual protocol on models indicates how dendritic Ih may be detected experimentally. Highly-ranked models were subjected
to a mixed voltage/current clamp virtual experimental protocol as described in the main text. Somatic and dendritic traces for a highly-ranked model
with Ih in soma and dendrites (A) and Ih in soma only (B). The maximum conductance density for gh was 0.5 pS/mm2 for the model with Ih in soma and
dendrites (A) and 0.3 pS/mm2 for the model with Ih in soma only (B). Both models used morphology 1. Somatic traces are shown in black, and
dendritic voltage traces, measured along various points on the same dendritic branch, are shown at distances for both models as per the figure
legend (all numbers in mm).
doi:10.1371/journal.pone.0106567.g008
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approaches to model parameter space explorations are summa-

rized in [41]. There, however, the emphasis was on model

optimization, that is, finding the subsets of models that best fit the

experimental data, as opposed to the approach described in this

work of thoroughly examining the model space to find patterns in

parameters that both underlie good models as well as determine

when and why models fail to reproduce experimental data.

In an excellent perspective, Marder and Taylor [8] described

why populations of models should be built, and provided a

summary of experimental and computational work describing this

paradigm shift in the field. We note that these methodological

advances have been largely spearheaded by work in the crustacean

stomatogastric ganglion network (STG), where there are not only

detailed cellular models – to build the model ensembles – but also

deep insights into network function and behavioural contexts that

can be uniquely leveraged to confront and examine issues of

variability and homeostasis. Hudson and Prinz [42] took

advantage of their original database [38] in order to examine

the robustness of activities and linear correlations. In that work,

they found that Ih and IA were robustly correlated in their model

database. Interestingly, IA and Ih co-regulations were also found in

the present ensemble database of appropriate O-LM models.

However, Hudson and Prinz’s work used single compartment

models, whereas we found co-regulations of IA and Ih only when Ih

was distributed in both soma and dendrites.

Prinz and colleagues [43], additionally reviewed in [44],

examined how tightly regulated parameters needed to be for

network output and found that there was considerable flexibility in

parameters required for appropriate model output, indicating that

there could be significant animal-to-animal variability in neuronal

ion channel densities. Although it is possible to simplify the

complexity of models in order to perform dynamical systems

analysis [45], there are always limitations in model details that

make analysis difficult. The simple motor pattern system of the

STG allowed these questions to at least be addressed in a

behaviourally-relevant way.

It is important to note that most multi-compartmental models

are not developed with biophysical details from experiment. This

is more prevalent in vertebrate systems, especially inhibitory cells,

which are only beginning to be characterized. Hippocampal

interneurons are an example of cell types whose network roles are

not well understood in terms of computational principles [46],

despite the plethora of experimental data and theories regarding

interneuron function (e.g., [11,20,25,47,48]). This is therefore

another reason to support the use of coarse-grid or brute-force

parameter search techniques such as the one used in this work,

since a more inclusive examination of models is needed when the

functional role, and importance of the model’s various ion

channels for fulfilling that role, are unclear. This is in line with

critiques of the database approach by Nowotny and colleagues

[45], where they surmised that an important function of such

database approaches may be to determine general principles of

model behaviour in the parameter space, rather than uncover all

possible dynamical regimes. Furthermore, as the models are used

to examine ideas regarding cell function, and experimental

predictions are formed and verified, there will need to be several

cycles of such work, where further ensemble modeling studies are

done before a more complete understanding of interneuron

function can be developed.

The role of O-LM cells and the relevance of Ih currents
As techniques grow more sophisticated, we learn more about

the cell-type specificity of intrinsic and synaptic characteristics of

interneurons [49], along with their specific, putative roles [12,13].

The precise roles that interneurons perform during physiological

functioning of hippocampus are not known. For O-LM cells, it was

previously proposed that, due to their h-current kinetics, O-LM

cells could play a key role in generating theta-frequency rhythms

in the CA1 region of hippocampus [20]. This line of thinking

originated with the observation that O-LM cells fire intrinsically at

approximately theta frequencies in the absence of synaptic input

[19]. Subsequent experimental work using dynamic clamp

techniques, however, provided evidence against this idea [21].

Another putative role for O-LM cells in the CA1 hippocampal

microcircuit emerged in studies of feedback excitation of O-LM

cells by pyramidal neurons [50,51]. These studies showed that

CA3 (via Schaffer collaterals) activation of CA1 pyramidal cells

excited O-LM interneurons, which would then, in turn, inhibit

entorhinal cortical input at the distal dendritic regions of

pyramidal cells. Conversely, therefore, decreased Schaffer collat-

eral activation of pyramidal cells resulted in increased responses to

entorhinal cortical input. This alternation of input strength

between entorhinal cortical regions, which encode sensory

information, and CA3, representing previously stored associations,

onto the CA1 network, has been proposed as a way for CA1 to

support memory encoding and retrieval processes [51] or to

function as a match/mismatch detector between CA3 stored

representations and entorhinal cortical sensory information [52].

More recently, a computational modeling study suggested that

encoding and retrieval dynamics in CA1 occurs as a result of

differential interneuronal activation across phases of the theta

cycle [53]. In particular, O-LM cells were suggested to serve as

‘‘gates’’ of information flow onto pyramidal cells, switching

between novel sensory information from entorhinal cortex and

previously stored information from the CA3 region. A recent

optogenetic study of O-LM cells provided some confirmation for

this hypothesis in that a ‘‘gating’’ role for O-LM cells was indeed

observed, but found to be dependent on cholinergic neuromodu-

lation of O-LM cells, not based on theta frequency-dependent

activation of O-LM cells [14]. Thus, the role of O-LM cells in

hippocampal functioning is far from clear, but particular details

that are contributing to our understanding are being uncovered.

Together with insights derived from modeling studies, specific

balances and mechanisms that are functionally important can

emerge.

The voltage dependence and kinetics of Ih endow it with the

possibility of contributing in many ways to cellular output - such as

setting resting membrane potential and providing protective effect

along with pacemaking possibilities, in general [54]. While we do

know that Ih exists in O-LM cells [16,19], and our ensemble

modeling work here supports the possibility that Ih could be

present in dendrites, how Ih might contribute to putative O-LM

cell roles remains to be determined. A recent study using whole

cell recordings on CA1 pyramidal neurons demonstrated the

importance of particular Ih distributions in dendrites for allowing

temporally coincident inputs from spatially distinct synaptic

contacts to synchronously affect the soma [55]. Given this

importance of Ih in compensating for delays in signals from

spatially spread-out complex dendritic arbors in pyramidal cells, it

may be the case that similar mechanisms are at play in O-LM cell

dendrites, if Ih is indeed present there. More generally, such work

exemplifies the critical contributions of active conductances in

dendrites for neuronal synaptic integration [56]. O-LM neurons

are the targets of diverse sources of synaptic input, both from

excitatory recurrent collaterals from pyramidal cells as well as

excitatory cholinergic afferents and inhibitory septohippocampal

GABAergic projections [50,57–59]. Cholinergic activation of

hippocampal interneurons in particular has been shown to be
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cell type-specific in its neuromodulatory effects by engaging

interneurons through a variety of post-synaptic receptors, giving

rise to differential effects on interneuron contributions to network

oscillations [60]. Thus, given the varied incoming synaptic inputs

to O-LM cells, it is important to know whether Ih is present in the

dendrites of O-LM cells as well as how it is distributed.

Limitations and next steps
A limitation of our approach pertains to the nature of the distance

metric. Although we incorporated 103 total electrophysiological

measures in the standard score, or z-score, normalized distance

statistic when comparing model to experimental traces (see Methods

for details), we used a liberal approach of including more measures

than were necessary; that is, some redundancies in the measures

exist. Furthermore, all measures were equally weighted; that is, no

one measure was considered more important than any other for

determining the ranking for a given model against the experimental

dataset. We settled on this approach in order to develop a general

technique of matching models to experimental data without

needing to arbitrarily weigh certain measures as more or less

important than others, which might have biased the resulting

ranking. As a result, some models were ranked highly that were not

appropriate O-LM cell representations, such as the ‘‘failure-to-fire’’

models shown in the Results section (Fig. 3C). Therefore, the

distance metric we used may not be appropriate in all experimental

and modeling contexts, and specific tuning may be required. In the

case of the failure-to-fire models, a higher weighting of the

PulseSpikes measure, which counts the number of spikes during

the current injection period (Table S2), would have ensured that the

failure-to-fire models were more heavily penalized, as their dearth of

spikes would have led to a low PulseSpikes measure relative to the

experimental dataset. However, such manual tuning of the distance

metric is not desirable in general as there is no guarantee that all

highly-ranked models that are in fact poor representations of

experimental cell behaviour can be found. Additionally, without

having a clear functional relevance of any given electrophysiological

measure it would be unclear how to rationalize an increased or

decreased weighting, so that weighting choices would be arbitrary.

One way of avoiding the trap of manual adjustment is to weigh any

measure that is more than, say, two standard deviations of the

experimental dataset away from the mean more heavily than those

below two standard deviations. This would help ensure that poor

measures result in higher distance values for the models exhibiting

such measures so that they would more likely to be lower-ranked.

Alternatively, one could simply remove all models from the

database that are not within the two standard deviations of the

measure. Whether this results in an overall better set of models that

are highly-ranked remains to be determined. We note that this

alternative corresponds to that used by Hay and colleagues [26] in

which a defined set of measures was chosen and evolutionary

algorithms used to obtain models that exhibited measures that were

within a couple of standard deviations of the experimental ones.

However, this alternative is potentially more restrictive of the

chosen set of ‘good models’ depending on how many standard

deviations one chose to use. In the approach taken here, the

restriction pertains to the chosen cut-off value, and could encompass

a range of standard deviations of the various measures. This general

issue can be explored in future work.

A deficiency of our highly-ranked O-LM models is that other

channel types, such as the calcium-dependent non-selective cation

current (ICAT) [57] that could be present in O-LM cells are not

included. However, this could be examined by performing another

cycle (Fig. 1), and it would be interesting to know if similar co-

regulations end up being present as those found in the present work.

Furthermore, we designed our database to focus on Ih dendrites,

noting that experimental evidence for other K+ channels and Na+ in

dendrites was already known unlike Ih. Given that our work

supports the possibility of dendritic Ih, we believe that an important

next step is to consider non-uniform distributions, especially since

non-uniform distributions of Ih are known to be present in other cell

types such as pyramidal cells [28]. This is because we found that

highly-ranked models with Ih in soma only as well as soma and

dendrites were not able to exhibit sag characteristics as pronounced

as those in experiment (e.g., see model and experimental traces in

Fig. 2, and Fig. 7). This reveals the possibility of deficiencies in the

model of Ih itself. Therefore, not only should non-uniform

distributions of Ih be considered in future work, but also a careful

examination of the mathematical formulation of Ih, and consider-

ation of variations in sag time constants.

A recent study has shown that CA1 O-LM interneurons comprise

two functionally distinct subpopulations, one expressing 5-HT3A

receptors and exhibiting increased participation in kainate-induced

oscillations as well as recruitment through serotonergic activation,

and one lacking this receptor type [61]. The morphological and

electrophysiological properties remained mostly uniform across the

two O-LM subtypes, with the possible exception of slightly higher

input resistance in the 5-HT3A receptor-expressing O-LM cells.

Nevertheless, the different developmental paths, with the 5-HT3AR-

containing cells being derived from caudal ganglionic eminence and

the non-5-HT3AR-containing cells being derived from medial

ganglionic eminence, in addition to their differential recruitment

via serotonergic drive and kainate-induced gamma oscillations,

suggests that there may be separate functional roles of these two O-

LM subtypes in CA1. The experimental data used in our present

modelling work did not make distinctions between these subtypes as it

did not include synaptic drives. A natural next step would be to

include synaptic drives, embedding O-LM cells in network contexts,

incorporating neuromodulation, and using in vivo O-LM cell data.

This would then allow consideration of such O-LM subtypes, as well

as contributions of various intrinsic O-LM properties in network

functioning.

Experimental work in STG neurons has not only demonstrated

co-regulations between different conductances [7], but also that

correlations in ion channel mRNA expression levels do not always

match with correlations observed in conductance densities of the

channels [62]. This suggests that the electrical output of neurons

might not actually require some of the co-regulations determined

using ensemble modeling analysis, complicating the picture of

ensemble modeling studies. Finally, there are indications that

neuromodulatory influences may be more important than

conductance correlations [63,64]. As such, one could consider

building-in homeostatic rules for co-regulation analysis of our O-

LM interneuron models, as per [65], in order to examine the

difference in co-regulations of resulting channel conductances

there as opposed to varying conductance densities directly.

However, this is probably premature to pursue for O-LM cells

as it is unclear at present what typical cell output is required for

network functioning, since we are dealing with a more complex

and less well-characterized cell architecture and network func-

tioning situation than STG neurons and networks.

Another consideration involves the input stimuli that should be

used experimentally and in subsequent generation of the model

databases. Ideally, stimuli should be such that they reveal the full

dynamics of the nonlinear model or biological system, but what is

most appropriate is unknown. Interestingly, work by Druckmann

and colleagues [66] showed that noisy stimuli were not as effective

as current steps and ramps were in constraining models. In this

work we used two constant current injection steps consisting of

Ensemble Modeling As an Investigative Tool: Application to O-LM Cells

PLOS ONE | www.plosone.org 12 October 2014 | Volume 9 | Issue 10 | e106567



–90 pA and +90 pA current steps, but a more systematic

determination of the number and types of current injection steps

or ramps should be considered in future iterations of O-LM

ensemble modeling cycles. Also, in using a cut-off determined by

eye (the general criterion), to obtain a subset of appropriate O-LM

models, one could argue that this was arbitrary. However, the

robustness of the co-regulations with both general and restricted

cut-off criteria indicates that it is not critical to determine an exact

cut-off value. Furthermore, if no cut-off was done – i.e., the entire

database including clearly inappropriate models was used – then

co-regulations as described here did not emerge when conduc-

tance histogram plots were examined (not shown). Also, due to the

sparse sampling and the developing methodology, we elected to

not perform statistical tests at this time, but instead relied on visual

examinations of our conductance histogram plots.

In conclusion, we have proposed a novel ensemble modeling

methodology, and used it with O-LM model cells and experi-

mental data to gain insights. We expect that a continual cycling of

our approach will help us determine essential biophysical

conductances and balances for cellular contributions to network

functioning for O-LM cells, as well as any other neuronal cell type

for which a starting multi-compartment model has been devel-

oped, and a specific physiological question exists.

Methods

Experimental data
Hippocampal slice preparation. The experimental data

used in the present work was acquired as part of a previous study [57].

All experiments were conducted in accordance with animal protocols

approved by the National Institutes of Health (Animal Study Proposal

#08-045). Mice (CF1 x 129J1) aged 14–21 days were deeply

anesthetized by isoflurane volatile inhalation and sacrificed, with all

efforts made to minimize suffering. The brain was rapidly removed

and placed in ice-cold artificial cerebrospinal fluid (ACSF) with the

following composition (mM): 87 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25

NaHCO3, 25 glucose, 75 sucrose, 7 MgCl2, 0.5 CaCl2 saturated with

95% O2 and 5% CO2, pH 7.4. Transverse hippocampal slices of

300 mm thickness were cut using a VT1000S (Leica Microsystems,

Bannockburn, IL, USA) or Vibratome 3000 Deluxe (Vibratome, St.

Louis, MO, USA) and placed in a continuously oxygenated, warm

(36uC) ACSF bath for at least 30 min before use.

Electrophysiological recordings. The set of recordings

used in the present work consisted of those obtained during whole

cell current clamp conditions of O-LM cells. The cells were

maintained at approximately 260 mV, which resulted in a

membrane potential of approximately 273.8 mV after a junction

potential correction of 213.8 mV. To maintain the cells at

260 mV, a small negative bias or holding current applied through

the somatic recording pipette (28.064.0 pA, n = 11). Injection of

a 25 pA current applied similarly would periodically be done in

order to verify a tight seal with the cell membrane. Depending on

experimental protocol, an additional depolarizing (+90 pA) or

hyperpolarizing (290 pA) would then be applied for a 1 s

duration, after which the additional depolarizing or hyperpolar-

izing current injection would cease. The depolarizing current

stimulus would result in regular action potential firing in the

observed O-LM cells, with a ‘‘saw-tooth’’ [67] firing profile

typically seen in O-LM cells and a long-lasting afterhyperpolar-

ization. The hyperpolarizing current stimulus results in a

characteristic ‘‘sag’’ back towards the resting potential, attributable

to the presence of the hyperpolarization-activated current, Ih. The

experimental recordings used in this model database work

consisted of ten identified O-LM cells in total, with traces

including 690 pA current steps chosen for each cell, resulting in

a dataset of 56 total experimental traces.

Reference multi-compartment model
Morphologies and passive properties. The reference

models used in this work were adapted from previous multi-

compartment models of O-LM cells, developed in conjunction

with experimental data [23]. Because the current work included

experimental data from another set of recorded O-LM cells [57],

we refitted the passive membrane properties in the model to

reproduce the transient membrane responses observed in the

current set of experimental recordings. This was done by

averaging 50 voltage-clamp seal tests from each O-LM cell,

corresponding to the capacitative current due to a 25 mV step

away from a 274 mV holding potential. The resulting passive

properties for each morphology are specified in Table 1.

Compartmentalization. For each of the two morphological

reconstructions used for the models in this work, an appropriate

number of compartments needed to be determined in order to

maintain the spatiotemporal accuracy of simulations. The number

of compartments was set using the fraction of the frequency-

dependent length constant at 100 Hz, or l100 [68], and was

determined by setting up the ‘‘rig’’ in the NEURON simulation

environment for fitting the passive properties of one model and

morphology to experimental O-LM seal test recordings. An initial

fraction of l100 was assigned as the parameter to determine the

number of segments within each section, and therefore the total

number of compartments in the model. A trial run was then

initiated in the Multiple Run Fitter (MRF) to determine the error of

the model’s membrane response to a 25 mV voltage clamp step

compared to the experimental O-LM cell average. The passive

properties were held fixed at the values defined in the reference

model. Afterwards, the fraction of l100 was lowered, resulting in a

model with more compartments and hence greater simulation

accuracy, and the MRF trial was re-run. This was continued until

the error value for the model did not change appreciably, thus

indicating that the model output was being simulated with sufficient

accuracy. The l100 fractions determined for the model morphol-

ogies 1 and 2 were, respectively, 0.0101 and 0.00465, resulting in

1,291 compartments for the former, and 2,413 for the latter. The

resulting input resistance for the respective model morphologies

were 474 MV and and 530 MV, with membrane time constants of

57ms and 66ms, respectively, for model morphologies 1 and 2.

Ion channel conductances. The model included nine active

voltage-gated ionic conductances known to be present in O-LM

cells. These are the sodium current as described by Hodgkin and

Huxley, INa, fast and slow delayed rectifier potassium currents,

IKDRf and IKDRs, respectively, the transient or A-type potassium

current, IA, the L- and T-type calcium currents, ICaL and ICaT,

respectively, the calcium-activated potassium current, IAHP, the

hyperpolarization-activated mixed cation current, Ih, and the

Kv7/KCNQ/M current, IM [23,24]. The mathematical expres-

sion of the sum of these currents’ effects on the membrane

potential is described by Iionic is shown in Equation 1:

Iionic~�ggNam3h(V{ENa)z�ggKdrf mh(V{EK )z�ggKdrsmh(V{EK )

z�ggKAmh(V{EK )z�gghm(V{Eh)z�ggMm(V{EK )

z�ggCaLm2h(½Ca2z�i)C(V ,½Ca2z�i,½Ca2z�o)

z�ggCaT m2hC(V ,½Ca2z�i,½Ca2z�o)z�ggK(Ca)m(V ,½Ca2z�i)(V{EK )

z�ggKL(V{EK )z�ggL(V{EL)

ð1Þ

Ensemble Modeling As an Investigative Tool: Application to O-LM Cells

PLOS ONE | www.plosone.org 13 October 2014 | Volume 9 | Issue 10 | e106567



where ENa = 50 mV, EK = 295 mV, and Eh = 232.9 mV are

the reversal potentials for, respectively, sodium, potassium, and the

hyperpolarization-activated mixed cation channel. The kinetic

equations for the ionic currents are as in [23]. The distributions of

the conductances are described in Table 2. The distribution for Ih

was set to uniformly spread over either all somatic compartments,

or all somatodendritic compartments.

Simulation and model output analysis. Selection of active

conductance density ranges for database simulations. For the

ensemble modeling approach, the maximum conductance densi-

ties were varied for the model, thus constituting a methodology for

the models to exhibit different ion channel expression levels. The

values that the maximum conductance densities for the various ion

channels were allowed to take were determined on a case-by-case

basis depending on what was previously known about that ion

channel type, and specifically about its presence and somatoden-

dritic densities in the O-LM cell. Table 2 lists the final maximum

conductance density values used in the model database construc-

tion and references.

SciNet framework for running simulations. The ensem-

ble modeling approach used here is the variant sometimes referred

to as the brute-force approach because it depends on systemat-

ically varying all of the parameters and generating model output

for each possible combination of parameters [41]. By varying the

maximum conductance densities of the O-LM model in this work,

of which there are ten (treating the somatic and dendritic sodium

conductances separately – see Table 2), as well as the distribution

of Ih maximum conductance density along somatic only versus

somatodendritic compartments (2 options) and, finally, the

morphology of the model used (2 options), there are a total of

933,120 possible models. Considering that experiments for both -

90 pA and +90 pA current injections need to be applied to each

model, this results in 1,866,240 total simulations that potentially

need to be evaluated. Therefore, the use of high-performance

computing (HPC) was required. For this work, the SciNet HPC

supercomputer cluster was used for evaluating the model outputs.

The SciNet General Purpose Computing (GPC) cluster consists of

3,780 nodes with 8 cores each [29]. Being able to handle all of the

model simulations required significant automation. We imple-

mented three tools in order to meet this criterion: (1) a script to

generate the command-line invocations of all of the models; (2)

fully automated NEURON code to evaluate the output of each; (3)

an efficient system for finding missing models.

Fitting procedure for bias current. The membrane

potential of each O-LM cell was held at a fixed voltage to ensure

consistency in the state of the voltage-gated ion channels present in

the membrane relative to action potential threshold. This was

accomplished by dynamically varying the amount of bias current,

or holding current which was injected prior to, and concurrently

with, the subsequent 690 pA hyperpolarizing or depolarizing

current injection step in order to maintain a Vm of approximately

274 mV prior to the current injection step. However, many

models would either exhibit premature action potential firing

before reaching an experimentally appropriate bias current,

whereas others would need too much positive bias current,

relative to experimental values, to drive them to fire. Since these

models did not contain appropriate O-LM cell characteristics, they

were discarded. By following this procedure, 609,143 out of a total

of 933,120 models were found to be inadequate, with 323,977

models being considered acceptable and retained for further

analysis of conductance density balances.

Distance measures and model ranking. Once model

outputs were obtained, they were imported into PANDORA’s

Toolbox, a MATLAB toolbox for the statistical analysis of

experimental and model voltage traces [30]. We chose 11

electrophysiological measures for the 290 pA and 92 for the +
90 pA experimental current clamp traces (see Tables S1 and S2).

To obtain an aggregate measure of the ‘‘closeness’’ or error

between a model and experimental trace, we used a ranking

function provided by PANDORA that calculated the normalized

Euclidean distance between all the models in the provided model

database and the single experimental trace, as per Equation 2 [30]:

dx,y~
XN

i~1

Dxi{yi D
Nsi

, ð2Þ

where xi and yi represent the ith measure, out of N total measures,

of the model and experimental traces, respectively, si is the

standard deviation of the measure in the experimental database,

and dx,y is the resuting normalized Euclidean distance between

model trace x and experimental trace y. The importance of the si

normalization term is to penalize models whose measures differ

significantly when those measures are tightly constrained in the

experimental database – that is, when si is small. On the other

hand, models with measures that vary significantly in the

experimental database – that is, when si is large – will not be

penalized by the distance calculation if they differ significantly

from the experimental measure, yi. Effectively, the equation

calculates the standard score, or z-score, of all of the model’s

measures – equally weighed – against the experimental measures.

The resulting distance value, dx,y, represents how close of a match

a model trace is to an experimental trace. Larger dx,y values

correspond to models that are ‘‘further away’’ from the

experimental trace whereas lower dx,y values correspond to models

that are ‘‘closer’’, or better matches with the experimental trace.

Note that this corresponds to the distance between single model

and experimental traces. Distance values of all model traces

against all experimental traces were then summed and normalized

by the number of experimental traces (Equation 3):

Table 1. Fitted passive properties for the two O-LM model morphologies.

Passive property Model morphology 1 Model morphology 2

Ra (V ? cm) 300 300

Cm ( F/cm2) 0.96857 0.9

Rm (V ? cm2) 59,156 39,038

EL (mV) 273.588 273.8424

gKL (S/cm2) 9.9005610210 1.001561029

doi:10.1371/journal.pone.0106567.t001
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dx~
1

Ny

X

y

dx,y, ð3Þ

where dx,y is the distance of model trace x against experimental

trace y, Ny is the total number of experimental traces, and dx is the

distance of model trace x against all of the y experimental data

traces. The total distance dx was normalized with the number of

experimental traces Ny so that distances between databases with

different Ny could be meaningfully compared to one another. The

consolidated database was then sorted from low to high dx values,

resulting in a ranking of models from better to poorer represen-

tations of O-LM cells, respectively.

Model database analysis
Database cutoff criteria. Two methods of obtaining a

subset of O-LM models that best represented experimental data

for O-LM cells were developed in this work. The first approach

implemented an objective criterion that directly utilized the dx

distance values. Using the built-in MATLAB function diff, the

first-order derivative of dx was calculated to compare the rate of

change of dx as a function of the model rank. Nearly identical

results were obtained using the multivariate gradient function.

Because the distance of a model is a function of one variable – the

model’s rank in the database – the multivariate gradient therefore

reduces to the univariate differences of the distances as a function

of the rank, as computed by diff. The second criterion provided a

counterpoint to the general criterion by considering a limited set of

representative electrophysiogical measures for the model traces.

The firing frequency during the current injection period and the

time constant of a single exponential fit to the hyperpolarization-

induced sag were selected as the representative characteristics for

the +90 pA and 290 pA traces, respectively. These measures were

also plotted as a function of the model rank in the database, and

the values were compared to histograms of the measure in the

experimental dataset. The cutoff points for each representative

measure were obtained as described in Results.

Ordering of conductances using high-dimensional

visualization algorithm. In order to reduce the total number

of pairwise comparisons to be made across all nine voltage-gated

ion channel conductances used in this work, a technique for

determining, at a glance, how the model outputs changed as a

function of the changes in their parameters was applied. This was

done using dimensional stacking, a technique for visualizing a

high-dimensional space of models in two-dimensions [31–33]. See

Figure S1 for a dimensional stack image of the subset of ranked

models extracted using the general cutoff criterion. The ordering

of the parameters in a given ‘‘stack’’ is important in determining

sensitivity of model outputs to parameter changes. An optimal

stack can be found where the models are organized in the image

such that highly-ranked models cluster together more tightly than

poorly-ranked models. In this case, the high-order parameters

(conductance densities and distributions) in the stack reflect those

conductances whose changes in value are associated with changes

in model ranking, or goodness-of-fit to experimental data. On the

other hand, low-order parameters are those for which changes can

be made and yet the ranking of the models are not appreciably

affected. Therefore, high-order parameters, or conductance

densities and distributions, are those to which the model distances

are most sensitive and therefore are the likeliest to demonstrate

compensatory balances with each other. To determine this, the

high-order parameters were used to construct the conductance

histogram images. However, although the first-order parameters

in the dimensional stack images were readily considered the

highest-order and the fifth-order parameters were readily consid-

ered the lowest-order, it was not entirely clear whether the third-

and fourth-order parameters should be considered high-order or

low-order. Therefore, for the conductance histogram images,

third- and fourth-order parameters were also used in order to

check whether they showed correlations with other conductances.

See Table S3 for the list of high-order conductances as determined

by the per-morphology ranked database subsets. Most high-order

conductances, especially of the first- and second-orders, were

largely shared between the four model database subsets.

Verifying passive properties fitting. After the models were

ranked against the experimental data as described above, it was

important to verify that the passive properties of the model would

not appreciably change if refitted using the active conductances

exhibited by highly-ranked models. This is because active

conductances play a role in the current/voltage dynamics of the

experimental protocol used in fitting the passive properties. It was

thus conceivable that a model with different maximum conduc-

tance densities may have result in a different fit of the passive

Table 2. Summary of maximum conductance density values used in the model database construction.

Active conductances Maximum conductance density values (pS/ m2) Compartmental locations References

gNa,s (somatic) 60, 107, 220 Soma [69,71]

gNa,d (dendritic) 70, 117, 230 Dendrites, axon [69,70]

gKDRf 6, 95, 215, 506 Soma, dendrites, axon [24,69,71]

gKDRs 2.3, 42, 92, 222 Soma, dendrites, axon [24,69,71]

gA 2.5, 32, 72, 169 Soma, dendrites [23,24,69,70]

gh (version 1) 0.5, 16, 53, 90 Soma only or soma and dendrites [22,28,69–73]

gh (version 2) 0.02, 0.05, 0.1, 0.3, 0.5 Soma only or soma and dendrites [22,28,69–73]

gCaL 12.5, 25, 30 Dendrites [24,74,75]

gCaT 1.25, 2.5, 5 Dendrites [24,74,75]

gAHP 2.75, 5.5, 11 Dendrites [24]

gM 0.375, 0.75, 1.5 Soma, dendrites [23]

The third column shows the model compartments where the conductance in any given row was distributed. In all cases, distributions were uniform across the specified
compartments. This yields 233,280 combinations of parameters.
doi:10.1371/journal.pone.0106567.t002
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properties if the maximum conductance densities of its ion channel

models were allowed to vary. To ascertain this, two highly-ranked

models of each model morphology were taken from the database

subset of appropriate O-LM models. In particular, the most

highly-ranked model of each morphology with somatodendritic h-

currents were found and used to re-fit the passive properties. This

is because h-current in both somatic and dendritic compartments

cover a much greater surface of the cell’s membrane and can

therefore more strongly affect the model’s membrane response to

the passive properties experimental protocol. The two models

obtained were rank 1 from the morphology 1-specific subset of the

aggregate distance ranking and rank 3 from the morphology 2-

specific subset of the aggregate distance ranking. The parameters

for these two models are shown in Table S4. The same protocol

described for the fitting of passive properties to experimental data,

above, was used in re-fitting the passive properties using these two

models. After the fitting procedure was completed, the passive

membrane properties of the two models were compared to those

obtained from the reference model. Table S5 shows the re-fit

passive properties of the highly-ranked morphology 1 and

morphology 2 models. Note that the passive properties did not

seem to vary appreciably as compared to the originally fit values in

Table 1. To verify that the differences in passive properties did not

significantly affect the model behaviour, the voltage traces of the

two highly-ranked models before and after fitting of the passive

properties were compared (Figure S2; compare with Table 1). The

voltage responses were found to be very similar regardless of

whether the original or re-fit passive properties were used.

Therefore, it was determined that the passive properties obtained

by fitting the reference model against the experimental data were

adequate for the ensemble of models subsequently obtained, and

that it was not necessary to re-evaluate the simulations using the

newly fit passive properties.

Supporting Information

Figure S1 Dimensional stack image of the highly-
ranked O-LM models in the general criterion database
subset. Each coloured point in the image corresponds to a model

in the subset; black regions correspond to models that are not

included in the subset. See Results of main text for description of

general database subset. The ranking of models is reflected in the

colour, from highest-ranked (red end of spectrum) to lowest-ranked

(blue end of spectrum) of the subset of highly-ranked models. The

axes show the ordering of model parameters as obtained by the

clutter-based dimension reordering (CBDR) algorithm [31]. The

parameters include the maximum conductance densities of all

voltage-gated ion channels in the model: �ggNad , �ggA, �ggKdrs, �ggh, �ggKdrf ,

�ggM , �ggAHP, �ggNas, �ggCaT , �ggCaL, as well as the ‘‘cell’’ parameter which

refers to the morphology of the model (one of two possibilities) and

the distribution of Ih, also one of two possibilities (0 = soma only,

1 = soma and dendrites). The vertical and horizontal lines in the

axes show the region of models in the image for which the

maximum conductance density labelled in that particular axis is

uniform in value. Thus, lower order conductances (small lines,

e.g., CaT and CaL) are those for which the maximum

conductance density values can change without affecting the

ranking of the models, as reflected in the regions of similarly-

coloured models that nevertheless possesss different values of those

conductances. In all cases, the maximum conductance density

values for each axis increase away from the origin in the bottom

left-hand corner.

(DOC)

Figure S2 Voltage traces of highly-ranked models
corresponding to original and re-fit passive properties.
The blue traces show the model response to +90 pA current

injection and with original passive properties, whereas the red

traces show the model response to +90 pA current injection and

with the re-fit passive properties, for the models with morphology

1, rank 1 (left) and morphology 2, rank 3 (right). As can be seen,

the voltage responses are very similar regardless of whether the

original or re-fit passive properties were used.

(DOC)

Table S1 Electrophysiological measurements used in
the hyperpolarizing current clamp experimental data-
set. The average values across all experimental voltage traces

from application of –90 pA hyperpolarizing current step, as well as

the standard deviation of the measures within the dataset, are

provided. There were 11 measures used in total.

(DOC)

Table S2 Electrophysiological measurements used in
the depolarizing current clamp experimental dataset.
The average values across all experimental voltage traces from

application of +90 pA depolarizing current step, as well as the

standard deviation of the measures within the dataset, are

provided. There were 92 measures used in total. The nomencla-

ture of the measures follow the pattern of a prefix of one of ‘‘Ini’’
(sometimes named ‘‘Spont’’), ‘‘Pulse’’, or ‘‘Recov’’ respectively

corresponding to whether the measure was calculated for the

initial period of the trace prior to the 1s-long current injection step

(‘‘Ini’’ or ‘‘Spont’’), or during the current injection step period itself

(‘‘Recov’’), or during the remainder of the trace after the current

injection period (‘‘Recov’’). The rest of the name describes the

measure itself, and the suffixes of ‘‘Mean’’ and ‘‘Mode’’ denote the

means and modes, respectively, of all the times the measure was

sampled for the given period. For instance, PulseSpikeMinVm-
Mean denotes the mean of the minimum achieved somatic Vm for

all spikes in the current injection period. Some measures do not

have associated statistical measures, such as PulseSpikes, which is

simply the number of spikes during the current injection period.

(DOC)

Table S3 High-order parameters as determined by
dimensional stacking analysis. The ranked database is

subdivided into eight subsets according to lines of morphology,

Ih distribution, and cutoff criterion. The ordering of conductances

is mostly preserved across all cases. In particular, most high-order

conductances, especially of the first- and second-orders, are largely

shared between the four model database subsets. This is an

indication that the conductances that are important for determin-

ing O-LM model output do not critically depend on morphology

or distribution of Ih along soma or dendrites. Furthermore, the

high-order conductances do not appreciably change according to

the cutoff criterion used for determining the subset of appropriate

O-LM models. This is one indication that the general criterion,

corresponding to the more inclusive subset of highly-ranked O-LM

models, is adequate for delineating a set of appropriate O-LM

models that can then be used in analyzing conductance density

balances.

(DOC)

Table S4 Model parameters for the two highest-ranked
per-morphology models with somatodendritic h-cur-
rent.
(DOC)

Table S5 Re-fit passive properties for the highly-ranked
morphology 1 and morphology 2 models. Compare with
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the values fitted prior to the construction of the model database, in

Table 2.

(DOC)

Dataset S1 Experimental current-clamp traces from
mouse O-LM cells. These traces were used in this ensemble

modeling work to constrain the models (see Methods). Both +
90 pA and -90 pA traces are provided in MATLAB file format.

(ZIP)
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72. Berger T, Larkum ME, Lüscher HR (2001) High Ih Channel Density in the

Distal Apical Dendrite of Layer V Pyramidal Cells Increases Bidirectional

Attenuation of EPSPs. J Neurophysiol 85: 855–868.

73. Kole MHP, Hallermann S, Stuart GJ (2006) Single Ih Channels in Pyramidal

Neuron Dendrites: Properties, Distribution, and Impact on Action Potential

Output. J Neurosci 26: 1677–1687.

74. Traub RD, Jefferys JGR, Miles R, Whittington MA, Tóth K (1994) A branching
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