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Abstract: This study aims to determine the potential antioxidant, antihypertensive, hypoglycaemic
and nootropic activity of a purified polyphenolic extract from the halophyte ice plant (Mesembryan-
themum crystallinum). The ice plant extract showed good antioxidant activity measured by DPPH,
ORAC, TEAC, FRAP and ferrous ion chelating activity. Moreover, the extract showed potent ACE,
DPP-IV and PEP-inhibitory activity (90.5%, 98.6% and 73.1%, respectively, at a final concentration of
1 mg/mL). The extract was fractionated and the fraction with the highest content of total phenolic
compounds showed the highest bioactivity, suggesting that polyphenols could be mainly responsible
for the abovementioned activities. The tentative polyphenol identification by HPLC-ESI-QTOF-MS in
this fraction revealed that flavones (>65%) are the major group, with apigenin (38%) predominating,
followed by diosmin (17.7%) and luteolin (11.9%). They could presumably be the main elements
responsible for the enzymatic inhibition activity. Additionally, 4-hydroxybenzoic acid, p-coumaric
acid and a hydroxycinnamic acid derivative (2-O-(p-cumaroyl)-l-malic acid) were found in the ex-
tract. To our knowledge, this is the first time that some of these activities have been reported for
halophyte extracts.

Keywords: ice plant; polyphenols; total antioxidant activity; angiotensin-converting enzyme; prolyl
oligopeptidase; dipeptidyl peptidase IV

1. Introduction

In developed countries, chronic diseases such as heart disease, stroke, cancer, dia-
betes and arthritis are the leading causes of death and disability [1]. All these pathologies
have an important social and economic impact on society according to the World Health
Organization (WHO). Many studies report the role of antioxidants in the reduction in
chronic diseases and how the decrease in the intake of these antioxidants and the increase
in thiobarbituric acid reactive substances favor some types of chronic pathologies. Antioxi-
dants are of great interest for their positive effects against oxidative stress. Among them,
polyphenols constitute the largest category of compounds within the secondary metabolism
of plants. Their synthesis is derived from the shikimate pathway and is induced in response
to unfavorable environmental conditions, which increase the generation of radical oxygen
species (ROS). In this sense, a high content of polyphenols has been described in halophyte
plants as a response to their growth in soils with high salinity and, sometimes, in areas
with high UV radiation and sudden thermal changes [2].

Hypertension is one of the major risk factors for cardiovascular disease. In the phys-
iological regulation of blood pressure, angiotensin I converting enzyme (ACE), a dipep-
tidyl carboxypeptidase, catalyzes the formation of vasoconstrictor Angiotensin II from
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Angiotensin I. Likewise, this enzyme is responsible for the inactivation of bradykinin,
preventing it from exerting a vasodilator effect. ACE has become an interesting therapeutic
target and, in fact, numerous ACE inhibitors such as captopril, enalapril, alcacepril and
lisinopril are currently on the market. However, the use of these drugs leads to the appear-
ance of side effects such as cough, taste alterations, skin rashes and angioedema; for all
these reasons, there is interest in finding new nutraceuticals that may be useful to control or
prevent arterial hypertension. Numerous peptides derived from animal by-products have
been tested as ACE inhibitors [3], but in recent years, there has been a growing interest in
finding ACE inhibitors of a polyphenolic nature that also allows for the use of underutilized
vegetable by-products or raw materials.

Prolyl oligopeptidase, also known as Prolyl endopeptidase (PEP), is a serine protease
highly expressed in the brain and involved in learning and memorization processes. PEP
acts in the maturation and degradation of peptide hormones, such as thyrotropin-releasing
hormone and vasopressin. Changes in PEP expression levels and its increased activity have
been correlated with aging and have been detected in many neurodegenerative diseases,
such as depression, bipolar affective disorder, schizophrenia and anxiety. PEP has been
identified as a pharmacological target for the management of several cognitive disorders,
especially Alzheimer’s and Parkinson’s disease. PEP inhibitors, including polyphenols,
have been proposed as potential drugs for the prevention and treatment of neurological
diseases [4–6].

Dipeptidyl Peptidase IV (DPP-IV) is an enzyme implicated in glycaemia regulation.
This enzyme belongs to the same family of serine proteases as PEP, and their three-
dimensional structures are very similar, although their protein chains show a low degree
of homology [7]. DPP-IV is responsible for the inactivation of the incretin’s glucagon-like
peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). GLP-1 and GIP are secreted in
the intestine in response to enteral digestion and trigger insulin secretion in the pancreas,
although GLP-1 and GIP receptors are also found in the central nervous system, heart,
lungs and peripheral tissues. The incretin effect of GLP-1 is preserved in patients with type
II diabetes, thus, DPP-IV inhibitors such as Vildagliptin, Sitagliptin and Saxagliptin are
currently used in their treatment [8,9]. Recently, Singh et al. [9] suggested a potential use
for natural antioxidants derived from plants, such as alkaloids, phenolic acid, steroids and
flavonoids, as DPP-IV inhibitors.

The ice plant is a halophilic plant belonging to the family Aizoaceae. Native to southern
and eastern Africa, it is now widely distributed throughout the world. The ice plant is
tolerant to low temperatures and can grow in saline soils without this affecting its biomass
production or nutritional value [10]. Recently, Loconsole et al. [11] suggested the use of the
wild ice plant as a saline crop, also describing its potential use in phytoremediation, human
health and as food, since it is traditionally consumed in some places [12]. In addition to its
succulent texture, the leaves of the ice plant are coated by epithelial bladder cells, which
resemble dewdrops and burst when chewed, leaving a slightly salty taste reminiscent of
the sea. This makes the ice plant highly appreciated in haute cuisine, and the interest in
its consumption has spread to many other consumers. Nonetheless, it is still considered
an underutilized crop. Some studies related to M. crystallinum refer to its antioxidant
activity [13,14]; however, there are very few references in the literature demonstrating other
potentially bioactive properties of extracts of this plant.

The healthy effect of polyphenols on highly prevalent diseases such as diabetes,
hypertension or neurodegenerative diseases, and their high content in halophytes, suggests
that some abundant and underused salt-tolerant species could be used as a source of
healthy polyphenolic extracts. It would encourage their cultivation and the control of soil
erosion in certain areas. In this context, the health benefits of the ice plant are well known,
and its hypoglycaemic, anti-inflammatory, antiseptic and neuroprotective effects, among
others, have been described [11], although the molecules responsible for these properties
have hardly been studied. Therefore, this work aims to explore the bioactive potential of
an ice plant extract as an antioxidant agent, as well as its antihypertensive, nootropic and
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hypoglycaemic potential, and to identify the polyphenols responsible for these bioactivities.
This study will contribute to improving the underutilization of plants, in line with the
strategy adopted by the European Commission on the new circular economy action plan
(CEAP) of 2020, which aims to promote circular economy processes, encourages sustainable
consumption and seeks to avoid waste and maintain the value of resources used in the EU
economy for as long as possible.

2. Materials and Methods
2.1. Chemicals

For this research, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 3,4-Dihydro-6-hydroxy-
2,5,7,8-tetramethyl-2H-1-benzopyran-2-carboxylic acid (Trolox), fluorescein, 2,2′-diazobis-
(2-aminodinopropane)-dihydrochloride (AAPH), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-
sulphonic acid) (ABTS), Fe(III) chloride, 2,4,6-tri (2-pyridyl)-s-triazine (TPTZ), ferrozine,
Folin–Ciocalteu reagent, gallic acid (GA), angiotensin-converting enzyme from rabbit
lung, human dipeptidyl peptidase-IV and reagents used in HPLC analysis were obtained
from Sigma-Aldrich, Co. (St. Louis, MO, USA). The prolyl endopeptidase from Flavobac-
terium was from Seikagaku Corp. (Tokyo, Japan). The chromogenic substrates (Abz-Gly-
Phe(NO2)-Pro) and (Z-Gly-Pro-7-amido-4-methylcoumarin) were from Bachem (Bubendorf,
Switzerland). Ethylenediaminetetraacetic acid (EDTA) was from Leco Corp. (St. Joseph,
MI, USA). Other chemicals and reagents of analytical grade were obtained from Panreac
Chemical Co. (Barcelona, Spain).

2.2. Plant Processing

The ice plant specimens were collected from the northwest coast of Spain (Galicia),
kindly provided by the company Porto-Muiños S.L. (Cerceda, A Coruña, Spain) for this
study. The edible parts of the plant were packed and transported under refrigeration to the
laboratories. The plants were cleaned with distilled water and immediately dried at 55 ◦C
in a forced-air oven for 24 h (FD 240, Binder, Tuttlingen, Germany). After that, the material
was stored at a low temperature (4 ◦C) until analysis.

2.3. Extract Preparation

The extract was prepared according to Sánchez-Faure et al. [15]. The dried plants
(250 g) were homogenized in 400 mL of ethanol/ultrapure water mixture (1/1 v/v) acidified
to pH 2 with 0.1 M HCl, using a T-25 Ultra-Turrax homogenizer (25,000× g, 3 min, 25 ◦C)
(Mod. T25D, IKA®-Werke GmbH & Co. KG, Staufen, Germany). The mixture was placed
in an ice bath and sonicated with a Q700 sonicator (Qsonica, Newton, CT, USA), using
16 min cycles at 90% amplitude, with 60-s intervals every minute. The supernatant was
collected after centrifugation at 12,000× g for 10 min at low temperature (Sorvall evolution,
Thermo Fisher Scientific, Waltham, MA, USA). After evaporation of ethanol in a rotary
evaporator (R-300, BÜCHI, Flawil, Switzerland), the extract was lyophilized and stored at
a low temperature (4 ◦C) until analysis.

2.4. Determination of Total Phenol Content

The determinations were performed using the Folin–Ciocalteau assay on a UV-1601
spectrophotometer model CPS-240 (Shimadzu, Kyoto, Japan). The total content of Folin
reactive substances was expressed in mEq GA/g (d.m.).

2.5. Determination of Total Antioxidant Capacity (TAC)

TAC was measured using different classical assays, namely radical scavenging activity
(DPPH), oxygen radical absorbance capacity (ORAC), Trolox equivalent antioxidant capac-
ity (TEAC), ferric reducing antioxidant power (FRAP) and ferrous ion chelating activity.
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2.5.1. DPPH Radical Scavenging Activity

DPPH radical scavenging activity of the samples was determined according to Brand-
Williams et al. [16], with slight modifications. Firstly, DPPH was dissolved in pure methanol
at a final concentration of 100 µM. Then, 125 µL of DPPH, 25 µL of sample and 100 µL
of Milli-Q water were mixed, and the decrease in absorbance at 515 nm was recorded for
30 min using a microplate reader (Fluostar Omega, BMG Ortenberg, Germany). Results
were expressed as µEq Trolox/g (d.m.).

2.5.2. Oxygen Radical Absorbance Capacity (ORAC)

The ORAC assay was performed according to Ou et al. [17], with modifications.
Firstly, Trolox (standard) was diluted at different concentrations (15–240 mM) in working
buffer (10 mM phosphate buffer, pH 7.4). The samples were also diluted in the same
buffer (10 mg/mL, d.m). Then, 150 µL of fluorescein and 25 µL of sample, standard or
working buffer (blank) were mixed and incubated at 37 ◦C for 3 min before the addition
of AAPH (2,2′-Azobis(2-methylpropionamidine) dihydrochloride) solution. Fluorescence
was measured at λexc = 485 nm and λem = 528 nm for 35 min using a microplate reader.
The total areas under the fluorescein decay curves of blanks, standard and samples were
measured to calculate the results, which were expressed as µEq Trolox/g of sample (d.m.).

2.5.3. Trolox Equivalent Antioxidant Capacity (TEAC)

A TEAC assay was performed according to Re et al. [18], with modifications. Firstly,
7 mM ABTS+ was mixed with 2.45 mM potassium persulfate in a 1:1 (v/v) ratio. The
mixture was kept in the dark for 6 h at room temperature. Then, an aliquot was diluted in
75 mM phosphate buffer (pH = 7.4) to obtain a working solution with an absorbance value
of 0.70 ± 0.02 at 734 nm. Twenty µL of the sample (10 mg/mL, d.m.) were mixed with
200 µL of ABTS·+ working solution, and the absorbance at 730 nm was measured after
incubation for 30 min at 30 ◦C. Trolox was used as the standard. The results were expressed
as µEq Trolox/g of sample (d.m.).

2.5.4. Ferric Reducing Antioxidant Power (FRAP)

A FRAP assay was performed according to Benzie and Strain [19], with modifications.
Firstly, the sample (10 mg/mL, d.m.) was dissolved in distilled water (1:1, w/v). The FRAP
reagent was prepared by mixing 25 mL of 0.2 M sodium acetate buffer (pH 3.6), 2.5 mL of
10 mM TPTZ (2,4,6-Tris(2-pyridyl)-s-triazine) dissolved in hydrochloric acid (40 mM) and
2.5 mL of iron chloride solution (20 mM). Ammonium iron (II) sulfate, or Mohr’s salt, was
used as a standard. Next, 30 µL of sample or standard were mixed with 90 µL of distilled
water and 900 µL of FRAP solution and incubated for 40 min at 37 ◦C in the dark. Then, the
absorbance of the supernatant at 595 nm was measured using a spectrophotometer. The
results were expressed as mEq Mohr’s salt/g of sample (d.m.).

2.5.5. Ferrous Ion Chelating Activity

The sample was firstly dissolved in distilled water (20 mg of extract or 1 mg of
fraction/mL). Then, 1 mL of sample, distilled water (blank) or EDTA (standard) were
mixed with 3.7 mL of distilled water and 100 µL of 2 mmol/L FeCl2. After 3 min, 200 µL of
5 mM ferrozine were added and the mixture was incubated for 10 min at room temperature.
Then, the absorbance at 562 nm was measured using a microplate reader. A sample control
without the addition of ferrozine was also used. Results were expressed as mEq EDTA/g
of sample (d.m.).

2.6. Determination of ACE Inhibitory Activity

The ACE inhibitory activity was measured according to Sentandreu and Toldrá [20],
with modifications. Firstly, ACE was diluted in a 150 mM Tris-base buffer, pH = 8.3, with
1.125 M NaCl, to reach an enzymatic activity of 15 mU/mL. One unit (1 U) corresponded
to the amount of enzyme that releases one µmol of hippuric acid from hippuryl-His-Leu
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per minute at pH 8.3 and 37 ◦C. The extract (1 mg/mL) or the fractions (0.1 mg/mL) were
diluted in the assay buffer. Then, 50 µL of sample or buffer assay (control) were mixed with
50 µL of ACE and incubated for 5 min at 37 ◦C. Then, 200 µL of substrate (0.45 mM Abz-
Gly-Phe(NO2)-Pro, dissolved in the assay buffer) were added. The increase in fluorescence
at λexc = 360 nm and λem = 400 nm was quantified for 30 min using a microplate reader,
Sinergy Mx (BioTeck, Colmar, France). The inhibitory activity was determined from the
maximal increase in fluorescence per minute, in the absence or presence of the sample, and
expressed as a percentage of inhibition.

2.7. Determination of PEP Inhibitory Activity

The PEP-inhibitory activity was determined according to Sila et al. [21]. The final
concentration in each well was 1 mg of dried weight/mL (extract) or 200 µg/mL (fractions).
The samples were previously diluted in 0.1 M sodium phosphate buffer pH 7 (working
buffer). The enzyme was dissolved in working buffer to reach an enzymatic activity of
1 mU. It was defined by Seikagaku Corp. as the enzyme activity that gives 1 nmol of
p-nitroaniline/min at 30 ◦C, pH 7.0, from Z-Gly-Pro-pNA. Twenty µL of PEP (1 mU) were
mixed with 180 µL of assay buffer (control samples) or with 150 µL of working buffer and
30 µL of diluted sample. After 15 min at 30 ◦C, 100 µL of substrate (0.01 mM Z-Gly-Pro-
AMC dissolved in working buffer) was added. The blanks included the enzyme previously
inactivated with 5 N HCl. Fluorescence at λexc 340 nm and λem 450 nm was measured
at 1 min intervals for 20 min using a microplate reader. The maximum linear increase
in fluorescence/min was calculated for controls, blanks and samples to determine the
inhibitory activity, which was determined and expressed as described in Section 2.6.

2.8. Determination of DPP-IV Inhibitory Activity

The DPP-IV-inhibiting activity of the samples was determined as described by PEP-
activity but using 0.1 M Tris-HCl (pH 8) as a standard buffer, according to Sila et al. [21],
and using 0.025 mM AMC-H (H-Gly-Pro-7-amino-4-methylcoumarine) as a substrate. The
results were calculated and expressed as previously explained in Section 2.6.

2.9. Chromatographic Fractionation of the Extracts

Briefly, the lyophilized extract was resuspended in a mixture of ethanol/water (50/50,
w/v), obtaining a concentration of 80 mg/mL. Then, 1.5 mL were injected into a C18
preparative column (Tracel Excel 120 ODS-A 25 cm × 0.78 cm, Teknokroma, Barcelona,
Spain) using a preparative HPLC (Agilent LC PREP 1260 Infinity Series, Santa Clara, CA,
USA) with an array diode detector. Phase A consisted of ultrapure water containing 0.1%
formic acid and 5% acetonitrile, and phase B consisted of acetonitrile containing 0.1%
formic acid. The gradient used was: 0–15% B for the first 15 min, 15–50% B for the next
5 min, 50–65% B for the following 15 min, and 65–0% B for the last 10 min; the flow rate was
2 mL/min. The fractions were collected using an automated fraction collector; the detection
was performed at 214, 280, 360 and 530 nm. Solvents from fractions were evaporated in a
Speed Vac Concentrator (Thermo Fisher, Waltham, MA, USA); after that, the fractions were
freeze-dried and stored at low temperature (4 ◦C) until used.

2.10. Tentative Identification of Polyphenols by HPLC-QTOF

The characterization of the polyphenols in the fraction with the highest activity was
performed by HPLC-ESI-QTOF-MS. Solid-phase extraction of polyphenols was carried out
using Oasis HLB 1 cc Vac Cartridges (Waters, Milford, MA, USA).

The separation of polyphenols was conducted as previously described by Sánchez-
Faure et al. [15] using an HPLC Agilent 1200 (Agilent Technologies, Waldbronn, Germany)
equipped with a diode array detector (DAD, ref. G1315B) and an ESI-QTOF-MS (Agilent
G6530A). The mass spectrum was obtained by electrospray ionization in negative and
positive modes. The gas temperature was 325 ◦C, and the drying gas flow was 12 L/min.
Scans were acquired for auto MS/MS from 100 to 1200 m/z. The MassHunter Workstation
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software version 4.0 (Agilent Technologies) was used to analyze the mass spectra. The
phenolic compounds were identified with the molecular formula proposed by the software
and comparing the experimental mass with the exact mass, allowing an error of 8 ppm. The
fragmentation pattern and relative abundance of fragmentation ions were compared with
the fragmentation patterns found in the public databases, Human Metabolome Database
and MassBank. The relative abundance of each tentatively identified compound was
determined by measuring its peak area.

2.11. Statistical Analysis

Statistical analysis was performed by Student’s paired t-test using IBM SPSS STATIS-
TICS 27 (IBM Corporation, Armonk, NY, USA), with a 95% confidence interval. All
determinations were performed in triplicate.

3. Results and Discussion
3.1. Bioactivity of Extracts
3.1.1. Antioxidant Activity

The most commonly used methods to determine the total antioxidant capacity assays
can be divided into two major groups: those based on a single electron transfer reaction
and the ones based on a hydrogen atom transfer reaction [22,23]. The first includes the
TEAC, FRAP and the DPPH assays, while the second includes the ORAC assay. In this
work, the ability of the extract to exert antioxidant activity through different pathways was
evaluated using different methods: the DPPH, TEAC, FRAP, ORAC assays and ferrous ion
chelating activity.

The ice plant extract showed good antioxidant activity (Table 1). The value obtained
for DPPH was similar to that found by Ngxabi et al. [24] in an extract of the halophytic
species Trachyandra ciliate (19.01–9.39 µmol TE/g). The ice plant extract showed 88 µEq
Trolox/g determined by ORAC. A lower value was found in Chritmum maritimum extracts
(15.84 µmol/Trolox g) [25], while a maximum of 101 µmol/Trolox g of the fresh matter
was reported for extracts of Chritmum maritimum, Triglochin maritima and Halimione
portulacoides by Boestfleisch and Papenbrock [26]. However, it is important to note that
these extracts were obtained using 80% methanol, which significantly affects the final
antioxidant properties. The antioxidant capacity determined by TEAC showed lower
values than those reported by Cybulska et al. [27] in polyphenol extracts of Salicornia
sinus-persica and Salicornia bigelovii (1227 and 4795 µmol/g, respectively).

Table 1. Phenol content, antioxidant and enzymatic inhibiting activity of the ice plant extract.

Assay M. crystallinum Extract

Chemical composition
Total phenolic compounds (mEq GA/g) 10.02 ± 0.07

Antioxidant activity
DPPH (µEq Trolox/g) 21.0 ± 0.3
ORAC (µEq Trolox/g) 88.0 ± 10.4
TEAC (µEq Trolox/g) 84.4 ± 4.6

FRAP (mEq Mohr’s salt/g) 8.9 ± 0.3
Ferrous ion chelating activity (mEq EDTA/g) 1.6 ± 0.0

Enzymatic activity inhibition
ACE, 1 mg/mL (%) 90.5 ± 3.3
PEP, 1 mg/mL (%) 98.6 ± 0.1

DPP-IV, 1 mg/mL (%) 73.1 ± 3.3

The antioxidant activity of plant extracts is associated with the presence of antioxi-
dant enzymes and secondary metabolites, mainly phenolic compounds (phenolic acids,
flavonoids and tannins) and carotenoids. The ice plant extract had a slightly higher phenol
content (Table 1) than that reported for the same plant by Sánchez-Faure et al. [15], which
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was 8.2 mEq GA/g. Hanen et al. [28] described a much lower phenol concentration in the
same plant and Mesembryanthemum nodiflorum (1.43–1.71 mEq GA/g, respectively) and
a much higher one (70.07 mEq GA/g) in an extract of Mesembryanthemum edule.

The presence of antioxidant compounds in halophytes is related to their ability to
cope with the accumulation of reactive oxygen species (ROS), produced by the unfavorable
conditions in which they grow. These compounds could delay the processes of cellular
damage, senescence processes and metabolic disorders associated with the presence of
these radicals by inhibiting the initiation or propagation of the oxidative chain reaction.
Therefore, the variations observed in the antioxidant capacity of different halophyte plant
extracts could be related to the concentration of secondary metabolites induced by the
salinity of the soil in which these plants grow, and thus, could also be associated with the
different polyphenol composition of the extracts together with the presence of different
concentrations of other antioxidant compounds such as vitamin C, vitamin E, alkaloids
or bilirubin [26]. The antioxidant activity of polyphenols depends on factors such as the
number and position of hydroxyl groups, as well as the nature of the substitutions in the
aromatic rings. The antioxidant activity of halophyte extracts could even be greater than
that of synthetic antioxidants, according to Ksouri et al. [29], hence the interest in these
extracts as promising alternative antioxidants to the synthetic ones traditionally used by
the food industry. In addition, the analyzed extract may have some beneficial health effects
due to its antioxidant potential, some of which have already been described, such as the
protection against UV exposure [30] and an inhibitory effect on colon cancer cells [31].

The ice plant extract showed a FRAP value in the range of that found by Qasim et al. [32]
for 100 medicinal halophyte plants. The ferrous ion chelating activity of the extract (Table 1)
was much lower than that reported by Sadeer et al. [33] in an extract from the halophyte
Bruguiera gymnorhiza (6–60 mg EDTA Eq/g).

3.1.2. ACE, PEP and DPP-IV Inhibitory Activity

The ice plant extract showed potent ACE-inhibitory activity, with values of 90.5% at a
concentration of 1 mg/mL (Table 1). This effect could be due to the presence of phenolic
compounds in the extract [34].

The ACE-inhibitory activity of halophyte extracts has been scarcely reported. Men et al. [35]
found lower inhibitory activity (83%, 100 mg/mL) in extracts of Suaeda physophora. These
authors attributed the ACE-inhibitory activity to the presence of polyphenols in the extracts.
Some ACE-inhibiting polyphenols from other halophytes such as Artemisia scoparia [36] and
Salicornia ramosissima [37] have been isolated. Sharifi et al. [38], in an in vivo study with
rats, observed an antihypertensive effect of an aqueous extract of the halophyte Tribulus
terrestris and suggested that it could be related to an ACE inhibitory effect, as the enzymatic
activity was significantly reduced in all tissues. Phillips et al. [39] also found that T. terrestris
extracts were able to exert an antihypertensive effect in spontaneously hypertensive rats,
although, in this case, it was related to smooth muscle relaxation by nitric oxide release.

In the current study, the extract also showed potent DPP-IV and PEP-inhibitory activity
(Table 1). The PEP inhibitory capacity of extracts from several plants has been described
and ascribed to the presence of specific peptides and cyclotides, alkaloids such as berberine
and flavonoids such as oroxylin and hispidulin [7,40,41]. Nonetheless, other molecules
could also be responsible for this bioactivity. As regards the potential hypoglycaemic
effect of halophyte extracts, it has been scarcely reported. Benwahhoud et al. [42] observed
a hypoglycaemic effect of the edible halophyte Suaeda fruticosa in diabetic rats. This
hypoglycaemic effect, however, may not be due to the inactivation of DPP-IV, as it was not
associated with changes in plasma insulin levels in the experimental animals. These authors
found flavonoids in the extract, but could not identify the compound responsible for the
bioactivity. The effect of polyphenols in diabetes prevention suggests that polyphenols
present in the ice plant extract could be responsible for the DPP-IV inhibiting activity [43,44].
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3.2. Fractionation of the Ice Plant Extract

The ice plant extract was fractionated by preparative HPLC to identify the molecules
responsible for the bioactive properties observed in the in vitro studies. Two major fractions
were detected at the elution times of 5–10 min (called fraction 1) and 24–30 min (called
fraction 2), as depicted in Figure 1. The lack of peaks at 530 nm indicated the absence of
anthocyanins in the extract. Fraction 1 showed two peaks detected at 214, 280 and 360 nm.
The highest was found at 214 nm, suggesting that this fraction was composed primarily of
compounds with amide bonds, such as peptides, vitamins or hormones [45]. Presumably,
the peaks detected at 280 nm were not only the result of the presence of aromatic amino
acids in this fraction, as Sánchez Faure et al. [15] found low amounts of these amino acids in
the ice plant. The low phenol content in this fraction (Table 2) suggests that these molecules
were not the main ones responsible for the high absorbance found at 280 nm.
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Figure 1. Chromatographic profiles of the ethanolic extract of ice plant. Absorbance was measured at
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(fraction 1) and 24–30 min (fraction 2).

Table 2. Phenol content, antioxidant and enzymatic inhibiting activity of the fractions obtained
after chromatographic separation of the ice plant extract. Different letters in the same row indicate
significant differences between pair mean values.

Assay Fraction 1 Fraction 2

Chemical composition
Total phenols (mE(q GAE/g) 9.28 ± 2.8 a 61.9 ± 2.8 b

Antioxidant activity
DPPH (µEq Trolox/g) 64.4 ± 9.3 a 185.3 ± 53.6 b

ORAC (µEq Trolox/g) 427.9 ± 42.0 a 1541.5 ± 78.0 b

TEAC (µEq Trolox/g) 739.2 ± 88.1 a 1341.7 ± 75.3 b

FRAP (mEq Mohr’s salt/g) 6.4 ± 0.0 a 13.5 ± 0.1 b

Ferrous ion chelating activity (mEq EDTA/g) 4.8 ± 0.1 a 4.4 ± 0.1 b

Enzymatic activity inhibition
ACE, 100 µg/mL (%) 59.3 ± 1.69 a 100 ± 0.0 b

PEP, 200 µg/mL (%) 0 a 90.6 ± 2.5 b

DPP-IV, 200 µg/mL (%) 11.7 ± 1.5 a 58.7 ± 0.7 b

Fraction 2 showed a single peak detected at 214, 280 and 360 nm. The maximum was
found at 214 nm, but the intensity was much lower than that observed in fraction 1. The
high phenol content found in this fraction (Table 2) could explain the absorbance detected
at 360 nm, the maximum for the flavonol group [46]. The peak was also detected at 280 nm,
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which is the maximum absorbance of some polyphenols. The concentration of polyphenols
in both fractions was higher than that found by Hanen et al. [28] (1.43 mEq GA/g) and
by Sánchez-Faure et al. (8.2 mEq GA/g) in the same plant. Differences in total phenol
content could be related to different environmental factors, such as plant exposure to UV
rays, soil salinity or soil drought, as well as to the extraction process and the polarity of the
solvents used.

3.2.1. Antioxidant Activity of the Fractions

Fraction 2 showed the highest antioxidant activity in almost all the assays performed
(Table 2), which could be ascribed to the presence of highly antioxidant compounds such
as polyphenols and carotenoids, as previously mentioned [47,48]. The values were much
higher than those obtained for the crude extract, indicating that the main antioxidative
molecules were concentrated in the second fraction. As an exception, fraction 1 showed
a higher capacity to chelate ferrous ions (Table 2), which could be due to the presence of
chelating peptides and free amino acids in this fraction [49].

3.2.2. ACE, PEP and DPP-IV Inhibitory Activity

Fraction 2 showed significantly higher ACE, PEP and DPP-IV inhibitory activity than
fraction 1 at the same concentration tested (Table 2). This suggests that the polyphenols
present in fraction 2 exerted a greater inhibitory effect than the peptides and other com-
pounds presumably present in fraction 1. Interestingly, the ACE- and PEP-inhibiting activity
of fraction 2 was similar to that of the crude extract, but using a five-fold lower concentra-
tion, indicating that the main molecules responsible for the inhibition were concentrated in
this fraction.

3.3. Identification of Polyphenols in the Active Fraction

The polyphenol composition of fraction 2 was studied by LC-MS/MS (Figure 2).
The MS spectra showed different peaks, but not all of them were identified as known
polyphenols. The analysis of the MS/MS spectra revealed that the polyphenols present
in this fraction were mainly flavones (more than 65%), of which apigenin accounted for
the largest portion (38% of the total polyphenols found). Six polyphenols were identified
(Table 3): 4-hydroxybenzoic acid, p-coumaric acid, a hydroxycinnamic acid derivative
(2-O-(p-cumaroyl)-l-malic acid) and three flavonoids (diosmin, luteolin and apigenin). The
structure of these compounds is shown in Figure 3. To our knowledge, the polyphenol com-
position of the ice plant has only been reported by Sánchez-Faure et al. [15]. These authors
reported the presence of two hydroxycinnamic acids—one of them, hydroxybenzoic acid,
also found in this study—four hydroxycinnamic acids and one flavonol. The differences in
the composition may be due to different factors such as seasonality, the soil in which the
plant was grown and/or the extraction method used.

The antioxidant effect of phenolic compounds has been widely reported. However,
the antioxidant activity could not be attributed to one or several of the polyphenols present
in the fraction, but rather to all of them together. The antioxidant activity of p-coumaric
acid has been proved in vitro and in vivo and has been ascribed to its capacity to scavenge
radicals and also to its metal-ion chelating ability [50]. In addition, 4-hydroxybenzoic acid
has been described as an antioxidant agent, being this ability ascribed to the potential to
reduce ferric ions [51]. Apigenin has been described as a free radical scavenger, with the
ability to regulate the antioxidant defense in pancreatic cells. Moreover, apigenin is capable
of exerting an antioxidant effect in pancreatic cells [52]. The antioxidant effect of apigenin is
associated with significant anti-inflammatory effects, as reported by Ginwala et al. [53]. As
well, luteolin exerts a potent antioxidant effect, mediated by the high number of OH groups
in the B ring [52]. Diosmin has been reported as a potent antioxidant in in vitro and in vivo
studies [54]. The antioxidant effect of the flavonoids and phenolic acids found in the extract
could be attributed to the presence of hydroxyl groups in their structure, which may act
as hydrogen donors and directly scavenge reactive oxygen free radicals, thus reducing
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their activity, as well as the ability to chelate metal ions [55]. It cannot be ruled out that the
antioxidant activity was also the result of a synergistic effect of the phenolic compounds
with other unidentified compounds that may be present in the fraction. The activity would
then be superior to that of each of the individual components [55].

Foods 2022, 11, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 2. MS spectra of fraction 2, at negative (a) and positive (b) mode. 

 

Figure 2. MS spectra of fraction 2, at negative (a) and positive (b) mode.

Foods 2022, 11, x FOR PEER REVIEW 13 of 18 
 

 

Fraction 2 showed an ACE inhibitory capacity of 100%. Polyphenols could exert an 
inhibitory effect on ACE through different mechanisms, according to Shukor et al. [34]. 
These authors studied the inhibitory effect of 22 phenolic compounds on ACE and ob-
served that the ACE inhibitory effect of hydroxybenzoic and hydroxycinnamic acids is 
higher when an increased number of hydroxyl groups on the benzene ring are found. 
These OH groups and others such as carboxyl and acrylic acid groups can act as hydrogen 
bond acceptors or donors and increase the ACE-inhibiting potency. In this work, the phe-
nolic compounds belonging to these families (4-hydroxybenzoic acid, coumaric acid and 
2-O-(p-cumaroyl)-l-malic acid) presented two or three hydroxyl groups and one acrylic 
acid group in the molecule that could confer the ability to inhibit ACE. Although 
Błaszczak et al. [56] reported that p-coumaric and 4-hydroxybenzoic have a negligible ef-
fect on ACE inhibition, Men et al. [35] observed the opposite effect of 4-hydroxybenzoic 
acid isolated from halophyte plants. This suggests that the ACE-inhibitory effect of 4-hy-
droxybenzoic acid found in fraction 2 may be questioned. Diosmin, with eight hydroxyl 
groups in its structure, could be the main ACE-inhibitor in this fraction. Apigenin could 
also exert ACE-inhibiting activity, as reported by Shree et al. [57] and Loizzo et al. [58], as 
well as luteolin, due to the presence of the catechol group in the B-ring [59]. The results 
reported in the literature, therefore, indicate that the flavonoids found in fraction 2 could 
be the main sources responsible for the ACE-inhibitory activity, without ruling out the 
inhibitory effect of the phenolic acids. 

 
Figure 3. 2D structures of apigenin (A), luteolin (B), diosmin (C), 4-hydroxybenzoic acid (D), cou-
maric acid (E) and 2-o(p-coumaryl)-l-malic acid (F) from PubChem database. 

Very few studies have addressed the study of PEP-inhibiting phenolic compounds 
from plants. Ali et al. [60] observed the PEP-inhibiting effect of quercetin isolated from 
Persian ironwood (Parrotia persica), in contrast to polyphenols isolated from hawthorn (ru-
tin, epicatechin and chlorogenic acid) [61]. Marques et al. [7] reported potent PEP-inhibit-
ing activity of the flavonoids oroxylin A, and mainly hispidulin and oroxyloside, from 
Scutellaria racemosa. Baicalin has also been described as a PEP inhibitor, exerting its inhib-
itory effect by a non-competitive mechanism [62]. According to these authors, the sugar 
moiety of baicalin would not be involved in the interaction with the enzyme. Similarly, 
Kim et al. [63] isolated some non-competitive inhibitors from green tea leaves that were 
identified as (-)-epigallocatechin gallate, (-)-epicatechin gallate, and (+)-gallocatechin gal-
late. Concerning the phenolic compounds identified in fraction 2, Fan et al. [64] reported 

Figure 3. 2D structures of apigenin (A), luteolin (B), diosmin (C), 4-hydroxybenzoic acid (D), coumaric
acid (E) and 2-o(p-coumaryl)-l-malic acid (F) from PubChem database.



Foods 2022, 11, 1581 11 of 16

Table 3. Profile of extractable polyphenolic compounds tentatively identified from the most active fraction. The relative area is referred to the total area of the
compounds found.

Rt (Min) Proposed Compound Experimental Mass Calculated Mass Error (ppm) Ms/Ms Ions Relative Area (%)

Hidroxybenzoic acids
10.9 4-Hydroxybenzoic acid 137.0238 137.0241 −2.41 65, 69, 93, 109,119, 137 7.49

Hydroxycinnamic Acids
17.3 p-Coumaric acid 163.0401 163.0404 −3.64 65, 67, 75, 88, 119, 137, 145, 163 12.00

Hydroxycinnamic Acids derivatives
17.8 2-O-(p-Coumaroyl)-l-malic acid 279.051 279.0521 −3.38 71, 89, 115, 119, 133, 145,1 63, 189 18.60

Flavonoids
22.0 Diosmin 607.1668 607.1674 −1.60 284, 285, 299, 300, 301 17.72
28.7 Luteolin 285.0405 285.0409 −1.38 83, 107, 133, 143, 149, 151, 175, 199, 217 11.90
33.5 Apigenin 269.0455 269.0463 −2.68 107, 118, 121, 149, 151, 158, 225, 269 38.00
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Fraction 2 showed an ACE inhibitory capacity of 100%. Polyphenols could exert an
inhibitory effect on ACE through different mechanisms, according to Shukor et al. [34].
These authors studied the inhibitory effect of 22 phenolic compounds on ACE and observed
that the ACE inhibitory effect of hydroxybenzoic and hydroxycinnamic acids is higher
when an increased number of hydroxyl groups on the benzene ring are found. These OH
groups and others such as carboxyl and acrylic acid groups can act as hydrogen bond
acceptors or donors and increase the ACE-inhibiting potency. In this work, the phenolic
compounds belonging to these families (4-hydroxybenzoic acid, coumaric acid and 2-O-(p-
cumaroyl)-l-malic acid) presented two or three hydroxyl groups and one acrylic acid group
in the molecule that could confer the ability to inhibit ACE. Although Błaszczak et al. [56]
reported that p-coumaric and 4-hydroxybenzoic have a negligible effect on ACE inhibition,
Men et al. [35] observed the opposite effect of 4-hydroxybenzoic acid isolated from halo-
phyte plants. This suggests that the ACE-inhibitory effect of 4-hydroxybenzoic acid found
in fraction 2 may be questioned. Diosmin, with eight hydroxyl groups in its structure,
could be the main ACE-inhibitor in this fraction. Apigenin could also exert ACE-inhibiting
activity, as reported by Shree et al. [57] and Loizzo et al. [58], as well as luteolin, due to
the presence of the catechol group in the B-ring [59]. The results reported in the literature,
therefore, indicate that the flavonoids found in fraction 2 could be the main sources re-
sponsible for the ACE-inhibitory activity, without ruling out the inhibitory effect of the
phenolic acids.

Very few studies have addressed the study of PEP-inhibiting phenolic compounds
from plants. Ali et al. [60] observed the PEP-inhibiting effect of quercetin isolated from
Persian ironwood (Parrotia persica), in contrast to polyphenols isolated from hawthorn
(rutin, epicatechin and chlorogenic acid) [61]. Marques et al. [7] reported potent PEP-
inhibiting activity of the flavonoids oroxylin A, and mainly hispidulin and oroxyloside,
from Scutellaria racemosa. Baicalin has also been described as a PEP inhibitor, exerting its
inhibitory effect by a non-competitive mechanism [62]. According to these authors, the
sugar moiety of baicalin would not be involved in the interaction with the enzyme. Similarly,
Kim et al. [63] isolated some non-competitive inhibitors from green tea leaves that were
identified as (−)-epigallocatechin gallate, (−)-epicatechin gallate, and (+)-gallocatechin
gallate. Concerning the phenolic compounds identified in fraction 2, Fan et al. [64] reported
a very low PEP-inhibiting effect of 4-hydroxybenzoic acid and p-coumaric acid extracted
from the underground part of Rhodiola sacra. These authors reported a certain relationship
between the presence of a catechol B-ring or pyrogallol groups in the molecule and the
inhibition of the enzyme, which could explain the PEP inhibitory effect of the phenolic
compounds present in the previously mentioned tea extract. This suggests that luteolin,
with a catechol group, and diosmin, with two pyrogallol groups, could be the main PEP
inhibitory polyphenols present in the fraction. In addition, the presence of a carbonyl
group, as diosmin and luteolin present in the flavone skeleton, together with catechol or
pyrogallol moieties, has been suggested as a structural essential feature in the inhibitory
effect [65]. The PEP inhibitory activity of luteolin was previously reported by Lee et al. [66],
who indicated the importance of the OH group at position 7 on the inhibitory capacity,
in addition to the presence of the catechol B-ring. These authors also measured the PEP-
inhibitory activity of apigenin, which was more than 50 times lower than that of luteolin.
Thus, the PEP inhibitory activity of the extract seemed to be due to the presence of luteolin
and diosmin.

The DPP-IV-inhibiting activity of phenolic compounds has been reported by different
authors. However, to our knowledge, this is the first time that the inhibitory activity of
halophyte extracts against DPP-IV has been described. Gao et al. [67] found some active
sites, named S1, S2 and S3, in DPP-IV implicated in the enzymatic inhibition induced
by polyphenols. These authors observed that the highest inhibitory effect was produced
by isorhamnetin-3-O-glucoside, cyanidin-3-O-glucoside and isorhamnetin-3-O-rutinoside;
luteolin and apigenin also showed good inhibitory activity. Fan et al. [68] analyzed the
DPP-IV inhibitory effect of 27 phenolic compounds commonly present in some plants such
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as citrus, berries, etc.; they indicated that resveratrol, luteolin and apigenin showed the
maximum inhibitory activity. The flavonoids cirsimaritin, hispidulin, naringenin, eriodic-
tyol and rosmaric acid isolated from culinary herbs showed an efficient inhibitory effect
against DPP-IV [69]. Haron et al. [70] reported a high binding affinity towards DPP-IV of
robustaflavone, catechin, apigenin, kaempferol and myricetin isolated from Anacardium
occidentale, while other polyphenols such as gallic acid, p-coumaric acid and protocate-
chuic acid showed lower binding affinity. Egbuna et al. [71] reviewed the antidiabetic
effect of different natural compounds and described apigenin as a DPP-IV inhibitory com-
pound. Moreover, they did describe it as an inhibitor of other enzymes involved in glucose
metabolism, such as alpha-glucosidase and alpha-amylase, as well as p-coumaric acid
and p-hydroxybenzoic acid as inhibitors of alpha-glucosidase. These results suggest that
the DPP-IV-inhibiting activity of the isolated fraction 2 was mainly due to the presence
of apigenin, p-coumaric acid and luteolin. These polyphenols account for around 61% of
the compounds identified in fraction 2. To the best of our knowledge, no data had been
previously reported regarding the DPP-IV inhibitory action of the other flavonoid found
in this study, diosmin. Nonetheless, the DPP-IV inhibitory effect of another flavone with
a rutinoside group, isorhamnetin-3-O-rutinoside, has been reported [67], suggesting that
diosmin could also exert DPP-IV inhibiting activity.

4. Conclusions

The ice plant extract showed significant antioxidant activity and an important in-
hibitory effect against PEP, ACE and DPP-IV. These interesting bioactivities could be
ascribed to the presence of certain polyphenols in the extract, mainly flavonoids showing
inhibitory effects against some or all of the studied enzymes. Future studies are needed to
determine the potential therapeutic effect of the extract, its stability during food processing
(if used as an ingredient in functional foods) and bioavailability. It is also necessary to
perform an in-depth study of the inhibitory effect against ACE, DPP-IV and PEP and the
antioxidant effect of each isolated polyphenol, as well as to study possible synergistic
effects among polyphenols and other molecules in the extract. All these studies would
contribute to the upgrading of this underused and abundant halophyte.
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