
Spatial intratumor heterogeneity of genetic, epigenetic 
alterations and temporal clonal evolution in esophageal 
squamous cell carcinoma

Jia-Jie Hao1,10, De-Chen Lin2,3,10,11, Huy Q. Dinh4,10, Anand Mayakonda5,10, Yan-Yi 
Jiang5,10, Chen Chang1, Ye Jiang1, Chen-Chen Lu1, Zhi-Zhou Shi6, Xin Xu1, Yu Zhang1, Yan 
Cai1, Jin-Wu Wang7, Qi-Min Zhan1, Wen-Qiang Wei8,11, Benjamin P. Berman4,11, Ming-Rong 
Wang1,11, and H. Phillip Koeffler2,5,9

1State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese 
Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China

2Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los 
Angeles, USA

3Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, 
Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 
China

4Center for Bioinformatics and Functional Genomics, Biomedical Sciences, Cedars-Sinai Medical 
Center, UCLA School of Medicine, Los Angeles, USA

5Cancer Science Institute of Singapore, National University of Singapore, Singapore

6Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China

7Department of Pathology, Linzhou Cancer Hospital, Henan, China

8Department of Cancer Epidemiology, National Cancer Center/Cancer Hospital, Chinese 
Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
11Correspondence should be addressed to M-R.W. (wangmr2015@126.com), B.P.B (Benjamin.Berman@csmc.edu), D-C.L. 
(dchlin11@gmail.com) or W-Q W. (weiwq2006@126.com).
10These authors contributed equally to this work.

URLs
BWA-MEM, http://arxiv.org/abs/1303.3997v2.
fpFilter perl script, https://github.com/ckandoth/variant-filter.
Bam-readcount, https://github.com/genome/bam-readcount.
PHYLIP, http://evolution.genetics.washington.edu/phylip.html.

Accession codes. Digital sequencing and HM450 Bead array files have been deposited into Sequence Read Archive (SRP072112) and 
Gene Expression Omnibus (GSE79366), respectively.

AUTHOR CONTRIBUTIONS
M.-R.W., D.-C.L., B.P.B. and H.P.K. conceived and designed the experiments. J.-J.H., D.-C.L., H.Q.D., W.-Q.W. B.P.B., M.-R.W., and 
H.P.K. wrote the manuscript. J.-J.H., D.-C.L., Y.J., C.C., C.-C.L., X.X., Y.C. performed the experiments. J.-J.H., H.Q.D., A.M., B.P.B., 
and Z.-Z.S. performed statistical analysis. J.-J.H., D.-C.L., H.Q.D., Y.-Y.J., B.P.B. and H.P.K. analyzed the data. X.X. contributed 
reagents. W.-Q.W. contributed materials. J.-W.W. and J.-J.H. read the H&E slides. D.-C.L., Y.Z., Q.-M.Z. and H.P.K. jointly 
supervised research.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2017 April 17.

Published in final edited form as:
Nat Genet. 2016 December ; 48(12): 1500–1507. doi:10.1038/ng.3683.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1303.3997v2
https://github.com/ckandoth/variant-filter
https://github.com/genome/bam-readcount
http://evolution.genetics.washington.edu/phylip.html


9National University Cancer Institute, National University Hospital Singapore, Singapore

Abstract

Esophageal squamous cell carcinoma (ESCC) is among the most common malignancies, but little 

is known about its spatial intratumor heterogeneity (ITH) and temporal clonal evolutionary 

processes. To address this, we performed multiregion whole-exome sequencing on 51 tumor 

regions from 13 ESCCs, and multiregion global methylation profiling on three of these 13 cases. 

We found an average of 35.8% heterogeneous somatic mutations with strong evidence of ITH. 

Half of driver mutations located on the branches targeted oncogenes, including PIK3CA, NFE2L2, 
MTOR, etc. By contrast, the majority of truncal and clonal driver mutations occurred in tumor 

suppressor genes, including TP53, KMT2D, ZNF750, etc. Interestingly, the phyloepigenetic trees 

robustly recapitulated the topologic structures of the phylogenetic ones, indicating the possible 

relationship between genetic and epigenetic alterations. Our integrated investigations of the spatial 

ITH and clonal evolution provide an important molecular foundation for enhanced understanding 

of the tumorigenesis and progression of ESCC.

Esophageal carcinoma is among the most common human cancers, causing over 400,000 

deaths worldwide annually1,2. The highest-risk areas are located in Eastern Asia, as well as 

Eastern and Southern Africa; and the most prevalent type is esophageal squamous cell 

carcinoma (ESCC)1,2. The five-year survival rates of ESCC patients undergoing surgery is 

below 30%, because a large proportion of the tumors are unresectable or have already 

metastasized before diagnosis3.

Recently, several large-scale genomic studies including ours have characterized ESCC 

genomes with hundreds of somatic mutations and copy number alterations, and have 

identified significantly mutated genes, including TP53, PIK3CA, ZNF750, etc.4–9. The 

APOBEC signature is a predominant mutational spectrum, and contributes to the mutagenic 

processes of ESCCs6,8. However, the genomic alterations identified in all of these studies 

were obtained using only single samples representing individual cases, and little is known 

about the spatial intratumor heterogeneity (ITH) and the temporal clonal evolutionary 

processes of mutational spectrum in ESCC. Moreover, although alterations in DNA 

methylation have been observed in ESCC, the ITH of these epigenetic changes is still 

unknown, and whether it correlates with the genetic architecture remains unexplored.

Precise understanding of both the genomic and epigenomic architecture of primary ESCC 

tumors is crucial for developing personalized patient treatment and molecular-based 

biomarkers10. Furthermore, an integrated investigation of the genomic and epigenomic 

evolutionary trajectory of ESCC may also reveal new insights into the relationship between 

the genome and epigenome. In the present study, we address these critical issues through 

integrative molecular approaches, including multiregional whole-exome sequencing (M-

WES), global methylation profiling, as well as phylogenetic and phyloepigenetic tree 

construction.
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RESULTS

Spatial ITH of ESCC

M-WES was performed on the genomic DNA from 13 primary ESCC patients, and the 

clinical-pathological parameters of these patients were listed in Supplementary Table 1. In 

total, 51 tumor regions and 13 matched morphologically normal esophageal tissues (four 

tumor regions and one matched normal tissue per case, with the exception of ESCC04, 

which only had three tumor regions) were sequenced, with the mean coverage depth of 

150×. A total of 1,610 non-silent somatic mutations (affecting 1,427 genes) and 568 silent 

mutations were identified, with a validation rate of 90% (Supplementary Tables 2–3).

To explore ITH and genomic evolution of ESCC, phylogenetic trees were constructed based 

on somatic mutations (both silent and non-silent) identified from each tumor region. The 

trunk, shared branch and private branch of the tree represented mutations in all tumor 

regions, in some but not all regions, and only in one region, respectively. As shown in Fig. 

1a and Supplementary Fig. 1, phylogenetic trees varied extensively among different cases, 

and all of the 13 ESCCs showed evidence of spatial ITH, with an average of 35.8% 

(780/2,178; range, 8.0%–60.9%) of somatic variants having spatial heterogeneity.

Characterization of the relative timing of mutations affecting driver genes with possible 

biological relevance is essential for revealing the evolutionary processes of the cancer 

genome, as well as further improving precision medicine strategies. To address this, we 

identified potential driver mutations according to recent large-scale ESCC sequencing 

data4–8, COSMIC gene census11 and Pan-cancer analysis12; this was followed by tracing 

them within the phylogenetic trees (See Methods). Overall, driver mutations were 

significantly more enriched in the trunks than were passenger mutations (77.8% vs. 63.8%; 

P = 0.023; Fig. 1b). This indicates that drivers are mutated as relatively early events during 

the evolutionary process of the tumors, which is in accordance with previous findings in 

other tumor types13. We next separated putative driver mutations into those occurring either 

in oncogenes or tumor suppressor genes (TSGs). Importantly, half of the driver mutations 

(50.0%) that mapped to the branches were within oncogenes, including PIK3CA, KIT, 
NFE2L2, MTOR and FAM135B. In comparison, only 22.4% of driver mutations located on 

the trunks affected oncogenes, and the rest were in TSGs. For example, TP53 mutations 

were present in twelve of the thirteen cases, and were truncal in all of the mutated cases, in 

agreement with recent reports14,15. It is worthwhile to note that potentially actionable 

mutations such as those targeting PIK3CA and MTOR tended to be oncogenic branch 

events. These findings highlight the extra caution needed when considering inhibiting these 

mutants in ESCC, given previous studies showing that suppressing subclonal drivers led to 

growth acceleration of non-mutated subpopulations16.

Clonal status of putative driver mutations

We next investigated the clonal status of somatic mutations within individual regions. 

Cancer cell fraction (CCF) in each tumor region was calculated as described previously 

through integrative analysis of local copy number, variant allele frequency (VAF) and tumor 

cell purity16,17. Several driver mutations were subclonal and possibly occurred as late events 
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in ESCC, including MTOR, KEAP1, PTPRB and FAM135B. In contrast, cancer genes on 

the trunks, such as TP53, NOTCH1, CREBBP, KMT2D and ZNF750, were predominantly 

mutated in a fully clonal manner (Fig. 2), further verifying our earlier phylogenetic tree 

analysis showing that these mutations were possibly early lesions during ESCC 

development. Of particularly noteworthy distinction, a number of driver variants detected as 

clonal within some individual tumor regions, were absent in others from the same individual, 

producing an “illusion” of clonal dominance. For example, a PIK3CA hotspot mutation 

(M1043I) was undetectable in tumor region T2 and T3 in case ESCC13 but was clonally 

dominant in the other two regions. Likewise, a hotspot mutation in KIT gene (E601K) was 

present in 100% tumor cells in regions T1 and T3 in case ESCC08, yet was absent in the rest 

of the tumor regions. Such clonal dominance was also observed in NFE2L2 in case 

ESCC12. Our results suggest that driver mutations can have mixed and complex 

intratumoral clonal status in ESCC, and that current single-sampling approach may 

misinterpret these critical genomic lesions because of the “illusion” of clonal dominance. 

We further investigated all the non-silent variants within genes and related pathways that 

have potential targeting approaches. As shown in Supplementary Fig. 2, mutations affecting 

members in PI3K/MTOR pathway, KIT, AURKA and CCND2 were always late events 

(branched/subclonal). By contrast, variants in ERBB4, FGFR2, BRCA2, ATM and TP53, 

were mutated as early events (truncal/clonal), suggesting their potentials as candidate 

actionable targets for ESCC.

ITH of copy number alterations (CNA)

We next analyzed the ITH at the copy number level (Supplementary Table 4). First, recurrent 

copy number alterations which involve important cancer genes in ESCC were identified 

based on our previous results6, and we confirmed that the present cohort harbored these 

recurrent CNAs with similar frequencies (Supplementary Fig. 3). Although CNAs were 

generally more similar within cases than between different cases, we found extensive CNA 

ITH, with 90% (9/10) of all recurrent CNAs being spatially heterogeneous. For example in 

ESCC08, chr7p11.2 amplification (encompassing EGFR) was observed in regions T1 and 

T4, but not in regions T2 and T3. Similarly, deletions of chr9p21.3 (harboring CDKN2A/B) 

were ubiquitous in some cases but also occurred as heterogeneous aberrations in other 

samples. The only driver CNA found as consistently ubiquitous was the copy number gain 

of 11q13, which encompassed a number of oncogenes including CCND1, ANO118–20 and 

CTTN21,22, highlighting the importance of this aberration as a founder genomic lesion in the 

development of ESCC. These results suggest that similar as somatic mutations, CNAs also 

show significant spatial ITH, concordant with the observations in several other types of 

cancers23–25.

The within-patient mutational rate (mean = 168) was higher than the within-region rate 

(mean = 139, Supplementary Table 5), highlighting the improved resolution of our multi-

biopsy approach for genomic interrogation. Particularly, in the case of branched cancer 

genes, current M-WES approach markedly increased the sensitivity of the detection rate 

(Table 1). For example, ATR and TSC1 mutations, which were detected in only 2% of tumor 

regions (in agreement with previous results), occurred in 7.7% of cases. In addition, the 

proportion of subclonal mutations detected in each tumor region was much lower than that 

Hao et al. Page 4

Nat Genet. Author manuscript; available in PMC 2017 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in each case (Table 2 and Supplementary Fig. 4). These results again signify that analyzing 

sequencing data obtained from a single biopsy will likely underestimate the prevalence of 

the mutations, especially for those acquired late in the mutational process24.

Temporal dissecting of mutational spectra and signatures

To determine the temporal dynamics of the mutagenic processes in ESCC, the mutational 

spectrum of both the trunks and branches was analyzed using deconstructSigs26, which 

identifies the linear combination of pre-defined signatures that most accurately reconstructs 

the mutational profile of a single tumor sample. As shown in Fig. 3a, the overall mutational 

spectra were similar between trunk and branch mutations, with very strong enrichment of 

Signature 1 substitutions (associated with age), and more subtle but enriched representation 

of APOBEC-associated Signature 2 and Signature 13 substitutions (C>G and C>T in the 

TpCpW context). We next calculated the contributions of individual mutational signatures to 

each tumor (Fig. 3b), and identified several signatures within the tumors tested, including 

Signature 1 (Age), Signatures 2 and 13 (APOBEC), and Signatures 6 and 15 (DNA 

mismatch repair), in agreement with previous results in esophageal squamous and other 

squamous-type cancers6,8,27. Interestingly, we noticed that a number of tumors displayed a 

prominent decrease of the relative contribution of Signature 1 in the branch compared with 

trunk mutations, albeit without obtaining statistical significance due to the relatively small 

number of tumors analyzed. In some of these cases, we also observed an increase of 

signatures associated with DNA damage (including Signatures 3 and 15) in the branch 

mutations (such as ESCC10 and ESCC12, shown in Figs. 3c–d and Supplementary Fig. 5). 

To interpret these temporal differences of mutational spectra within the same tumor will 

require further investigations, but the data indicate that various mutational processes might 

play important roles in subclonal diversification during the progression of ESCC.

ITH of DNA methylation in ESCC

As with other cancers, epigenetic abnormalities have been associated with the development 

and pathogenesis of ESCC28–30. To decipher ESCC ITH at the epigenetic level and its 

potential relationship with subclonal gene mutations, the genome-wide methylation levels of 

fourteen M-WES-profiled tumor and normal tissues from three ESCC cases (ESCC01, 

ESCC03 and ESCC05) were profiled using the Illumina HumanMethylation450 (HM450) 

Bead array. We first identified CpG probes that showed significant differences between the 

tumor regions and normal tissues from the same patient (except for ESCC01, which did not 

have a matched normal tissue), then divided these differentially methylated probes into those 

with “shared” changes (i.e. consistent within all tumor regions from the same case), and 

“private” changes (those present in one or more of the regions, but not all). We used the 

probes with private changes to infer tumor evolution and constructed phyloepigenetic trees 

for each case based on the Euclidean pairwise distances of methylation profiles31,32 (See 

Methods). Topological similarities were tested between phyloepigenetic and phylogenetic 

trees in all three cases based on Robinson-Foulds (RF) distance for unrooted trees33 (Fig. 

4a). Notably, in accordance with a recent report on glioma32, the RF distances (zeros for all 

3 cases) suggested high concordance between genetic and epigenetic tree topologies in all 

three cases (see Methods). Since the distinction between the private and shared methylation 

changes was cutoff dependent, we further tested four different probe-selection cutoffs, and 
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noted that the phyloepigenetic trees were robust to the cutoff and showed highly similar 

topological structures (Supplementary Fig. 6). Moreover, to alleviate the confounding effects 

from non-tumor DNA contamination, two different methods were performed to account for 

and mitigate the potential influence from immune cells (the major source of non-cancer cells 

in these samples, Supplementary Fig. 7), and again, similar results were observed between 

the trees using uncorrected methylation values, and trees using either correction method 

(Supplementary Fig. 8, see Methods). These findings suggest the possible relationship 

between genomic and epigenomic alterations during the clonal evolution of ESCC cells, and 

are indicative of the presence of multiple epigenetically distinct, subclonal cell populations, 

as recently observed in prostate cancer31, glioma32 and hepatocellular carcinoma 

[unpublished data, D-C. L., A. M., H. Q. D, Pinbo Huang, Lehang Lin, et al.].

We observed that a number of TSGs, including EPHA734,35, PCDH1036,37, DOK138,39, etc, 

were hypermethylated at their promoters within some but not all regions of the same case, 

indicating that their expression might be differentially suppressed in different tumor regions. 

Notably, some TSGs were both mutated and acquired promoter hypermethylation, such as 

ASXL1 and EPHA7. Interestingly, ASXL1 was subject to both truncal/clonal mutation and 

shared hypermethylation at its promoter, suggesting that ASXL1 was disrupted early during 

both the genomic and epigenomic evolutionary processes.

To explore the potential biological significance of DNA methylation ITH in ESCC, we next 

sought to determine whether the differentially methylated DNA CpG loci in each case were 

enriched at particular functional genomic categories. We first divided CpG probes into those 

where tumor methylation was higher than the adjacent normal tissues (hyper-methylated) or 

lower (hypo-methylated). Shared probes were selected for their relatively consistent changes 

in different tumor regions (Supplementary Fig. 9), while the rest (private probes) exhibited 

prominent differences between the tumor regions (Fig. 4b) and reflected the extensive ITH 

seen in the phyloepigenetic trees. We next compared shared vs. private probes by assigning 

them to various relevant functional genomic categories including CpG Islands (CGIs), CGI 

Shores, promoters and enhancers, etc., and compared them to the background frequencies of 

these categories based on all probes on the array (Fig. 4c). As expected, shared CpG sites 

showed several methylation patterns commonly seen across cancer types40,41, including 

hypermethylated probes strongly enriched within CGI promoter regions, and depleted in 

both long-range partially methylated domains (PMDs) and enhancer regions (after removing 

CGIs). Shared hypomethylated probes showed an inverse distribution, i.e., markedly 

depleted in CGI promoters while enriched in PMDs as well as enhancer regions (Fig. 4c). 

Strikingly, private CpG sites for the most part resembled the distribution patterns of their 

shared counterparts (Fig. 4c). In light of the known contribution of tumor-specific 

methylation to cancer biology42,43, our results suggest that intratumoral methylation 

heterogeneity might play a role in the subclonal diversification of ESCC tumors. In support 

of this, GO analysis of the genes with privately-hypermethylated promoters showed that they 

were significantly enriched in cancer-related processes, including cell proliferation, 

differentiation, migration, adhesion and transcriptional regulation (Fig. 4d). In addition, we 

noticed that privately-hypermethylated probes were even more enriched in CGI Shores than 

shared-hypermethylated ones (Fig. 4c). Given the prior observations that i) cancer-specific 

differentially methylated regions occur more frequently within CGI shores than within 
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CGIs44,45, and ii) CGI Shore methylation correlates with the expression of the associated 

genes44, our observations further suggest the potential involvement of heterogeneity of DNA 

methylation in the evolutionary biology of ESCC cells.

DISCUSSION

ESCC is one of the most common malignancies, with relatively low overall five-year 

survival rates. The main cause leading to unfavorable prognosis of ESCC patients is the lack 

of effective therapies. Currently, none of the targeted therapies have been established for 

clinical management of ESCC46. Hundreds of genomic alterations, including somatic 

mutations and copy number alterations, have recently been identified in ESCC4–9, but these 

data have not been translated into clinical applications. In addition, the genomic and 

epigenomic ITH and clonal evolution of ESCC tumors have not yet been characterized. In 

light of the evidence that ITH is the major cause of drug resistance and treatment failure47, 

deciphering the genomic diversity and clonal evolution of ESCC tumors will provide both a 

theoretical and translational basis for identifying new targets and designing personalized 

medicine strategies.

In the present study, the genomic ITH of 13 ESCC cases, as well as the epigenetic ITH of 

three of these individuals, were investigated through a variety of molecular approaches, and 

concordant tumor evolutionary trajectories were found as inferred by both their DNA 

mutations and methylation. A very recent study of two ESCC cases reported that the ITH 

rate for somatic mutations was approximate 90%48, whereas the rates in our study were 

much lower, with an average of 35.8%. The discrepancy may well be due to the differences 

of sequencing depths between the two studies (50× V.S. 150×). Although the true extent of 

ITH is difficult to define, high sequencing coverage in our study offers an improved 

resolution to decipher the spatial heterogeneity and clonal evolution of ESCC.

Although phylogeny analysis based on M-WES is not able to resolve completely the true 

temporal ordering of all the somatic variants, we calculated that an average of 93.5% (range 

from 87.8% to 97.7%) of somatic mutations were compatible with the present phylogenic 

trees (Supplementary Fig. 1). For example, in case ESCC13, 282 out of 294 variants (95.9%) 

were compatible with the evolution model based on the topological structure of the 

phylogenetic tree; and only 12 mutations, including PIK3CA, were incompatible with the 

phylogenetic tree (Supplementary Table 6). Therefore, the phylogeny method correctly 

resolves the temporal order of the vast majority of the somatic mutations. Moreover, the 

evolutionary models inferred from the M-WES-based phylogeny are strongly supported by 

our DNA-methylation phylogeny in all three cases (Fig. 4a). Hence, this reconstruction of 

the phylogenetic topologies, from a completely independent epigenomic event, strongly 

reinforces the validity of these evolutionary models.

Resolving the clonal status of driver mutations will help to distinguish early from late 

events, and targeting clonally dominant driver mutations (early events) conceivably 

represents an optimized therapeutic strategy10,49. In this study, despite driver mutations 

having a tendency to be truncal/clonal compared with passenger mutations, approximate 

40% of driver mutations were branched or subclonal. This observation suggests that these 
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driver mutations were relatively late events during tumor evolution, and contributed to the 

emergence of distinct subclonal expansions after the founding clones were established. 

Notable examples included KIT, and members of the PI3K/MTOR pathway (PIK3CA and 

MTOR) and NFE2L2 pathway (NFE2L2 and KEAP1). These examples, most of which are 

oncogenes, were frequently mutated as late events in ESCC. Furthermore, evidence of 

“parallel evolution” was noted in some cases. For example, ESCC13 contained branch 

PIK3CA mutations derived in two spatially separated tumor regions, both harboring the 

M1043I variant, which is a hotspot mutation. Similar parallel evolution was also observed in 

NFE2L2 mutations in ESCC12. Interestingly, PIK3CA, KIT and NFE2L2 mutations were 

fully clonal in some tumor regions but were completely absent in others, showing an 

“illusion” of clonal dominance. In addition, the number of within-patient mutations was 

higher than the within-region mutations. These results strongly suggest that the prevalence 

of these driver events, and the rate of sub-clonality overall, are likely underestimated when 

using a single biopsy to represent an individual patient.

Although ESCC DNA methylation alterations have been profiled using single-sampling 

approaches, their intratumoral diversity and the relationship to genetic lesions remain 

unknown. In the present study, we found a number of TSGs with private hypermethylation at 

the promoters, some of which have been associated with either tumorigenesis or progression 

of other cancer types, such as EPHA734,50, ABCB451, PCDH1052,53 and DOK138,39. This 

finding suggests that these genes might be differentially inactivated in different tumor 

regions from same individuals. We revealed profound epigenetic ITH in ESCC through 

global methylation analysis. Importantly, subclonal evolutions inferred from DNA 

methylation closely recapitulated phylogenetic trees, indicating the possible relationship 

between genetic and epigenetic alterations in ESCC. Therefore, integrative analysis of both 

phylogenetic and phyloepigenetic trees may generate an enhanced understanding of clonal 

architecture, and reveal the basis for subclonal epigenetic driver events. These features of 

epigenetic and genetic ITH revealed by our study may have important implications in ESCC 

biology.

ONLINE METHODS

Patients and specimens

Tissue samples from 13 ESCC patients, including primary esophageal tumors and matched 

morphologically normal esophageal epithelial margins, were collected in Linzhou 

Esophagus Cancer Hospital, Henan province, China. All the samples used in this study were 

residual specimens collected after diagnosis sampling. All the patients received no treatment 

before surgery, and signed separate informed consent forms for the sampling and molecular 

analyses. We also considered the clinic-pathological parameters when selecting these ESCC 

patients, including gender, pathological tumor (pT) stage, regional lymph node metastasis, 

and tumor differentiation, to avoid bias towards particular pathological characteristics 

(Supplementary Table 1). Specifically, the male/female ratio in the current cohort was 

similar to that reported in the latest publication54. The number of patients with relatively 

early (pT1b/T2) and late (pT3) tumor stage were five and eight, respectively. The status of 

lymph node metastasis (negative, n = 4; positive, n = 9), as well as tumor differentiation (G1, 
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n = 1; G2, n = 6; G2/3, n = 2; G3, n = 4) were also taken into account. This study has been 

approved by the Ethics Committee/IRB of Cancer Hospital/Institute, Peking Union Medical 

College and Chinese Academy of Medical Sciences (Approval No. NCC2013-066). The 

collection and publication of Chinese human genetic data used in the present study has been 

approved by the Ministry of Science and Technology. In 12 out of 13 cases, four spatially 

separated tumor specimens were obtained from each individual, with each section at least 

0.5 cm away from the others. In the case of ESCC04, three tumor regions were sampled. We 

carefully reviewed the hematoxylin and eosin (H&E) slides of each tumor region before 

subjecting them to WES analysis, in order to make sure that the tumor cell content of the 

selected regions were comparable and were at least greater than 60% (Representative H&E 

photos in Supplementary Fig. 10).

Multiregional whole-exome sequencing (M-WES)

For each individual, genomic DNA (gDNA) of cells from different tumor regions and one 

matched normal epithelial tissue at the surgical margins were sequenced. Genomic DNA 

was extracted using Qiagen DNeasy Blood & Tissue Kit according to the manufacturer’s 

instructions. For cases ESCC01 and ESCC02, whole-exome capture of gDNA was 

performed by the Beijing Genome Institute (BGI), using the BGI Exome Enrichment Kit, 

and massively parallel sequencing of captured gDNA was performed and analyzed by BGI 

using the Complete Genomics platform. For the 11 other cases, the Agilent SureSelect 

Human All Exon v4 (51 Mb) kit was used for whole-exome capture of gDNA, and the 

captured DNA was sequenced by BGI using the Illumina HiSeq4000 sequencing platform, 

with 150 base pair paired-end sequencing.

Alignment of sequencing reads and somatic variant detection

150 base pair paired-end fastq files were aligned to the human reference genome (build 

hg19) using bwa-mem aligner in default mode (URL). Alignments were then filtered for 

duplicate reads using Samblaster55, and bam files were indel realigned and base quality 

scores were recalibrated according to GATK best practices56.

Somatic variants were detected using VarScan257. Tumor and matched normal pileup files 

were generated using the samtools “mpileup” command and fed into the VarScan “somatic” 

command58. Reference genome positions covered at least by 10 reads in normal and 14 

reads in tumor samples were considered for variant calling. Variants with VAF less than 0.07 

were discarded. Raw somatic variants were filtered using the VarScan “processSomatic” 

command with arguments–min-tumor-freq 0.07, --max-normal-freq 0.02 and –p-value set to 

0.05. These high quality somatic variants were filtered for false positives using fpFilter perl 

script (URL). These filtered variants were annotated with annovar59 and filtered against 

dbSNP135 database for commonly occurring Single Nucleotide Polymorphisms (SNPs)59. 

Disease associated variants annotated in ClinVar database and COSMIC database were 

retained.

Phylogenetic tree construction

For mutations that have been detected from at least one tumor region, a method described by 

Stachler et al.60 was used to increase the sensitivity of detecting these mutations in other 
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tumor regions from the same individual with low VAF. In brief, Bam-Readcount (URL) was 

used to obtain read counts for unique somatic variants across all tumor regions. A variant 

was considered as absent if either its VAF was less than 0.02 or the reads were fewer than 3. 

The VAFs across all tumor regions of each individual were then used to generate a binary 

table. Phylogenetic trees were constructed based on the binary tables using Discrete 

Character Parsimony, implemented in PHYLogeny Inference Package (URL), with the 

matched morphologically normal epithelial margins as outgroup roots. Based on the 

calculated branch/trunk lengths inferred from mutation counts, the final trees were drawn 

manually.

Cancer cell fraction (CCF) analysis

Copy number analysis from WES data was performed using ReCapSeg, which is 

implemented as part of the Genome Analysis Tool Kit (GATK v4). Briefly, read counts for 

each of the exome targets were extracted from all samples and were divided by the total 

number of reads to generate proportional coverage. A panel of normal controls14 was created 

by using proportional coverage from all of the normal samples. Each of the tumor samples 

was compared to PoN, followed by tangent normalization. These normalized coverage 

profiles were then segmented using circular binary segmentation61. Variants on the sex 

chromosomes (X and Y) were excluded from this analysis.

Tumor cellularity was determined based on the VAF and segmented copy number data using 

ABSOLUTE62, in order to determine the cancer cell fraction (CCF) of each mutation, as 

was previously described by McGranahan et al.13. The clonal status was defined according 

to the confidence interval (CI) of the CCF. Mutations were classified as subclonal if the 

upper bound of their 95% CI was less than 1.

Identification of putative driver mutations

We first identified putative cancer driver genes based on recent large-scale ESCC sequencing 

data4–8, COSMIC cancer gene census (Aug 2015)11 and Pan-cancer analysis12. Next, non-

silent variants in these genes were evaluated, and putative driver mutations were identified if 

they met one of the following requirements: i) Either the exact mutation, the same mutation 

site or at least three mutations located within 15 bp around the variant were found in 

COSMIC; ii) If the candidate gene was remarked to be recessive in COSMIC, and the 

variant was predicted to be deleterious, including stopgain, frameshift and splicing mutation 

and, had a SIFT score < 0.0563 or a Polyphen score > 0.99564,65.

Mutational signature analysis

Both silent and non-silent somatic mutations were classified as either truncal or branch as 

described earlier, and the mutational signatures of these variants were separately generated. 

We performed a multiple regression approach, deconstructSigs26, to extract the signatures 

based on Wellcome Trust Sanger Institute Mutational Signature Framework27, and to 

quantify statistically the contribution of each signature for each tumor.
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DNA methylation analysis and construction of phyloepigenetic tree

DNA methylation profiles of 12 tumor regions and 2 matched normal esophageal epithelial 

tissues from three M-WES-examined ESCC cases (ESCC01, ESCC03 and ESCC05) were 

generated using the Illumina Infinium HumanMethylation450K platform (Illumina, San 

Diego, CA) by the University of Southern California Norris Comprehensive Cancer Center 

Genomics Core. We performed basic data processing of the HM450k data using many of the 

same processing steps that we have performed previously for TCGA data analysis, which is 

based on the Methylumi R package66 with several additional quality control steps. Probes 

with the detection p-value greater than 0.01 in any of the samples were removed, as were 

probes overlapping with dbSNP SNPs, and probes on the X or Y chromosomes.

For intratumoral analysis, we defined a probe as “private” if the difference in beta values 

between any single pair of tumor regions was at least 0.3, and defined a probe as “shared” if 

the differences in beta values between all pairs of tumor regions were less than 0.1. Only 

private probes were used for construction of phyloepigenetic trees. For each tumor, pairwise 

Euclidean distances were calculated between all tumor regions using the complete set of 

private probes.

The phyloepigenetic tree was constructed from these pairwise distances, using the Minimal 

Evolution method implemented by the fastme.bal function in the R package ape67. Different 

probe-selection cutoffs for calling private and shared probes produced similar results, with 

only minimal changes in case ESCC01 (at the cutoff of 0.5) and ESCC05 (at the cutoff of 

0.2, Supplementary Fig. 6). The topological comparison of phylogenetic vs. phyloepigenetic 

and other tree pairs was performed using RF.dist function in the CRAN R package 

phangorn. The comparison in the case ESCC01 was done based on only tumor samples due 

to the lack of matched normal in DNA methylation data (for visualization purpose in Fig. 4a, 

we used normal samples from the other two cases as the root.)

To mitigate confounding effects of non-cancer cells in phyloepigenetic tree reconstruction, 

we performed additional bioinformatic analyses, as described below.

The major source of nonmalignant DNA contamination in the esophageal tumor is from 

immune cells68, which has been shown by TCGA to be the case for most solid tumors62,69. 

We confirmed this by review of all of our methylation-profiled samples through 

immunostaining of the leukocyte common antigen (LCA)/CD45 (representative 

immunohistochemical photos in Supplementary Fig. 7), which is a common marker of the 

immune cells and widely used in distinguishing the infiltration of immune cells70–73. To 

precisely determine the extent of immune cell contamination, we estimated the fraction of 

leukocyte cells in each sample using profiles of immune-specific methylation probes74, as 

described previously62,69. Using this method, we noted that case ESCC01 was highly pure 

(estimated immune-cell fraction 7.1%, ranging from 1% to 14% in various tumor regions) 

and case ESCC03 and ESCC05 contained an average of 20% and 32% immune cells, 

respectively (Supplementary Table 7).

We re-calculated each phyloepigenetic tree using one of two methods to model the mixture 

of cancer and and immune cells within the samples:
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i. As demonstrated in several TCGA marker papers, performing an analysis 

using only the subset of Infinium probes that are unmethylated in purified 

leukocyte cells, and dichotomizing/binarizing the tumor beta value of 

these probes with a minimum beta value cutoff, could minimize the 

influence of contaminating leukocytes75–77. We used HM450k profiles 

from purified leukoctye populations74, and selected probes with a 

maximum beta value less than 0.3 across all leukocyte samples. We then 

binarized the tumor beta values as 1 if they were > 0.3 and 0 otherwise. 

We computed pairwise distances between binarized values using the 

Jaccard index (dist function in R package), and performed tree 

construction using these pairwise distances as described above. The 

resulting trees are labeled “Dichotomized” in Supplementary Fig. 8.

ii. In an independent approach, we modeled the tumor beta value as a linear 

combination of DNA from a mixture of cancer and leukocyte cells. The 

mixing ratio was estimated for each sample based on methylation of 

leukocyte-specific probes, as described above and in previously62,69. For 

each probe, we used the fixed mixing ratio, the average beta value of the 

probe in purified leukocytes74, and our measured beta value in the tumor, 

to estimate the methylation beta value of the cancer cells alone. This 

method was used to reconstruct phyloepigenetic trees for each case, and 

the resulting trees are labeled “Immune cell adjusted” in Supplementary 

Fig. 8.

Trees for both methods (i) and (ii) were compared to original trees using the RF method 

described above, and RF values are listed in Supplementary Fig. 8.

Determining the genomic context of shared vs. private methylation patterns

Shared vs. Private probes were determined based on heterogeneity between different tumor 

regions, as described above. These were further divided “hypermethylated” and 

“hypomethylated”, based on comparisons between the tumor methylation and that of 

adjacent normal tissue. For hypermethylated probes within a specific case, we selected all 

probes with a methylation beta value < 0.3 in the adjacent normal sample (or a maximum 

beta value of two other normal samples < 0.3 for ESCC01) and a mean beta value across all 

tumor regions that was at least 0.3 above from mean of normal sample(s). Similarly for 

“hypomethylation”, we selected those probes with >= 0.6 in the normal, and at least below 

0.3 for the tumor mean from mean of normals. For ESCC01, which had no matched normal, 

we averaged the beta values from the other two normals. Hyper- and hypomethylated probe 

sets are shown in Fig. 4b–d, and Supplementary Fig. 9. For the enrichment analysis in Fig. 

4c, promoters were defined as 1.5 kbp up/down stream of RefSeq TSS, CpG islands were 

taken from the HMM-defined set78, shores and enhancers were defined using standard 

Illumina 450K annotation manifest. Partially Methylated Domains (PMD) were called using 

the Roadmap79 normal esophagus sample (ID: E079), using an HMM-based segmentation 

method80. Enrichment/Depletion p-values for the enrichment of private vs. shared probes 

within each genomic context were computed based on a hypergeometric test based, where 
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null model frequencies were calculated based on all probes present on the array (shown as 

“Background” in Fig. 4c).

Immunohistochemistry (IHC)

Formalin-fixed and paraffin-embedded tissue slides were deparaffinized using xylene, 

rehydrated using xylene and ethanol, and then immersed in 3% hydrogen peroxide solution 

for 10 min, heated in citrate at 95°C for 25 min, and cooled at room temperature for 60 min. 

The slides were incubated overnight at 4°C with the leukocyte common antigen (LCA)/

CD45 antibody (Cell Marque, 145M-96, USA; diluted at 1:100), and visualized using 

PV-9000 Polymer Detection System following the manufacturer’s instructions (Beijing 

Zhongshan Golden Bridge Biotechnology Co. Ltd., China). Counterstaining was carried out 

with hematoxylin.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. ITH of somatic mutations in 13 ESCCs generated by M-WES
(a) Phylogenetic trees were constructed from all somatic mutations by the Wagner 

parsimony method using PHYLIP (See Method). Lengths of trunks and branches are 

proportional to the numbers of mutations acquired. Heat maps showed the presence (blue) or 

absence (gray) of a somatic mutation in each tumor region (T). Each gene was arranged in a 

row, and cancer genes with putative driver mutations were indicated. The total number of 

mutations (n), and the proportions of branched mutations in each case, were provided above 

each tree. (b) Bar plots showed the proportions of putative driver mutations versus other 

mutations on the trunks and branches. Statistical differences of truncal and branched 

proportions, between driver and other mutations across all cases, were analyzed using a χ2 

test, and a significant P value was shown.
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Fig. 2. Clonal status of putative driver mutations in ESCC tumors
A heatmap displayed the cancer cell fraction (CCF) of driver mutations in each region of the 

ESCC tumors. Genomic regions with no segmentation data available were shown as NA.
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Fig. 3. Temporal dissection of mutational signatures in ESCC tumors
(a) The 96 trinucleotide mutational spectrum of truncal (Bottom panel) and branched (Top 

panel) mutations across all regions was inferred by deconstructSigs. (b) Dot plots displayed 

the contributions of individual mutational signatures to individual cases, with each dot 

representing one case. Signatures 1–30 were based on the Wellcome Trust Sanger Institute 

COSMIC Mutational Signature Framework. Inferred signatures included: Signature 1 

(associated with age), Signatures 2 and 13 (associated with APOBEC), Signatures 6 and 15 

(associated with DNA mismatch repair), Signature 3 (associated with DNA double-strand 
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break-repair), Signature 7 (associated with UV exposure in squamous cancer). The bars 

represent the mean values. (c, d) Piecharts displayed the truncal and branch mutational 

signatures in cases ESCC10 and ESCC12, and only signatures with contributions over 10% 

were indicated.

Hao et al. Page 21

Nat Genet. Author manuscript; available in PMC 2017 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Epigenetic ITH in ESCC
(a) Phyloepigenetic trees of three ESCC cases. Lengths of trunks and branches were inferred 

using a phylogenetic approach, based on Euclidean distances between different tumor 

regions using private probes (see Methods). The total number of probes (n) was provided 

above each tree. For comparison, phylogenetic trees from Fig. 1 were reproduced below 

each phyloepigenetic tree. (b) Heatmaps showed the beta values of private probes for each 

case, separated into hyper- and hypo-methylation. (c) Overlap between each probe set from 

panel (b), and a variety of functional genomic contexts: non-CpG Island Promoters (nCGI-

Prom), non-Promoter CpG Islands (CGI-nProm), CpG Island Promoters (CGI-Prom), CpG 

Island Shores (CGI-Shore), Partially Methylated Domains excluding CpG Islands (nCGI-

PMD) and enhancers. Overlapping frequencies of private probes from panel (b) were shown 

in yellow, shared probes (Supplementary Fig. 9) in green, and gray showed the frequency for 

the entire set of probes on the array. The hypergeometric test (* = P < 10−5) was used to 

compare the frequency of each private and shared probe set category to that of array 

background (see Methods). (d) Enriched GO biological processes for the genes associated 

with privately hypermethylated promoters in ESCC01 and ESCC03 (case ESCC05 was 

excluded due to the lack of sufficient privately hypermethylated promoters).
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Table 1

Prevalence of non-silent mutations in ESCC (within-patient versus within-region)

Cancer gene Prevalence (number of
patients with mutations)

in previous studies*

Within-region prevalence
(number of regions with 

mutations)
n = 51 regions

Within-patient prevalence
(number of patients with 

mutations)
n = 13 cases

Within-patient/
within-region

TP53 78.9% (430) 94.1% (48) 92.3% (12) 0.98

KMT2D 13.8% (63) 23.5% (12) 23.1% (3) 0.98

NOTCH1 12.8% (70) 21.6% (11) 23.1% (3) 1.07

FAT1 11.2% (51) 15.7% (8) 15.4% (2) 0.98

ZNF750 5.7% (26) 15.7% (8) 15.4% (2) 0.98

FAM135B 6.4% (29) 13.7% (7) 15.4% (2) 1.12

NFE2L2 5.7% (26) 7.8% (4) 15.4% (2) 1.97

PTPRB 2.9% (13) 7.8% (4) 15.4% (2) 1.97

ATM 1.8% (8) 7.8% (4) 7.7% (1) 0.98

BRCA2 3.1% (14) 7.8% (4) 7.7% (1) 0.98

CREBBP 4.2% (19) 7.8% (4) 7.7% (1) 0.98

KMT2A 1.1% (5) 7.8% (4) 7.7% (1) 0.98

NOTCH2 3.3% (18) 7.8% (4) 7.7% (1) 0.98

FAT2 6.4% (29) 5.9% (3) 7.7% (1) 1.31

KEAP1 1.8% (8) 5.9% (3) 7.7% (1) 1.31

MTOR 1.1% (5) 3.9% (2) 7.7% (1) 1.96

TP53BP1 0.9% (4) 3.9% (2) 7.7% (1) 1.96

KIT 0.7% (3) 3.9% (2) 7.7% (1) 1.96

PIK3CA 9.0% (41) 3.9% (2) 7.7% (1) 1.96

ATR 1.1% (5) 2.0% (1) 7.7% (1) 3.92

BRIP1 0.9% (4) 2.0% (1) 7.7% (1) 3.92

TSC1 1.1% (5) 2.0% (1) 7.7% (1) 3.92

*
Summary of published data from Agrawal et al. (Ref. 4), Song et al. (Ref. 5), Lin et al. (Ref. 6), Gao et al. (Ref. 7), and Zhang et al. (Ref. 8). The 

total number of cases is 545 for TP53, NOTCH1 and NOTCH2 mutations, and is 456 for the rest gene mutations.

The last column showed the fold change when the prevalence was analyzed using individual cases instead of individual tumor regions.
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