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Abstract Anxiety disorders affect approximately 1 in 5 (18%) Americans within a given 1 year

period, placing a substantial burden on the national health care system. Therefore, there is a critical

need to understand the neural mechanisms mediating anxiety symptoms. We used unbiased,

multimodal, data-driven, whole-brain measures of neural activity (magnetoencephalography) and

connectivity (fMRI) to identify the regions of the brain that contribute most prominently to

sustained anxiety. We report that a single brain region, the intraparietal sulcus (IPS), shows both

elevated neural activity and global brain connectivity during threat. The IPS plays a key role in

attention orienting and may contribute to the hypervigilance that is a common symptom of

pathological anxiety. Hyperactivation of this region during elevated state anxiety may account for

the paradoxical facilitation of performance on tasks that require an external focus of attention, and

impairment of performance on tasks that require an internal focus of attention.

DOI: 10.7554/eLife.23608.001

Introduction
Current models of anxiety disorders suggest that pathological anxiety results from excessive or inap-

propriate activation of the same neural circuits that are responsible for adaptive anxiety in the face

of threat (Insel et al., 2010; Insel, 2014). Although there is a long history of translational work study-

ing neural systems mediating the acute fear response (Pavlov, 1927; Fanselow and Poulos, 2005;

Fullana et al., 2016), much less is known about the neural systems mediating prolonged periods of

elevated state anxiety. Closing this knowledge gap is critical because the occurrence of prolonged

periods of elevated state anxiety is one of the primary symptoms of all anxiety disorders

(American Psychiatric Association, 2013). Therefore, understanding neural mechanisms underlying

prolonged periods of elevated anxiety has the potential to identify targets for the treatment of anxi-

ety disorders, which are among the most prevalent psychiatric disorders (Kessler et al., 2005).

The gold-standard translational paradigm for studying elevated state anxiety in the laboratory is

the threat of shock paradigm, during which subjects are exposed to periods when they are either

safe, or at risk for receiving unpredictable aversive electrical stimulations (Schmitz and Grillon,

2012; Grillon, 2008; Grillon and Baas, 2003). It allows for the experimental manipulation of state

anxiety within subjects (Grillon and Baas, 2003, 1998; Grillon et al., 1991, 2007, 2008, 2009), which

can be quantified using psychological and physiological measures (Grillon, 2008; Grillon and Baas,

2003) and can be implemented in healthy subjects (Balderston et al., 2017a,

2017b; Cornwell et al., 2007, Cornwell et al., 2008, 2012; Lissek et al., 2007), patients

(Grillon et al., 2009; Balderston et al., 2017a; Vytal et al., 2016), and non-human animals

(Davis et al., 2010). A key feature of prolonged periods of threat of shock is that they induce a sta-

ble increase in anxiety that can be probed at random intervals using the acoustic startle reflex
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(Grillon, 2008; Grillon and Baas, 2003, 1998), suggesting that this anxious state is mediated by a

fundamental sustained change in the pattern of ongoing brain activity. This is in contrast to more

phasic event-related fear responses in typical cued fear conditioning (Schmitz and Grillon, 2012;

Grillon, 2008; Davis et al., 2010).

Current neuroscientific models of anxiety are based in part on translational work using Pavlovian

fear conditioning (Pavlov, 1927; Fanselow and Poulos, 2005; Fullana et al., 2016). Decades of

work in non-human animals has shown that acute fear responding is dependent upon the amygdala

(Kwapis et al., 2009; Bailey et al., 1999; Parsons et al., 2006), and functional magnetic resonance

imaging (fMRI) during fear conditioning in humans has been used to identify a canonical fear network

that includes the amygdala, the dorsomedial prefrontal cortex, the thalamus, and the anterior insula

(Fullana et al., 2016; Schultz et al., 2012; Cheng et al., 2003, 2006). However, much less is known

about the network mediating extended periods of elevated state anxiety.

In addition, cognitive scientific research in humans shows that attentional processing is profoundly

influenced by both state (Vytal et al., 2013, 2012; Patel et al., 2016; Shackman et al., 2006) and

trait anxiety (Derakshan et al., 2009; Eysenck et al., 2007), suggesting that multiple neural systems

are affected by anxiety. Although there have been some studies investigating the neural systems

that mediate anxiety, these studies often depend on an a priori focus that is centered on the regions

of the canonical fear network, and typically rely on a priori methods to increase statistical sensitivity

in these regions such as lowered statistical thresholds (Robinson et al., 2013a; Mobbs et al., 2010;

Hooker et al., 2006; Tabbert et al., 2010), region of interest analyses (Balderston et al., 2015,

2014, 2013), and seed-based functional connectivity (Schultz et al., 2012; Vytal et al., 2014;

Gold et al., 2015). Importantly, the increased sensitivity gained by using these statistical methods

comes at the cost of assessing anxiety-related changes in regions not identified a priori, thus result-

ing in a possible under-reporting of anxiety-related changes in other areas of the brain, such as

regions important for attentional processing. Therefore, the purpose of this study was to use explor-

atory analytical methods to identify the most prominent activity/connectivity changes induced by the

threat of shock paradigm.

Toward this aim, we collected data from two complimentary imaging modalities, fMRI and mag-

netoencephalography (MEG) during a threat of shock paradigm. In both MEG and fMRI experi-

ments, subjects underwent alternating blocks of safety and threat, and rated their anxiety

continuously using a centrally located visual analog scale (see Figure 1). During the MEG

eLife digest Anxiety disorders affect around one in five Americans, and in many cases people

experience anxiety so intensely that they have difficulties performing day-to-day activities. To help

these people, it is important to understand how anxiety works. Current research suggests that

anxiety disorders are caused when the connections in the brain that control our response to threat

are either excessively or inappropriately activated. However, it was not clear what causes the anxiety

to last for long periods. To better understand this phenomenon, Balderston et al. studied the brains

of over 30 volunteers using two types of measurements called magnetoencephalography and fMRI.

In the each experiment, participants experienced periods of threat, where they could receive

unpredictable electric shocks. In the first experiment, Balderston et al. measured the brain activity

by recording the magnetic fields generated in the brain. In the second experiment, they used fMRI

to record changes in the blood flow throughout the brain to measure how the different regions in

the brain communicate.

The recordings identified a single part of the brain that increased its activity and changed its

communication pattern with the other regions in the brain, when people are anxious. This region in

a part of the brain called parietal lobe, is also important for processing attention, which suggests

that anxiety might make people also more aware of their surroundings. However, this extra

awareness might also make it more difficult for people to concentrate.

Future studies may be able to stimulate this area of the brain through the scalp to potentially

reduce anxiety, as the affected area is close to the skull.

DOI: 10.7554/eLife.23608.002
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experiment, subjects also received randomly timed white noise presentations, which served to probe

the subject’s current anxiety level (via the acoustic startle response) and their ongoing brain activity

(via the preceding pattern of neural oscillations).

In both experiments, we used unbiased, data-driven, whole-brain approaches to identify changes

in activity (MEG) and connectivity (fMRI) as a function of threat. To assess functional connectivity

changes in the fMRI signal, we used the global brain connectivity (GBC) metric, which does not rely

on a priori seed-selection for the connectivity analysis. To assess ongoing patterns of activity in the

MEG study, we evaluated changes in oscillatory power during the 2 s prior to the startle probes as a

function of threat. According to the translational approach, one might predict that the most promi-

nent changes in spontaneous neural activity and connectivity would emerge in regions of the canoni-

cal fear network (Fanselow and Poulos, 2005; Kim et al., 2011). However, given that impaired

attentional control is a key feature of clinical anxiety (Derakshan et al., 2009; Eysenck et al., 2007),

and that threat of shock has been repeatedly shown to impact performance on tasks that require

attention control (Vytal et al., 2013, 2012; Patel et al., 2016; Shackman et al., 2006), one might

also expect that the most prominent changes would emerge within regions of the frontoparietal

attention network (Ptak, 2012; Posner, 2012; Petersen and Posner, 2012).

Results

Threat increases subjective and physiological measures of anxiety
We began by assessing the ability of our threat manipulation to induce a sustained state of anxiety.

Results from the psychological questionnaires, and the subjective rating scales can be found in

Table 1. Consistent with the online ratings, subjects during both experiments reported more anxiety

(MEG: t(26) = 8.65; p<0.001; fMRI: t(24) = 13.98; p<0.001) and fear (MEG: t(26) = 8.03; p<0.001;

fMRI: t(24) = 9.15; p<0.001) during the threat blocks than during the safe blocks. In addition, two

sample t-tests did not reveal any significant differences between experiments for either the psycho-

logical questionnaires, or the affective rating scales (all ps > 0.05). For the MEG study, we analyzed

both the acoustic startle reflex and the online self-reported anxiety ratings. Because startle probes

could not be presented during the MRI study, we relied only on the ratings.

For each startle probe in the MEG study, we extracted the subject’s startle magnitude, and anxi-

ety rating recorded just prior to the startle probe. Both the startle magnitude and anxiety ratings

Figure 1. Schematic of experimental paradigm. (A) Subjects underwent alternating blocks of threat and safety. (B) Visual display present on the screen

during the experiment. During the experiment subjects saw two circles. The color of the outer circle indicated the block type. The color of the inner

circle was controlled by the subject, and reflected the subject’s then-current anxiety level.

DOI: 10.7554/eLife.23608.003
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were normalized and converted to T-scores (Blumenthal et al., 2005) within subjects. These values

were then averaged across trials and submitted to a paired-sample t-test (Safe vs. Threat). Both rat-

ings (See Figure 2A and Figure 2—source data 1; t(27) = 10.03; p<0.001) and startle (See

Figure 2B and Figure 2—source data 1; t(27) = 4.65; p<0.001) indicated greater anxiety during the

threat blocks compared to the safe blocks. Next, we created Threat > Safe difference scores for

both startle (anxiety potentiated startle; APS) and the online ratings, and correlated the values

across subjects. Ratings within the MEG study were significantly correlated with startle across sub-

jects (See Figure 2D and Figure 2—source data 1; r(26) = 0.61; p=0.001).

During the MRI study, we averaged the ratings across time in the threat and safe blocks, and con-

verted these values to T-scores. As with the MEG study, these values were submitted to a paired-

sample t-test (Safe vs. Threat), and indicated more anxiety during the threat blocks than the safe

blocks (See Figure 2C and Figure 2—source data 1; t(24) = 23.06; p<0.001). We also created

Threat > Safe difference scores for these values, and correlated these difference scores with startle

(recorded during the MEG study) in the subjects who participated in both sessions. There was a non-

significant small positive correlation between startle and rating during the MRI session (see

Figure 2D and Figure 2—source data 1; r(16) = 0.24; p=0.344).

Threat increases whole brain GBC
Many threat of shock studies have used seed-based functional connectivity analyses to identify

changes in emotional processing centers in the brain (Vytal et al., 2014; Gold et al., 2015;

Satterthwaite et al., 2011; Prater et al., 2013; Hrybouski et al., 2016; Birn et al., 2014;

Cha et al., 2014; Heitmann et al., 2016); however, seed-based functional connectivity methods suf-

fer from bias because they require the experimenter to select a seed region ahead of time, while

ignoring all other possible seed regions. To address this limitation, researchers have developed com-

plementary data-driven functional connectivity metrics such as GBC, which do not rely on a priori

seed-selection for the connectivity analysis. By assessing the connectivity between each voxel and

every other voxel, this analysis allows the user to identify the most connected regions of the brain

(Cole et al., 2010), as well as the seed regions where connectivity impacts behavior across subjects

(Cole et al., 2012; Gotts et al., 2012). By identifying regions that show the largest changes in GBC

Table 1. Individual differences for MEG (N = 28) and MRI (N = 25) experiments.

Measure MEG MRI

STAI

State 26.04 (1.37) 23 (0.9)

Trait 27.12 (0.93) 28.18 (1.27)

ASI 11.59 (1.21) 8.64 (1.18)

BAI 1.37 (0.42) 0.58 (0.26)

BDI 0.89 (0.32) 0.42 (0.19)

Shock

Intensity (mA) 5.66 (0.66) 6.91 (1.01)

Rating 8.51 (0.2) 9.09 (0.19)

Anxiety

Pre 2.04 (0.27) 1.98 (0.25)

Safe 2.47 (0.31) 1.76 (0.21)

Threat 5.41 (0.37) 5.97 (0.39)

Fear

Pre 1.41 (0.15) 1.5 (0.23)

Safe 1.84 (0.27) 1.27 (0.12)

Threat 4.44 (0.39) 4.7 (0.42)

Note: Numbers reflect the mean and standard deviation of the results [M (SD)].

DOI: 10.7554/eLife.23608.004
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during periods of threat vs. periods of safety, it is possible to identify hubs that contribute most

prominently to the sustained anxious state during threat of shock.

We collected whole brain multi-echo echo-planar imaging data, and used the echo time-depen-

dent independent components analysis to remove sources of noise unrelated to the blood

Figure 2. Behavioral results from both experiments. (A) Anxiety ratings during the MEG study. (B) Startle magnitude during the MEG study. (C) Anxiety

ratings during the fMRI study. Bars represent the mean ± within-subject SEM (Cousineau, 2005). (D) Correlations between anxiety potentiated startle

(APS) and differential anxiety ratings. The black squares represent the correlation between APS and ratings during the MEG session. The red dots

represent the correlation between APS during the MEG study and anxiety ratings during the fMRI study in the subset of subjects who participated in

both studies.

DOI: 10.7554/eLife.23608.005

The following source data is available for figure 2:

Source data 1. Source data for all graphs in Figure 2.

DOI: 10.7554/eLife.23608.006
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oxygenation level dependent (BOLD) response from the timeseries (Kundu et al., 2012;

Evans et al., 2015). Subjects were exposed to alternating 2-min blocks of safety and threat, without

startle probes. Given that this design lacked external timing information (i.e. external stimulus pre-

sentations), we examined changes in functional connectivity as a function of block type. We opted

for a data-driven GBC approach where the connectivity of every voxel was assessed. We first com-

puted GBC maps independently for the safe and threat conditions by correlating each voxel’s time-

course with every other voxel’s timecourse, applying the Fisher’s Z transformation, and averaging

across these correlation maps (See Figure 3A,B and Figure 3—source data 1). As a first pass, we

averaged across all voxels to obtain the whole brain GBC for safe and threat. We then conducted a

(Safe vs. Threat) paired-sample t-test on these values, and found significantly more GBC for threat

blocks than for safe blocks (see Figure 3C and Figure 3—source data 1; t(24) = 2.13; p=0.044).

Threat increases voxelwise GBC in the intraparietal sulcus (IPS)
To follow-up the whole brain analysis, we conducted a voxelwise analysis of GBC. Using the same

GBC maps created above, we conducted a voxelwise (Safe vs. Threat) paired-sample t-test. We used

Monte Carlo simulations to estimate a null distribution for statistical testing, and used a cluster-

based method based on this null distribution to correct for multiple comparisons. We found a signifi-

cant increase in GBC in the threat blocks compared to the safe blocks in three clusters (see Table 2).

The largest cluster was in the right angular gyrus. The two remaining clusters were found bilaterally

in the IPS (see Figure 4A and Figure 4—source data 1). In all three clusters, we found significantly

higher GBC for threat blocks than for safe blocks (see Figure 4B and Figure 4—source data 1). To

determine whether these differences were affected by the delivery of the shock, or differences in

motion across blocks, we repeated the threat vs. safe analysis at the cluster level after censoring the

10 TRs following shock delivery, and an equivalent number of safe TRs closely matched for motion.

In addition, we covaried out any remaining differences in motion using an analysis of covariance.

Using this approach, we still found a significant effect of threat on GBC in all three regions (Right

angular gyrus: f(1, 23)=4.71, p=0.04; Right IPS: f(1, 23)=7.22, p=0.01; Left IPS: f(1, 23)=5.39,

p=0.03), suggesting that our initial findings were not due to differences in motion, censoring, or

residual neural activity evoked by the shock.

Figure 3. Overview of global brain connectivity (GBC) measure. (A) Map showing average GBC across all safe and threat TRs. (B) Cartoon schematic of

a correlation matrix. The 43204 voxel x 43204 voxel cross correlation matrix was calculated separately for each subject and each condition. Correlations

were averaged across rows for the entire grey matter mask, to create a single map reflecting the average correlation between each voxel and all other

voxels in the mask. (C) Graph representing the mean GBC following the Fisher’s Z transformation for safe and threat averaged across the entire grey

matter mask. Bars represent the mean ± within-subject SEM (Cousineau, 2005).

DOI: 10.7554/eLife.23608.007

The following source data is available for figure 3:

Source data 1. Source data for graph in Figure 3C.

DOI: 10.7554/eLife.23608.008
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Threat increases connectivity within an IPS-centered attentional
network
Given that the IPS emerged as a hub differentiating global connectivity in threat compared to safe,

we used this region as a seed-region to identify changes in functional connectivity during the threat

vs. safe blocks. We understand this follow-up analysis could be interpreted as circular. According to

this perspective, the seed-based analysis is not independent from the GBC analysis, which was used

to identify the seed. However, the purpose of the follow-up analysis (i.e. probing functional connec-

tivity using clusters identified from the global connectivity analysis) is to limit the interpretations of

the global connectivity results to those supported by seed-based functional connectivity results,

which has been done in previous group-level GBC studies (e.g. [Gotts et al., 2012]).

We extracted the timecourse of activity averaged across the voxels in the bilateral IPS functional

ROIs, and correlated this timecourse with the timecourse of activity across all voxels in the brain,

independently for safe and threat, and applied the Fisher’s Z transformation to the resulting correla-

tion coefficients. We conducted a voxelwise (Safe vs. Threat) paired-sample t-test on the resulting

maps. We used Monte Carlo simulations and cluster thresholding to correct for multiple compari-

sons. Consistent with the GBC results, we found an increase in connectivity in threat blocks

Table 2. Results from voxelwise GBC analysis.

Label Volume t-value

Peak activation (LPI)

x y z

Right Angular Gyrus 158 3.45 48 �51 27

Right Intraparietal Sulcus 83 3.42 21 �60 66

Left Intraparietal Sulcus 81 3.6 �18 �63 66

DOI: 10.7554/eLife.23608.009

Figure 4. Results from voxelwise global brain connectivity (GBC) analysis. (A) Statistical map showing results from a threat vs. safe paired-sample t-test.

(B) Graph representing average GBC values after applying the Fisher’s Z transformation for clusters shown in panel A. Bars represent the mean ± within-

subject SEM (Cousineau, 2005).

DOI: 10.7554/eLife.23608.010

The following source data is available for figure 4:

Source data 1. Source data for graph in Figure 4B.

DOI: 10.7554/eLife.23608.011
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compared to safe blocks, in several regions of the frontoparietal attention network (See Table 3,

Figure 5, and Figure 5—source data 1).

Alpha oscillations dominate neuromagnetic recordings at rest
Next, we characterized the pattern of activity in the MEG study. It is well established that spontane-

ous neural activity at rest is dominated by oscillations in the alpha (8–12 Hz) range (de Munck et al.,

2008; Sadaghiani et al., 2010; Mo et al., 2013; Mayhew et al., 2013), which are most prominent

when the subject is in an alert state of restful relaxation (Doufesh et al., 2014; Kim et al., 2014;

Khalsa et al., 2015; Lagopoulos et al., 2009), and that alpha asymmetries can reflect differences in

arousal across subjects (Nitschke et al., 1999). Theoretical models of alpha function suggest that

alpha oscillations are generated by coherent activity in local inhibitory interneurons (Klimesch et al.,

2007) and that decreases in alpha power reflects increases in cortical excitability (Klimesch et al.,

2007; Lange et al., 2013). Consistent with these theories, studies collecting simultaneous measures

of electroencephalography (EEG) and fMRI have shown that alpha power is negatively correlated

with functional connectivity (Laufs et al., 2003; Scheeringa et al., 2012; Chen et al., 2008;

Chang et al., 2013).

We extracted and cleaned the 2 s of data prior to each startle probe, avoiding contamination by

blink artifacts. Because the timing of the startle probes was random, the pre-stimulus recording

reflected random sampling across the sustained threat period. Therefore, we collapsed across the

2 s interval and examined oscillatory activity. First, we transformed the values into the frequency

domain using a Fast Fourier Transform (FFT) with upper and lower limits of 20 Hz and 1 Hz, respec-

tively. Then, we averaged these values across sensors, trials, and subjects, and examined the spec-

trogram for peaks. We detected a peak at ~10 Hz, suggesting that alpha oscillations were a

prominent feature of these recordings (Figure 6A and Figure 6—source data 1). We identified the

largest local maxima in each subject’s spectrogram. In all but four subjects we detected a peak in

the alpha frequency band (8 Hz – 12 Hz). The power within a 2 Hz band around these individual

alpha frequencies (IAF)s was used in all subsequent analyses (Figure 6B and Figure 6—source data

1). For subjects without a detectable IAF, power in a narrow band around IAF averaged across sub-

jects was used. Subsequent analyses were performed in both sensor space (Figure 6C; black dots)

and source space (Figure 6C; green dots).

Threat reduces parietal alpha oscillations
Given that alpha oscillations were the dominant feature in the MEG recordings across all blocks, we

examined whether these oscillations differed as a function of threat. For the sensor space analysis,

we averaged IAF across trials within conditions, and then performed a paired-sample t-test (Safe vs.

Threat) on the resulting sensor space averages. We used Monte Carlo simulations and cluster thresh-

olding to correct for multiple comparisons. Importantly, we found a large cluster of sensors over the

left parietal lobe and a smaller cluster of frontal sensors showing significantly less IAF power in the

threat blocks than during the safe blocks (Figure 7A–B and Figure 7—source data 1).

Table 3. Results from voxelwise IPS connectivity analysis.

Label Volume t-value

Peak activation (LPI)

x y z

Left Thalamus 342 3.92 -9 6 12

Right Inferior Parietal Lobule 208 3.67 57 �57 39

Left Superior Medial Gyrus 184 3.65 3 36 42

Left Precuneus 179 3.59 3 �69 48

Right Middle Frontal Gyrus 137 3.64 33 15 60

Left Angular Gyrus 113 3.51 �57 �54 30

Left Middle Frontal Gyrus 96 3.69 �24 15 60

Left Middle Frontal Gyrus 90 3.48 �45 51 -3

DOI: 10.7554/eLife.23608.012
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Figure 5. Results from bilateral IPS seed-based connectivity analysis. (A) Statistical map showing results from a threat vs. safe paired-sample t-test. (B)

Graph representing average IPS connectivity values for clusters shown in panel A. Bars represent the mean ± within-subject SEM (Cousineau, 2005).

DOI: 10.7554/eLife.23608.013

The following source data is available for figure 5:

Source data 1. Source data for graph in Figure 5B.

DOI: 10.7554/eLife.23608.014

Figure 6. Overview of MEG analyses. (A) Spectrogram representing power averaged across all subjects and all sensors with peak in the alpha frequency

band. (B) Graph showing the frequency of peak alpha (individual alpha frequency) averaged across subjects. Bars represent the mean ± SEM. (C)

Example of single subject alignment with sensors (black dots) source grid (green dots) and headmodel (surface) plotted together.

DOI: 10.7554/eLife.23608.015

The following source data is available for figure 6:

Source data 1. Source data for graph in Figure 6A and B.

DOI: 10.7554/eLife.23608.016
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To localize the source of these power differences, we projected these signals into source space

using a dynamic imaging of coherent sources (DICS) beamformer. First, we created a common filter

using all trials, then we projected the safe and threat trials through the filter independently, to

obtain power estimates at the source level for each condition. Finally, we conducted a (Safe vs.

Threat) paired-sample t-test on the source space IAF power estimates. As with the sensor space

data, we used Monte Carlo simulations and cluster thresholding to correct for multiple comparisons.

Consistent with the sensor space results, we found two clusters of voxels showing significantly less

IAF power in the threat and safe conditions (Figure 7C–D and Figure 7—source data 1), the larger

cluster was located in the left IPS, while the smaller cluster was located in the mid-cingulate gyrus. In

addition, both the sensor and the source space results held if we analyze power across the entire

alpha frequency band (8 Hz to 12 Hz; See below). Finally, when comparing the MEG results with the

Figure 7. Alpha results from threat vs. safe t-test. (A) Statistical map in sensor space showing a significant reduction in alpha power. Black symbols

represent clusters of sensors showing significant threat vs. safe differences. (B) Graph showing average alpha power for safe and threat conditions in the

largest cluster of sensors in panel A. (C) Statistical map in source space showing a significant reduction in alpha power. (D) Graph showing average

alpha power for safe and threat conditions in the cluster in panel C. Bars represent the mean ± within-subject SEM (Cousineau, 2005).

DOI: 10.7554/eLife.23608.017

The following source data is available for figure 7:

Source data 1. Source data for graph in Figure 7B and D.

DOI: 10.7554/eLife.23608.018
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fMRI results, we found that the left IPS cluster in the fMRI data substantially overlaps with the alpha

cluster (46/81 voxels; See Figure 8).

As with the MRI data, it is important to show that our denoising steps did not affect the compari-

sons between the safe and threat conditions. Specifically, it is important to show that the number of

trials rejected either (1) did not differ across the safe and threat blocks, or (2) did not affect the safe

vs. threat comparisons. In the safe condition, there were on average 58.21 ± 5.5 trials, while in the

threat condition there were on average 55.32 ± 7.6 trials, which was significantly different across sub-

jects (t(27) = 2.78, p=0.01). Therefore, we decided to determine whether this difference in trial num-

ber impacted our results at the censor and source level. Accordingly, we included the difference in

trial number across safe and threat blocks as a covariate in an ANCOVA examining the effect of

threat on alpha responses. At both the sensor (f(1,26) = 7.48, p=0.01) and at the source (f(1,26) =

17.797, p<0.001), we find that even with the difference in number of trials covaried out, the effects

of threat on alpha power is still significant, suggesting that this difference did not significantly impact

our results.

Discussion
The purpose of this study was to use the complementary methods of fMRI and MEG to identify the

regions and network hubs that contribute most prominently to sustained anxiety during threat of

shock. In both cases, we used unbiased, data-driven, whole-brain measures of activity/connectivity,

and identified the IPS as the region most affected by the threat of shock manipulation. Using fMRI

Figure 8. Conjunction map from voxelwise fMRI GBC analysis and MEG alpha power differences. Colors represent significant safe vs. threat differences

from the fMRI analysis (yellow), MEG analysis (blue), and both analyses (green).

DOI: 10.7554/eLife.23608.019
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GBC, we found that the IPS increased its connectivity during periods of threat with a set of regions

important for attention control, suggesting that this region is a hub in a network important for atten-

tional processing during threat (Du et al., 2012; Kincade et al., 2005; Rushworth et al., 1997;

Bucci, 2009; Corbetta and Shulman, 2002). Using MEG, we found that the magnitude of spontane-

ous alpha oscillations in the same region decreased during periods of threat, suggesting that threat

increases IPS cortical excitability (Klimesch et al., 2007). Together, these results suggest that threat

of shock facilitates attentional processing mediated by increased excitability and connectivity of the

IPS (Du et al., 2012; Kincade et al., 2005; Rushworth et al., 1997; Bucci, 2009). This enhanced

attentional processing may reflect a state of hypervigilance, consistent with the findings that ele-

vated state anxiety biases the attentional system (Waters et al., 2014; Amir et al., 2009;

Lapointe et al., 2013). In addition, this hypervigilance may provide a mechanistic explanation for

why threat facilitates performance on tasks that require an external focus of attention but impairs

performance on tasks that require an internal focus of attention (Vytal et al., 2016,

2013; Patel et al., 2016; Torrisi et al., 2016; Grillon et al., 2016; Robinson et al., 2011;

Balderston et al., 2016).

Functional connectivity
Previous studies exploring the relationship between threat and functional connectivity focused on

how threat affected connectivity within networks centered on seeds placed in emotional processing

regions (Vytal et al., 2014; McMenamin et al., 2014; McMenamin and Pessoa, 2015). However, in

this study because we were specifically interested in identifying the regions of the brain that contrib-

uted most prominently to anxiety, we chose to forego an a priori seed-based approach, and employ

data-driven connectivity measures that do not rely on choosing a seed (Cole et al., 2010;

Calhoun et al., 2009). To start, we used GBC as a method to determine whether connectivity en

masse changed with threat, and to identify where in the brain the largest changes occurred

(Cole et al., 2010, 2012; Chu et al., 2011). We found the largest changes to occur bilaterally in the

IPS, where connectivity with the rest of the brain increased as a function of threat. Then, using these

regions as a seed, we found that they supported an increase in connectivity within a set of regions

important for executive control (Posner, 2012; Corbetta and Shulman, 2002). These results suggest

that the IPS is a critical connectivity hub in the network of regions that contribute most prominently

to the sustained elevation of state anxiety induced by the threat of shock paradigm (Cole et al.,

2010, Cole et al., 2014). Although our GBC approach did not reveal any hubs within the amygdala,

or in other regions typically associated with emotional processing (Simmons et al., 2006;

Mechias et al., 2010; Etkin and Wager, 2007), we do see an increase in connectivity between the

IPS and the thalamus and dorsomedial prefrontal cortex, two regions known to be part of the canon-

ical fear network.

In addition to the IPS, we found changes in GBC as a function of threat in the right angular gyrus.

Although it is currently unclear how the angular gyrus might contribute to threat processing, there is

work suggesting that this region may be a key site for multisensory integration (Seghier, 2013). One

hypothesis is that enhanced GBC in this region may reflect a heightened awareness of the current

context. However, this is a post hoc explanation that should be explored in future studies.

An obvious parallel to the fMRI connectivity analysis would be to conduct a similar whole brain

connectivity analysis of the MEG data. Not only would corroborating evidence from an independent

imaging modality strengthen the fMRI connectivity results, but results from MEG specifically would

allow for a frequency-specific analysis of the effects of threat on functional connectivity

(Hillebrand et al., 2012; Brookes et al., 2011). However, the current study was not optimized to

reliably detect differences in MEG connectivity. In the current study, we included the white noise

probes as a way to obtain a quantitative measure of anxiety throughout the safe and threat blocks

(Grillon et al., 1999). These white noise probes trigger the acoustic startle reflex, which varies as a

function of an individual’s current level of anxiety (Grillon, 2008). Unfortunately, these reflexive

blinks also inject an artifact into the MEG signal, and because the magnitude of these blinks differs

across conditions, the blink artifact also differs across conditions. Although adaptive beamforming

can theoretically remove the artifact induced by the blink response (Van Veen et al., 1997), the only

way to ensure that the blink artifact does not differentially affect the MEG signal is to remove the

contaminated time periods from the analysis, or remove the startle probes from the design at the

outset. In the current study, we chose to address this limitation by extracting two-second time
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windows prior to each startle presentation to minimize the effect of the blink artifact on our power

estimates. However, it has been shown that reliability of the MEG connectivity estimates increases as

the duration of the recording increases, and durations of ~10 min or greater may be needed to max-

imize reliability (Liuzzi et al., 2016). Therefore, using such short intervals did not allow for the ability

to obtain reliable estimates of MEG connectivity. Future studies should be conducted to address

this limitation. In addition, it will be important to use appropriate correction methods to account for

signal leakage between source space regions (Colclough et al., 2015), and verify that the resulting

connectivity estimates match previously published work (i.e. strong alpha connectivity in occipital

regions and strong beta connectivity linking the parietal cortex with other frontal, temporal, and

occipital regions; [Hunt et al., 2016]).

fMRI and alpha
In addition to the increases in functional connectivity measured with fMRI, we also found decreases

in alpha as a function of threat of shock in the same parietal region using MEG. Although the focus

of the paper was on alpha, our initial approach (described in the introduction) was to examine all fre-

quency bands independently (other bands not shown). The focus on alpha emerged out of the

observations that, (1) alpha was the strongest signal in the recordings, (2) alpha showed the largest

power changes as a function of threat, (3) alpha was the only frequency band that showed consistent

results at both the sensor and the source level, and (4) the source space results aligned nicely with

the corresponding fMRI GBC data.

These results are also consistent with several previous studies using simultaneous recordings of

fMRI and EEG (Sadaghiani et al., 2010; Mo et al., 2013; Mayhew et al., 2013; Scheeringa et al.,

2012; Chang et al., 2013; Wu et al., 2010; Walz et al., 2015; Scheeringa et al., 2011). For

instance, functional connectivity at the whole brain level (Chang et al., 2013), and within the visual

system (Scheeringa et al., 2012) is negatively correlated with posterior alpha power. In addition,

alpha power is negatively correlated with activity with dorsal attention network (Sadaghiani et al.,

2010), and positively correlated with activity in the default mode network (Mo et al., 2013). Finally,

intrinsic connectivity within networks is negatively correlated with alpha during eyes open vs. eyes

closed resting state studies (Wu et al., 2010), and both the phase and power of pre-stimulus alpha

affects event-related BOLD responses in sensory regions (Mayhew et al., 2013; Walz et al., 2015;

Scheeringa et al., 2011). Together these results suggest that the increase in IPS connectivity and

decrease in IPS alpha power may reflect a common process.

Alpha oscillations
We also show that threat reduces the power of resting state alpha oscillations. These oscillations are

thought to reflect cortical inhibition, driven by inhibitory interneurons, and triggered by top-down

modulatory control (Klimesch et al., 2007). According to this view, our current findings may be

driven by a release from top-down inhibition, resulting in a net increase in cortical excitability. Impor-

tantly, reductions in alpha power (i.e. increases in excitability) are associated with enhanced sensory

and motor processing (Cornwell et al., 2007; Baas et al., 2006). For instance, reduced pre-stimulus

alpha is associated with enhanced visual and illusory visual perception (Lange et al., 2013), and

increased pre-stimulus alpha is associated with reduced transcranial magnetic stimulation-induced

motor-evoked potentials (Klimesch et al., 2007). Accordingly, alpha reduction (i.e. cortical excita-

tion) may provide a mechanistic explanation for one of the most commonly reported symptoms of

elevated state anxiety, namely anxiety-potentiated startle (Schmitz and Grillon, 2012; Grillon and

Ameli, 1998; Grillon et al., 1991). That is, threat of shock potentiates the startle reflex by increasing

cortical excitability.

Cognitively, alpha oscillations are thought to play a key role in selective attentional processes (Kli-

mesch, 2012), such that increases in alpha typically reflect inhibition or filtering of information that is

to-be-ignored (Bonnefond and Jensen, 2013; Kelly et al., 2006; Händel et al., 2011). For instance,

alpha oscillations have been shown to filter out noise during distracting listening conditions

(Strauß et al., 2014). Similarly, increases in pre-stimulus alpha to predictable stimuli are lateralized

to to-be-ignored locations (Horschig et al., 2014; Rihs et al., 2009). In addition, alpha power

increases during the maintenance of items in working memory (WM) (Klimesch et al., 2007;

Meyer et al., 2013), and this increase in alpha serves to protect these items from distractors
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(Bonnefond and Jensen, 2012; Manza et al., 2014). Taken together, these results suggest that the

decreases in alpha power observed in our study may reflect greater perceptual sensitivity, consistent

with the idea that threat may increase vigilance (Eilam et al., 2011). In addition, alpha-gamma cou-

pling is thought to be important for allocating attention to unattended salient stimuli (Jensen et al.,

2012).

The reductions in alpha power observed here were lateralized to the left hemisphere, leading to

a right dominant parietal asymmetry. According to prominent models, left dominant frontal alpha is

associated with positive affect and/or approach behavior, while right dominant alpha is associated

with negative affect and/or avoidance behavior (Davidson, 2004; Harmon-Jones et al., 2010). Like

the valence model of alpha asymmetry, one prominent model on parietal alpha asymmetry is rooted

in the arousal-valence model of emotional processing (Heller, 1993). According to this model, right

dominant parietal alpha is associated with increased arousal. Consistent with this theory, we find

that threat of shock, which increases arousal, also reduces left parietal alpha, resulting in a right

dominant profile. However, more research should be conducted to specifically test this hypothesis.

Cognition/anxiety interactions
Although our results only provide indirect evidence for the hypothesis that threat facilitates orient-

ing, a bias toward hyper-orienting during periods of elevated state anxiety could explain many of

the conflicting findings related to the cognition/anxiety interaction. The relationship between cogni-

tion and anxiety has been extensively studied (For reviews, see [Eysenck et al., 2007;

Robinson et al., 2013b]). Importantly, threat of shock improves performance on sustained attention

tasks (Torrisi et al., 2016; Grillon et al., 2016; Robinson et al., 2011), while impairing performance

on working memory tasks (Vytal et al., 2016, 2013; Patel et al., 2016; Balderston et al., 2016).

These tasks can be distinguished from one another based on the locus of attention required for per-

formance. In sustained attention tasks, subjects are constantly monitoring the external environment

for odd-ball stimuli, while in working memory tasks, subjects are required to maintain information

internally. Our hypothesis is that threat-induced hyper-orienting improves performance on sustained

attention tasks by reducing lapses in attention (Torrisi et al., 2016). In contrast, we hypothesize that

threat-induced hyper-orienting impairs performance on working memory tasks by lowering the

threshold for distractors to gain access to WM resources (Balderston et al., 2016). Consistent with

these hypotheses, high pre-stimulus alpha is associated with better memory performance while low

pre-stimulus alpha is associated with better perception performance (Klimesch et al., 2007).

Strengths and limitations
This study had a number of strengths. First, we used the gold standard threat of shock paradigm,

which has been extensively applied to manipulate state anxiety within subjects (Grillon, 2008;

Grillon and Baas, 2003, 1998; Grillon et al., 1991, 2007, 2008, 2009; Balderston et al., 2017a,

2017b; Cornwell et al., 2007, Cornwell et al., 2008, 2012; Lissek et al., 2007). Unlike previous

studies, we also collected anxiety ratings throughout the recordings, and found that these ratings

were similar across studies and correlated with anxiety-potentiated startle within session. Similarly,

retrospective anxiety ratings were similar across studies, suggesting a comparable anxiety induction

in both studies. We also collected data from multiple imaging modalities that both support the find-

ing of enhanced IPS processing during periods of threat. In addition, we used the state-of-the-art

multi-echo fMRI acquisition, and accompanying echo time-dependent independent components

analysis to eliminate non-BOLD sources of noise from our fMRI data.

Although there were a number of strengths to our study, there were also several limitations. First,

as mentioned above, our MEG study was not optimally designed to reliably detect differences in

connectivity, which would have been an obvious parallel to the fMRI connectivity analysis. Second,

because we had a relatively small sample size, this study was not optimally designed to study how

individual variability in anxiety affected IPS activity/connectivity. Third, our initial goal was to collect

both the fMRI and the MEG data in all subjects, but a number of subjects could not participate in

both, making it difficult to compare the results at the single subject level. Fourth, given our interest

in the relationship between alpha and connectivity, it might have been better to collect simultaneous

fMRI and EEG. However, because of our interest in the startle data, it was important to present

white noise probes in at least one of the experiments, and our MRI scanner does not currently have

Balderston et al. eLife 2017;6:e23608. DOI: 10.7554/eLife.23608 14 of 27

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.23608


that capability. To overcome that limitation, we collected startle data in the MEG study, which we

used to validate the continuous anxiety ratings, which were collected during both studies. Finally,

another limitation with the MEG data is that we do not have a measure of within-block movement,

making it difficult to determine whether motion differed between the safe and threat blocks; how-

ever, it should be noted that any trials contaminated by movement (i.e. muscle) artifact were

removed.

Conclusions
Current translational neuroscientific models of anxiety focus on regions of the canonical fear network

as anatomical hubs for anxiety. However, support for these models in humans is often based on

studies that focus on these regions a priori (i.e. seed-based functional connectivity), at the expense

of rigorous, unbiased, whole-brain approaches. In this work we conduct two separate experiments,

using complimentary imaging modalities (fMRI and MEG) to assess the effect of elevated state anxi-

ety on functional connectivity and cortical excitability across the entire brain. In these studies, we

identify effects in a common region, the IPS, which is a key node in the frontoparietal attention net-

work. These results suggest that threat enhances processing in this region, possibly facilitating atten-

tional processing, leading to increased vigilance. However, these results have broader implications

for future research and treatment. First, our results suggest that elevated anxiety in humans is pri-

marily a cognitive state that is not fully captured by the current translational models. Second,

because the most prominent region contributing to elevated state anxiety is cortical, it may be possi-

ble to target this region with neuromodulatory methods and reduce anxiety.

Materials and methods

Participants
Forty-two (28 female; age: M = 28.45, SD = 6.23) healthy volunteers from the Washington DC met-

ropolitan area were recruited to participate in the current study. Of these, 32 (18 female; age:

M = 27.82, SD = 5.11) participated in the magnetoencephalography (MEG) study, and 30 (19 female;

age: M = 28.52, SD = 6.75) participated in the functional magnetic resonance imaging (fMRI) study.

Among the subjects included in the final analysis, 18 (13 female; age: M = 27.67, SD = 4.76) partici-

pated in both. For the MRI study, two subjects were removed due to technical malfunction with the

scanner/data, three subjects were removed because their anxiety ratings were two standard devia-

tions below the mean. For the MEG study, three subjects were removed from the final analysis for

sleeping, moving, or not paying attention to the task. One subject withdrew in the middle of the

recording. The final sample included 38 total subjects (MEG N = 28; MRI N = 25): 18 subjects partici-

pated in both experiments, 10 participated only in the MEG experiment, and seven participated

only in the MRI experiment. Although no explicit power analysis was conducted prior to the experi-

ment, we chose a sample size of approximately 25 participants, to ensure enough power to detect a

behavioral threat of shock effect based on previous studies (Schmitz and Grillon, 2012;

Balderston et al., 2017b, 2016).

Following an initial telephone screen, participants visited the National Institutes of Health Clinical

Center for a comprehensive screening by a clinician. Inclusion criteria for healthy volunteers were: (1)

no current Axis I psychiatric disorder as assessed by SCID-I/NP (First et al., 2012), (2) no first-degree

relative with a known psychotic disorder, (3) no interfering acute or chronic medical condition, (4) no

brain abnormality on MRI as assessed by a licensed radiologist, (5) negative urine drug screen, and

(6) right-handedness. All participants gave written informed consent approved by the National Insti-

tute of Mental Health (NIMH) Combined Neuroscience Institutional Review Board and received com-

pensation for participating.

Stimulus presentation
Presentation software package (version 14.6, Neurobehavioral Systems, Berkeley, CA) was used to

present the stimuli via projection systems in both the MEG (front) and MRI (rear projection) studies.
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Shock
A 100 ms, 200 Hz train of stimulation was administered via a Digitimer constant current stimulator

(DS7A; Digitimer, Letchworth Garden City, UK). The transistor–transistor logic (TTL) pulse train used

to trigger the train of stimulation was generated via a Grass stimulator (SD9, Warwick, RI). In the

MEG experiment, this shock was delivered to the subjects’ right wrist via two 8 mm Ag/AgCl surface

cup electrodes (EL258-RT, Goleta, CA), filled with electrolyte gel (GEL100, Goleta, CA). In the MRI

experiment, the same shock was delivered to the subjects’ right wrist via two 11 mm Ag/AgCl MRI-

safe disposable sticker electrodes (EL508, Goleta, CA). The intensity of the shock could range from

0 mA to 100 mA and was calibrated prior to the experiment to a level that the subject rated as

‘uncomfortable but not painful’.

Acoustic startle stimulus
During the MEG study, subjects were exposed to several presentation of an acoustic white noise, to

trigger an acoustic startle reflex used to assess anxiety. In order to avoid artifact due to the magnets

and moving metal in traditional headphone drivers, we engineered a custom pneumatic system for

generating white noise with air pressure. First we used a 3D printer to create plastic over-the-ear air

vortex generators (vortices). Then, we attached these to tubes connected to a solenoid, which was

connected to an air tank. When triggered by a TTL pulse, the solenoid allowed air from the tank to

pass through tubes to the air vortex generators. In doing so, the air generated a white noise with an

intensity proportional to the air pressure released. Therefore, we calibrated the volume of the white

noise to 103 dB by adjusting the pressure on the air tank regulator, and testing the intensity with a

sound pressure level meter.

Response devices
During the experiment, subjects had continuous access to an online visual analogue scale that they

could use to continuously update their anxiety rating during the task. Subjects controlled this scale

using the response device provided for each experiment. In the MEG experiment, subjects used a

custom-built fiber optic joystick. In the MRI experiment, subjects used a 4-button fiber optic

response device (Current Designs, Philadelphia, PA).

Eyeblink reflex
The acoustic startle reflex was measured during the MEG study via electromyographic (EMG) activity

of the eyeblink reflex recorded via 2 8 mm Ag/AgCl surface cup electrodes (EL258-RT, Goleta, CA),

filled with electrolyte gel (GEL100, Goleta, CA) placed below the right eye over the orbicularis oculi

muscle (Blumenthal et al., 2005). EMG was recorded at 600 Hz via the MEG system amplifier and

analyzed using a custom MATLAB script (see Source code 1). The EMG signal was extracted from

the recordings, bandpass filtered (30–500 Hz), rectified, and smoothed with a 20 ms time constant.

The peak startle/eyeblink magnitude was determined during the 20–100 ms after the onset of the

noise presentation. The peaks were then transformed to z-scores and converted to t-scores within-

subjects to reduce large inter-individual differences in the overall magnitude of the startle reflex

(Blumenthal et al., 2005), and to facilitate comparison with the online anxiety ratings.

Online ratings
Subjects reported their anxiety level continuously throughout the experiment using the response

device. They also received continuous feedback via a colored circle in the center of the screen,

updated at 60 Hz (A colored circle, as opposed to a moving cursor [Schultz et al., 2012;

Balderston and Helmstetter, 2010], was chosen to minimize eye movements in the MEG study). As

they updated their rating it updated the color of the circle, which ranged from white to red with 256

possible intermediate hues. Values representing these hues were used to numerically represent the

subjects’ current anxiety level. During the MEG study, these ratings were sampled just prior to each

startle probe for comparison with the startle magnitudes. Because startle probes were not presented

during the MRI study, online ratings were sampled once per repetition (TR). The values were then

transformed to z-scores and converted to t-scores within-subjects to facilitate comparison with the

startle responses.

Balderston et al. eLife 2017;6:e23608. DOI: 10.7554/eLife.23608 16 of 27

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.23608


Procedure
MEG
On the day of the appointment, the subject arrived at the NIH clinical center, and completed the

informed consent form, and pre-experiment questionnaire packet in the waiting room. Next, sub-

jects were escorted to the MEG suite and given the instructions for the task. Afterward, the subject

was prepped to enter the magnetically shielded room (MSR). Electrodes to deliver the shock and

measure heartbeats/eyeblinks were attached and secured to the subject. In addition, head position

indicator (HPI) coils were attached to the subject. One each was attached 1.5 cm anterior to the left

and right tragi, and one was attached 1.5 cm superior to the nasion. Finally, the vortices were affixed

to the subject’s hairnet, and secured over the ears. Once setup was completed, the subject was

escorted into the MSR, given the shock workup procedure (Balderston et al., 2017a, 2017b), and

raised into place. Recording began with a 2-minresting run to ensure that there were no visual arti-

facts (breathing, jaw movement, etc.) in the data. After the resting run, the subject was asked the

pre-experiment affective rating scales over the intercom. Once complete, the subject began the

experiment.

During the experiment, the subject viewed two concentric circles (See Figure 1). The color of the

outer circle indicated the type of block (orange = threat; blue = safe). The color of the inner circle

indicated the subject’s current level of anxiety. The subject was instructed to keep the color scale

updated continuously throughout the experiment with their current level of anxiety. They were

instructed that red meant that they were extremely anxious, while white meant that they were not

anxious at all. They were also instructed that they could adjust the color to any shade between red

and white, depending on their anxiety level.

The experiment consisted of four runs, each of which were ~6 min long, determined dynamically

by the length of the trials. Each run began with four presentations of the startle probes to facilitate

habituation, and ensure no head movement. Next, we use the HPI coils to localize the subject’s head

relative to the sensors. After head localization, the experimental portion of the run began. The

experimental portion of the run consisted of two blocks each of safety and threat in alternating

order. Each block contained eight presentations of the startle probe. Probes were separated by a

variable interprobe interval (min = 6 s; max = 14 s), which was randomly determined for each probe.

Shocks were presented during the threat blocks in randomly selected interprobe intervals, 2–4 s

after the preceding probe. The number of shocks was randomly determined as well. Each run could

contain between 0 and 2 shocks, and each interprobe interval had a 1 in 12 chance of containing a

shock (unless the two shock ceiling had been reached).

MRI
As with the MEG experiment, the subject arrived at the NIH clinical center, and completed the

informed consent form, and pre-experiment questionnaire packet in the waiting room. Next subjects

were escorted to the MRI control room and given the instructions for the task. Afterward, the subject

was prepped for scanning. Electrodes to deliver the shock and record skin conductance were

attached and secured to the subject. In addition, vitamin E capsules were attached to the subject in

the same locations as the HPI coils during the MEG study, to facilitate coregistration of the structural

MRI and MEG. Next the subject was escorted into the scan room, and given the shock workup pro-

cedure (Balderston et al., 2017a, 2017b). Subjects were then given ear plugs, situated on the table,

and connected to the pulse oximeter and breathing belt. Scanning began with a localizer, a T1-

weighted structural scan, and two 30 s echo planar imaging (EPI) runs. These short EPI runs had

opposing phase-encoding directions, and were used for EPI distortion correction (See below). After

these, the subject was asked the pre-experiment affective rating scales over the intercom. Once

complete, the subject began the experiment.

As in the MEG study, the subject viewed two concentric circles. The color of the outer circle indi-

cated the type of block (orange = threat; blue = safe). The color of the inner circle indicated the sub-

ject’s current level of anxiety. The instructions for the task were the same as the MEG study as well,

with the exception of the difference in response device.

The experiment consisted of four runs, each of which were ~8 min (490 s) long. Each run consisted

of two blocks each of safety and threat in alternating order. The number of shocks was randomly
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determined as well. Each run could contain between 0 and 3 shocks at random intervals. There were

no startle probes presented.

Affective rating scales
Prior to each experiment, subjects completed several standard psychological questionnaires, includ-

ing the Spielberger State-Trait Anxiety Index (STAI) (Spielberger, 1987), the Anxiety Sensitivity

Index (ASI) (Peterson and Heilbronner, 1987), the Beck Anxiety Inventory (BAI) (Beck et al., 1988),

and the Beck Depression Inventory (BDI) (Beck and Steer, 1987). At the start of both experiments

and after each magnetoencephalography (MEG)/functional magnetic resonance imaging (fMRI) run,

subjects were given a set of affective rating scales: (1) How anxious are you (1 = not anxious, 9 =

extremely anxious)? (2) How afraid are you (1 = not afraid, 9 = extremely afraid)? (3) How would you

rate the intensity of the electrical stimulation (1 = not painful at all, 9 = uncomfortable but not

painful)?

MRI acquisition
We collected four runs, each containing 245 multi-echo EPI images, using a 3T Siemens MAGNE-

TOM Skyra (Erlangen,Germany) fMRI system, and a 32-channel head coil. For each image, we col-

lected 32 interleaved 3 mm slices (matrix = 64 mm�64 mm; FOV = 192 � 192) parallel to the AC-PC

line (TR = 2 s; TEs = 12 ms, 24.48 ms, 36.96 ms; flip angle = 70˚). These 32 slices covered the entire

cerebrum, but did not cover the most posterior parts of the brainstem and cerebellum. Slices were

collected with an anterior-to-posterior phase encoding direction. We also collected two, 10 image

multi-echo EPI series with the same parameters and the same field of view; however, one of these

series was collected with a posterior-to-anterior phase encoding direction, and these series were

used to correct for EPI distortion in the phase encoding direction (Morgan et al., 2004). We also

acquired a multi-echo T1-weighted MPRAGE (TR = 2530 ms; TEs = 1.69 ms, 3.55 ms, 5.41 ms, 7.27

ms; flip angle = 7˚). We acquired 176, 1 mm axial slices (matrix = 256 mm � 256 mm; field of view

(FOV) = 256 mm � 256 mm), which were later co-registered to the EPI images.

MRI preprocessing
Functional images were preprocessed and analyzed using the AFNI software package (see

Source code 1 for processing and analysis scripts) (Cox, 1996). EPI images for each run and each

echo were first reconstructed, despiked (i.e. single voxel outliers were truncated), slice-time cor-

rected, and then deobliqued. Then each volume in the series was registered to the first volume, and

skull-stripped.

Preprocessed images were then entered into a multi-echo-independent components analysis

using the meica.py script distributed with the AFNI software package (Kundu et al., 2012). This

analysis uses the T2* decay of BOLD signals, measured across the echoes to denoise the timeseries.

The analysis first decomposes the timeseries into independent components using FastICA. Then it

determines whether signal intensity across echoes decays in a manner consistent with what is

expected from BOLD data. Components that fit the model are kept, components that do not (i.e.

components where the signal intensity does not decay across echoes) are discarded. A new

denoised timeseries is then synthesized from the components not discarded. This technique has

been previously shown to robustly remove sources of noise corresponding to motion, physiology,

and scanner artifact (Kundu et al., 2012).

The denoised timeseries for all runs are then registered to the first run, scaled, and further

denoised using a general linear model with regressors of no interest. Regressors of no interest

included the six motion parameters from the volume registration step, up-through third-order poly-

nomials to model baseline drift, and hemodynamic response functions (HRF)s corresponding to but-

ton presses and shock deliveries. In addition, images where the derivative of the motion regressors

from volume registration step had a Euclidean norm above 0.5 mm were censored (‘scrubbed’) from

further analyses. All remaining images from the safe and threat blocks were concatonated into sepa-

rate timeseries; however, as part of the denoising procedure, we removed neural responses related

to both button presses and transitions from one block type to another.

To correct for geometric distortion of the EPI images, the forward and reverse phase-encoding

blips are first averaged across time, skull-stripped, and then rigid-body aligned with the reference
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image for the other EPI timeseries. Then, the two blips are non-linearly aligned to each other using

the ‘plusminus’ flag in the AFNI program 3dQwarp, so that the resulting image is ‘in the middle’ of

the two. This reference image can then be registered to the T1 image, and the voxelwise displace-

ment map for the forward blip is then saved, so that it can be applied to the EPI timeseries.

Although a standard linear registration approach would have possibly yielded similar results at the

group level, the nonlinear approach we used leads to better T1/EPI within-subject registration, and

has been shown to perform even better than when using fieldmaps (Hong et al., 2015).

To align the EPI data to Montreal Neurological Institute (MNI) space and to mask out non-grey

matter voxels, the T1 data was processed as follows. First, the volumes for the T1 echoes were aver-

aged, and the resulting volume was run through the standard Freesurfer processing pipeline

(Desikan et al., 2006; Fischl et al., 2004). Next, the skull-stripped anatomy is non-linearly registered

to MNI space using the MNI_avg152T1 template distributed with AFNI. In addition, masks that

included all cortical and sub-cortical grey matter atlas regions for each subject. These were warped

to MNI space, downsampled to the EPI resolution, and dilated by 1 voxel. A group grey matter

mask was created by averaging these binary masks, and thresholding out voxels with less than 2/3

overlap (Torrisi et al., 2015). Next the original space, skull-stripped anatomy was aligned to the dis-

tortion corrected EPI reference image in two steps. The first was a simple affine transformation. The

second was a non-linear transformation using a criterion based on the local Pearson correlation

(Saad et al., 2009), and the inverse displacement map was saved. Finally, the following warps were

applied to the EPI timeseries data: inverse warp from the distortion correction step, affine transfor-

mation matrix from the T1 alignment step, the inverse warp from the T1 alignment step, and the

non-linear warp from the T1 to MNI transformation. Finally, the EPI data were masked with the

group grey matter mask, and blurred within this mask using a 6-mm FWHM Gaussian kernel.

MRI analysis
To analyze the MRI recordings, we used a global brain correlation (GBC) approach (Cole et al.,

2010). In brief, we correlated each voxel in our grey matter mask with each other voxel in the mask,

applied the Fisher’s Z transform, and summed across correlations. The result was a map where the

value in each voxel reflected the strength of the correlation between that voxel and the rest of the

brain. We conducted this GBC analysis for each subject and each condition, and used these values

for further analysis. First, to identify changes in GBC across the entire brain, we averaged across vox-

els for safe and threat. We then conducted a paired-sample t-test on these averages. Next, to iden-

tify changes in GBC at the regional level, we analyzed the voxel-wise GBC for safe and threat. For

this, we conducted a voxel-wise paired-sample t-test on the GBC values. Finally, to identify changes

in connectivity with highly connected regions, we identified regions of interest (ROI)s from the voxel-

wise GBC threat > safe t-test, and correlated the timecourse of activity in these ROIs with every

voxel in the brain for safe and threat, and applied the Fisher’s Z. We then conducted paired-sample

t-tests on the resulting connectivity maps.

We used Monte Carlo simulations and a cluster-based method to correct for multiple compari-

sons across voxels. First, we estimated the smoothness in our residual timeseries using a Gaussian

plus mono-exponential shaped function implemented by the ‘-acf’ option in the AFNI program

3dFWHMx, which addresses recent concerns over inflated Type one error in studies using the cluster

correction method (Cox et al., 2016). We calculated smoothness for each subject, and averaged this

across subjects. Next, we simulated 10,000 random statistical parametric maps in 3dClustSim with a

smoothness matching that of the original timeseries. For each simulation, we thresholded at a voxel-

wise alpha of 0.005, and extracted the largest cluster. We then compared our test statistics to the

distribution of clusters across all simulations to identify a minimum cluster size threshold of 80, corre-

sponding to a two-tailed alpha of 0.05.

MEG acquisition
We recorded neuromagnetic activity at 600 Hz from 271 radial first-order gradiometers using a 275

channel CTF-OMEGA whole-head magnetometer (VSM MedTech, Ltd., Canada). Recording took

place in a magnetically shielded room (Vacuumschmelze, Germany), and Synthetic third-order gradi-

ent balancing was used for active noise cancellation (Vrba and Robinson, 2001).
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MEG preprocessing
MEG recordings were preprocessed and analyzed using the Fieldtrip toolbox in MATLAB (See

Source code 1 for processing and analysis scripts) (Oostenveld et al., 2011). First, movement within

runs was checked by comparing the position of the HPI coils from the beginning of the run to the

end of the run, and any run with a root mean square movement value above 1 cm was excluded

from the analysis. Next, startle probe onsets were identified, and the 2 s window prior to each trial

was extracted, demeaned, and detrended. Next, muscle artifacts were identified using the ft_arti-

fact_muscle function in Fieldtrip. Trials where muscle movements were identified were removed.

Next the recordings were low-pass filtered with a 90 Hz cutoff, and notch filtered at 60 Hz to remove

line noise. The recordings were then downsampled to 300 Hz, and submitted to an independent

components analysis. Components were visually inspected, and those with a topography, and time-

course consistent with either blinks or heartbeats were identified for removal (typically 1–2 per arti-

fact). Rejected components were projected out of the dataset, and the singular value decomposition

of the covariance matrix was inspected to determine the regularization factor (lambda). A lambda of

5% was found to be sufficient to regularize the covariance matrix for source analysis following the

removal of the rejected components. The result was a dataset cleaned for blink and heartbeat

artifacts.

MEG frequency analysis
Because we were specifically interested in alpha oscillations, we identified each subject’s individual

alpha frequency (IAF). We began by transforming the timeseries data into the frequency domain

using a multi-taper fast Fourier transform (mtmfft) based on a set of discrete slepian sequences. In

this initial transformation, we used a frequency window of 1 Hz to 20 Hz, and a single taper per fre-

quency. We then averaged these spectrograms across sensors and across trials for each subject, and

identified the largest local maxima in the average spectrogram for each subjects. For the majority of

subjects (24/28), the largest peak occurred in the alpha frequency band (8–12 Hz). For all other sub-

jects, the average IAF was used for further analyses. Next we conducted a second mtmfft, using a

2 Hz window centered around each subject’s IAF, with two tapers per frequency and averaged the

resulting power estimates across frequency for each sensor and each trial. This mean IAF power esti-

mate was used in both the sensor space analyses and the source space analysis.

MEG forward model
Single subject T1 images were used to generate the forward model for the MEG source analysis.

First the T1 images were aligned to a single subject template in MNI space. Next the brain surface

was extracted, and a single shell head model was generated from this surface. Then a source model

was created using a single subject template with current dipoles placed along a regular 8 mm grid

inside the brain surface. The single subject MNI space images were aligned to CTF space (i.e. core-

gistered to the sensors) manually, guided by the vitamin E capsules placed over the fiducial points.

The resulting transformation matrix was applied to both the head model and the source model, and

alignment between the sensors, head model, and source model was visually inspected. Finally, lead-

fields were then created using the location of the sensors, head model, and source model dipole

locations.

MEG inverse model
Because we were interested in frequency information (as opposed to time), we used the dynamic

imaging of coherent sources (DICS) (Gross et al., 2001) technique to localize the sources of our

recordings. We began by computing the cross spectral density matrix (CSD) from the frequencies of

interest from all trials in the analysis. We then estimated the beamformer filter using the CSD, lead-

fields (with fixed orientations), headmodel, and gradiometer locations. Once estimated, this com-

mon filter was applied to the safe and threat conditions independently.

MEG sensor-level analyses
We compared IAF power in safe vs. threat. For this, we averaged the IAF power across trials inde-

pendently for safe and threat for each subject and each sensor, and conducted a paired sample

t-test on these averages. For both analyses, we used Monte Carlo simulations and a cluster-based
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method to correct for multiple comparisons across sensors. We calculated 1000 random permuta-

tions, where condition labels were shuffled across subjects. For each permutation, we thresholded

the shuffled results at a sensor-level alpha of 0.005, summed the t-value across sensors in each clus-

ter, and extracted the largest summed t-value. We then compared our test-statistic to the distribu-

tion of summed t-values and discarded any clusters where the summed t-value was smaller than the

summed t-value corresponding to a two-tailed alpha of 0.05.

MEG source-level analyses
As with the sensor-level analyses, to compare power in the safe and threat conditions, we projected

the average IAF power into source space independently for each condition using the common filter

calculated from all trials. We then conducted a paired-sample t-test on these power estimates at

each voxel within the source model. As with the sensor-space data we used Monte Carlo simulations

and a cluster-based method to correct for multiple comparisons across voxels. As before we calcu-

lated 1000 random permutations, where condition labels were shuffled across subjects. For each

permutation, we thresholded the shuffled results at a source-level alpha of 0.005, summed the

t-value across sensors in each cluster, and extracted the largest summed t-value. We then compared

our test-statistic to the distribution of summed t-values and discarded any clusters where the

summed t-value was smaller than the summed t-value corresponding to a two-tailed alpha of 0.05.
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de Munck JC, Gonçalves SI, Faes TJ, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH. 2008. A study of
the brain’s resting state based on alpha band power, heart rate and fMRI. NeuroImage 42:112–121. doi: 10.
1016/j.neuroimage.2008.04.244, PMID: 18539049

Derakshan N, Ansari TL, Hansard M, Shoker L, Eysenck MW. 2009. Anxiety, inhibition, efficiency, and
effectiveness. Experimental Psychology 56:48–55. doi: 10.1027/1618-3169.56.1.48

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman
BT, Albert MS, Killiany RJ. 2006. An automated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest. NeuroImage 31:968–980. doi: 10.1016/j.neuroimage.2006.01.
021, PMID: 16530430

Doufesh H, Ibrahim F, Ismail NA, Wan Ahmad WA. 2014. Effect of muslim prayer (Salat) on a

electroencephalography and its relationship with autonomic nervous system activity. The Journal of Alternative
and Complementary Medicine 20:558–562. doi: 10.1089/acm.2013.0426, PMID: 24827587

Du X, Chen L, Zhou K. 2012. The role of the left posterior parietal lobule in top-down modulation on space-
based attention: a transcranial magnetic stimulation study. Human Brain Mapping 33:2477–2486. doi: 10.1002/
hbm.21383, PMID: 21922605

Eilam D, Izhar R, Mort J. 2011. Threat detection: behavioral practices in animals and humans. Neuroscience &
Biobehavioral Reviews 35:999–1006. doi: 10.1016/j.neubiorev.2010.08.002, PMID: 20727909

Etkin A, Wager TD. 2007. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD,
social anxiety disorder, and specific phobia. American Journal of Psychiatry 164:1476–1488. doi: 10.1176/appi.
ajp.2007.07030504, PMID: 17898336

Balderston et al. eLife 2017;6:e23608. DOI: 10.7554/eLife.23608 23 of 27

Research article Neuroscience

http://dx.doi.org/10.1523/JNEUROSCI.3372-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24623781
http://dx.doi.org/10.1016/j.neuroimage.2013.01.049
http://www.ncbi.nlm.nih.gov/pubmed/23376790
http://dx.doi.org/10.1016/j.neuroimage.2007.12.064
http://www.ncbi.nlm.nih.gov/pubmed/18403217
http://dx.doi.org/10.1037/0735-7044.120.5.1187
http://www.ncbi.nlm.nih.gov/pubmed/17201461
http://dx.doi.org/10.1037/0735-7044.117.1.3
http://www.ncbi.nlm.nih.gov/pubmed/12619902
http://dx.doi.org/10.1109/PRNI.2011.11
http://dx.doi.org/10.1016/j.neuroimage.2015.03.071
http://www.ncbi.nlm.nih.gov/pubmed/25862259
http://dx.doi.org/10.1016/j.neuroimage.2009.11.001
http://www.ncbi.nlm.nih.gov/pubmed/19909818
http://dx.doi.org/10.1177/1073858414525995
http://www.ncbi.nlm.nih.gov/pubmed/24622818
http://dx.doi.org/10.1523/JNEUROSCI.0536-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.0536-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22745498
http://dx.doi.org/10.1038/nrn755
http://www.ncbi.nlm.nih.gov/pubmed/11994752
http://dx.doi.org/10.1016/j.neuroimage.2007.04.055
http://www.ncbi.nlm.nih.gov/pubmed/17566766
http://dx.doi.org/10.1111/j.1467-9280.2008.02131.x
http://dx.doi.org/10.1016/j.bandc.2012.01.002
http://www.ncbi.nlm.nih.gov/pubmed/22289426
http://dx.doi.org/10.20982/tqmp.01.1.p042
http://dx.doi.org/10.1101/065862
http://dx.doi.org/10.1101/065862
http://dx.doi.org/10.1006/cbmr.1996.0014
http://www.ncbi.nlm.nih.gov/pubmed/8812068
http://dx.doi.org/10.1016/j.biopsycho.2004.03.008
http://www.ncbi.nlm.nih.gov/pubmed/15130532
http://dx.doi.org/10.1038/npp.2009.109
http://www.ncbi.nlm.nih.gov/pubmed/19693004
http://www.ncbi.nlm.nih.gov/pubmed/19693004
http://dx.doi.org/10.1016/j.neuroimage.2008.04.244
http://dx.doi.org/10.1016/j.neuroimage.2008.04.244
http://www.ncbi.nlm.nih.gov/pubmed/18539049
http://dx.doi.org/10.1027/1618-3169.56.1.48
http://dx.doi.org/10.1016/j.neuroimage.2006.01.021
http://dx.doi.org/10.1016/j.neuroimage.2006.01.021
http://www.ncbi.nlm.nih.gov/pubmed/16530430
http://dx.doi.org/10.1089/acm.2013.0426
http://www.ncbi.nlm.nih.gov/pubmed/24827587
http://dx.doi.org/10.1002/hbm.21383
http://dx.doi.org/10.1002/hbm.21383
http://www.ncbi.nlm.nih.gov/pubmed/21922605
http://dx.doi.org/10.1016/j.neubiorev.2010.08.002
http://www.ncbi.nlm.nih.gov/pubmed/20727909
http://dx.doi.org/10.1176/appi.ajp.2007.07030504
http://dx.doi.org/10.1176/appi.ajp.2007.07030504
http://www.ncbi.nlm.nih.gov/pubmed/17898336
http://dx.doi.org/10.7554/eLife.23608


Evans JW, Kundu P, Horovitz SG, Bandettini PA. 2015. Separating Slow BOLD from non-BOLD baseline drifts
using multi-echo fMRI. NeuroImage 105:189–197. doi: 10.1016/j.neuroimage.2014.10.051, PMID: 25449746

Eysenck MW, Derakshan N, Santos R, Calvo MG. 2007. Anxiety and cognitive performance: attentional control
theory. Emotion 7:336–353. doi: 10.1037/1528-3542.7.2.336, PMID: 17516812

Fanselow MS, Poulos AM. 2005. The neuroscience of mammalian associative learning. Annual Review of
Psychology 56:207–234. doi: 10.1146/annurev.psych.56.091103.070213, PMID: 15709934

First MB, Spitzer RL, Gibbon M, Williams JBW. 2012. Structured Clinical Interview for DSM-IVÒ Axis I Disorders
(SCID-I), Clinician Version, Administration Booklet. American Psychiatric Publishing.

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J,
Kennedy D, Caviness V, Makris N, Rosen B, Dale AM. 2004. Automatically parcellating the human cerebral
cortex. Cerebral Cortex 14:11–22. doi: 10.1093/cercor/bhg087, PMID: 14654453

Fullana MA, Harrison BJ, Soriano-Mas C, Vervliet B, Cardoner N, Àvila-Parcet A, Radua J. 2016. Neural
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