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Abstract 

Backgrounds:  Autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) are neurodevel-
opmental disorders that exhibit within-disorder heterogeneity and cross-disorder phenotypic overlap, thus suggest-
ing that the current disease categories may not fully represent the etiologic essence of the disorders, especially for 
highly comorbid neurodevelopmental disorders. In this study, we explored the subtypes of a combined sample of 
ASD and ADHD by integrating measurements of behavior, cognition and brain imaging.

Methods:  A total of 164 participants, including 65 with ASD, 47 with ADHD, and 52 controls, were recruited. Unsu-
pervised machine learning with an agglomerative hierarchical clustering algorithm was used to identify transdiagnos-
tic symptom clusters. Neurocognition and brain structural connectivity measurements were used to assess symptom 
clusters. Mediation analysis was used to explore the relationship between transdiagnostic symptoms, neurocognition 
and brain structural connectivity.

Results:  We identified three symptom clusters that did not fall within the diagnostic boundaries of DSM. External 
measurements from neurocognition and neuroimaging domains supported distinct profiles, including fine motor 
function, verbal fluency, and structural connectivity in the corpus callosum between these symptom clusters, high-
lighting possible biomarkers for ASD and ADHD. Additionally, fine motor function was shown to mediate the relation-
ship between the corpus callosum and perseveration symptoms.

Conclusions:  In this transdiagnostic study on ASD and ADHD, we identified three subtypes showing meaningful 
associations between symptoms, neurocognition and brain white matter structural connectivity. The fine motor func-
tion and structural connectivity of corpus callosum might be used as biomarkers for neurodevelopmental disorders 
with social skill symptoms. The results of this study highlighted the importance of precise phenotyping and further 
supported the effects of fine motor intervention on ASD and ADHD.
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Background
Autism spectrum disorder (ASD) and attention-deficit 
hyperactivity disorder (ADHD) are neurodevelopmen-
tal disorders with symptoms starting to manifest in early 
childhood [1]. ASD consists of a group of heterogeneous 
neurodevelopmental disorders characterized by two core 
symptoms, impairments in social-communication inter-
action and restrictive and repetitive behaviors [1]. The 
prevalence of ASD is estimated to be 1–2% [2]. Besides 
core symptoms, ASD is usually accompanied by other 
comorbidities [3], among which ADHD is the most com-
mon comorbidity [4]. ADHD is characterized by develop-
mentally inappropriate and impairing inattention, motor 
hyperactivity, and impulsivity [1], with a prevalence of 
around 5–6% [5].

The symptom-based categorical systems of mental 
disorders are regarded as the gold standard for diagnos-
ing neurodevelopmental disorders. However, children 
with ASD or ADHD usually do not entirely fit within the 
boundaries of a single disorder; instead, they show a mix-
ture of clinical manifestations [6]. For instance, previous 
studies have suggested that 30–80% of individuals diag-
nosed with ASD present symptoms of ADHD [7, 8], while 
20–60% of ADHD children exhibit autism-like traits [9, 
10]. Besides, both disorders show within-disorder hetero-
geneity and cross-disorder overlap in etiology.

The complex interaction of genetic and environmental 
factors may contribute to the development of these neu-
ropsychiatric disorders [11]. With a family-aggregation 
feature [12], ASD and ADHD share candidate genes, such 
as DAT1 and SLC6A4 [13]. Genetic overlap between dis-
orders may be indicative of an overlapping etiology of 
ASD and ADHD. It is recommended to study ASD and 
ADHD simultaneously, and to measure identical behav-
ioral, functional, and structural brain indicators in both 
patient groups [14]. Given the limitations of using DSM-
based phenotypic measurements in genetic analyses, 
researchers tend to explore pleiotropic risk genes target-
ing endophenotypes for ASD and ADHD. The Diagnos-
tic Statistical Manual of Mental Disorders 5th edition 
(DSM-5) allows combined diagnosis of ADHD and ASD, 
thus acknowledging the possibility of overlapping etiol-
ogy. The existing diagnosis classification of mental dis-
orders relies on clinicians’ justification of syndromes. 
Dimensional analysis can be used to divide the symptom 
mixtures of ASD and ADHD into subtypes.

Deficits in neurocognitive function have been found 
in both ASD and ADHD [15, 16]. Previous studies have 

found a set of shared cognitive dysfunctions across 
ADHD and ASD, such as executive function (EF) and 
motor function [17]. In order to make timely decisions, 
motor functions are dependent on strong executive 
functions, such as cognitive flexibility and inhibition. 
Moreover, previous studies found that impairments in 
cognitive flexibility, working memory, ideational fluency, 
and inhibition were strongly associated with ASD endo-
phenotypes [18, 19]. EF deficits have also been identified 
in first-degree relatives of ADHD in a wide range of EF 
tasks [20]. As EF satisfies the criteria of endophenotypes, 
i.e., unaffected ASD/ADHD first-degree relatives have EF 
problems, it might be used to disentangle the overlapping 
phenotype of these two disorders.

Numerous studies have reported abnormal brain struc-
ture and function in these two neurodevelopmental dis-
orders [21, 22]. Although studies on microstructural 
connectivity of ASD and ADHD have revealed incon-
sistent results, neuroimaging studies indicate shared 
abnormal small-world properties and corpus callosum 
white matter deviations in both ASD and ADHD [23–
25]. Moreover, several studies have compared ASD and 
ADHD on brain measurements, but the results remain 
inconclusive [26–28]. Recently, Tung et  al. found that 
ASD and ADHD share diffuse white matter tract devia-
tions in the corpus callosum, with the prefrontal corpus 
callosum being more pronounced in ASD. Further corre-
lation analysis revealed that white matter tract deviation 
was associated with multiple dimensions of psycho-
pathology and cognition including autism symptoms, 
planning, inhibition, attention, working memory and 
flexibility [29]. An obstacle in examining the neurobio-
logical etiology of neurodevelopmental disorders is the 
poor classification of individuals into subtypes by means 
of existing disease categorical systems based on behav-
ioral observations [30]. Thus, new measurement indi-
cators of neurocognition and neuroimaging, as well as 
biomarkers of different diagnoses, should be investigated 
to clarify the homogenous neurobiological mechanisms 
underlying specific psychopathological phenotypes [31].

Existing studies focusing on ADHD and mood disor-
ders supported the application of the RDoC framework 
concept in child and adolescent psychiatry [32–34]. Few 
previous transdiagnostic data-driven studies identified 
subtypes with different cognitive performance in ASD 
and ADHD [35–38]. Bathet et  al. found that the data-
driven classification of EF-related behavioral difficul-
ties had significant individual variation in white matter 
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connections between the prefrontal and anterior cin-
gulate cortices [35]. Vaidya and colleagues found that 
fronto-parietal engagement was better distinguished 
by EF subtype than DSM diagnosis, and the impaired 
subgroup showed lower functional activity of the right 
inferior parietal lobules [37]. The data-driven EF classifi-
cation model using a two-stage hybrid machine learning 
tool showed good robustness, but revealed no “severity” 
pattern of excessive or insufficient connection among 
subgroups when using fMRI [36]. This inconsistency 
might be explained by the fluctuating states of the fMRI 
study and the indirect measures using Behavior Rating 
Inventory of Executive Function questionnaire, which 
estimated by the observations of parents rather than 
children performance. To the best of our knowledge, no 
previous study documented valid symptom subtypes in 
children with ASD and ADHD, nor did they integrate 
symptom subtypes with multi-model measurement data, 
which might be useful to address the need to character-
ize the heterogeneity and overlapping symptoms across 
diagnostic categories.

Previous studies have reported several main pathways 
linking neuroimaging or neurocognition with neurode-
velopmental disorders. First, neuroimaging abnormalities 
have been suggested as a candidate endophenotype of 
ASD and/or ADHD, which directly affects symptoms [21, 
22, 39]. However, previous case-control studies showed 
inconsistencies. In this study, we proposed that symp-
tom subtypes rather than diagnostic categories might 
help to explore the relationship between neuroimaging 
and symptoms. Second, EF deficits in both disorders may 
have similar functional brain origins [40]. Transdiagnos-
tic studies have attempted to explore whether the EF sub-
types can map specific functional connections in ASD/
ADHD patients, but the findings are inconsistent [36, 37]. 
The direct relationship between neuroimaging and cogni-
tion remains unclear. It is possible that certain cognitive 
factors moderate the relationship between neuroimag-
ing etiology and symptomatic phenotype. Considering 
the unclear interaction among cognitive functions, in the 
present study we selected the parallel multiple mediation 
model for mediation analysis rather than the serial multi-
ple mediation model.

This study aimed to establish the dimensional symptom 
subtyping of a combined sample of ASD and ADHD by 
using a transdiagnostic approach to explore the overlap-
ping neuroimaging and neurocognitive etiology of these 
two neurodevelopmental disorders. We selected social 
communication difficulties and inattention/hyperactivity 
symptoms as the classification inputs for unsupervised 
machine learning to determine naturally occurring trans-
diagnostic clusters in a representative combined sample 
of ASD and ADHD and typically developed children. We 

hypothesized that children might have symptom clusters, 
which might not always be within the diagnostic scope, 
and the symptom clusters could be mapped to specific 
neurocognition and brain structural connectivity pro-
files. For instance, abnormalities in the corpus callosum 
and/or frontoparietal white matter connectivity could 
be associated with social skill symptoms, which might 
determine the correlation of EF with ASD/ADHD symp-
toms. Additionally, we aimed to explore the interrelation-
ships among symptoms, cognition and brain structural 
connectivity by using a mediation effect model.

Methods
Participants and materials
Participants diagnosed with ASD or ADHD were 
recruited from the West China Hospital outpatient and 
schools in the local community. Parents/guardians of 
participants provided the written informed consent for 
study participation, which was approved by the Medical 
Ethical Committee of West China Hospital of Sichuan 
University. Clinical diagnoses were confirmed by expe-
rienced child psychiatrists based on DSM-5 and were 
supported by questionnaires, structured interviews and 
direct observations. Autism Diagnostic Observation 
Schedule-General (ADOS-G) [41] and Autism Diagnos-
tic Interview-Revised (ADI-R) [42] were used for ASD 
diagnosis. The Schedule for Affective Disorders and 
Schizophrenia for School-age Children-Present and Life-
time Version (K-SADS-PL) [43] Parent Interview was 
used for ADHD diagnosis. Autism-Spectrum Quotient 
(AQ) [44] was used for measuring ASD symptoms, and 
cultural studies had have been investigated in Chinese; 
this test showed good sensitivity (0.71) and specificity 
(0.71) [45, 46]. The Swanson, Nolan, and Pelham Rat-
ing Scale, IV Version (SNAP-IV) [47] was used to assess 
ADHD symptoms, and this test has shown good reliabil-
ity and validity (discriminant accuracy 68.7–75.1%) [47, 
48]. Healthy participants recruited from the same com-
munity were matched with clinical participants in terms 
of age and gender. Exclusion criteria for all participants 
were: co-morbidities with other mental illnesses; esti-
mated IQ score below 70 using the Wechsler Intelligence 
Scale; genetic syndromes such as Down’s syndrome or 
Fragile X syndrome; or current use of antipsychotics or 
stimulants.

All participants obtained K-SADS-PL evaluation. Only 
patients who were suspected of ASD completed ASD 
diagnostic evaluation. All parents/guardians of partici-
pants completed AQ and SNAP-IV to evaluate symp-
toms of ASD to ADHD in children, including socialness, 
mindreading, patterns, attention to details, persevera-
tion (attention switching); inattention (IA), hyperactivity/
impulsivity (HI), and oppositional defiant disorder (ODD) 
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symptoms (details of the measures were shown in the sup-
plementary data). After the evaluation, subjects who met 
the standard were required to perform the cognitive tests: 
Chinese-Wechsler Intelligence Scale for Children Third 
Edition (C-WISC-III) [49], Developmental Test of Visual-
Motor Integration (Beery VMI) [50]; Purdue Pegboard 
Test (PPT) [51]; Verbal Fluency (VF) [52]; Cambridge 
Neuropsychological Test Automated Battery (CANTAB), 
including Rapid visual information processing, RVP; 
Stockings of Cambridge, SOC; Spatial Working Memory, 
SWM; Intra−/Extra-dimensional Set-shift Task, IED. A 
total of 164 participants obtained the qualified MRI data 
(ASD, N = 65; ADHD, N = 47; TDC, N = 52). ADHD sub-
types included inattention (N = 24), hyperactivity/ impul-
sivity (N = 10) and combined types (N = 13).

Data acquisition
All brain imaging was performed on a 3.0-T imaging 
system (Philips, Achieva, TX, Best, The Netherlands) at 
the Tibet Chengban Branch of Sichuan University West 
China Hospital. Three-dimensional T1 images were 
acquired using a spoiled gradient recalled echoing planar 
imaging sequence (repetition time, 8.2 milliseconds; echo 
time, 3.8 milliseconds; flip angle, 7°; slice thickness, 1 mm; 
field of view, 256 mm × 256 mm; matrix size, 256 × 256; 
voxel size, 1 × 1 × 1 mm3). DTI scans were acquired 
using a two-dimensional diffusion-weighted echoplanar 
imaging sequence (repetition time, 10,295 milliseconds; 
echo time, 91 milliseconds; field of view, 128 × 128 mm; 
voxel size, 2 × 2 × 2 mm3; matrix size, 128 × 128; gradi-
ent direction, 32; 75 interleaved, 2-mm; slice thickness, 
2 mm; b = 1000 s/mm2).

Image analysis
Data were analyzed using the FSL software (https://​
fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/) [53]. Quality control 
involved eddy current, motion corrections, as well as 
the removal of non-brain tissues to minimize distor-
tions. Common DTI metrics consisted of fractional 
anisotropy (FA), mean diffusivity (MD), radial dif-
fusivity (RD), and axial diffusivity (AD). FA, the frac-
tion of anisotropic diffusion, was the most commonly 
used metrics. The breakdown in white matter integrity 
typically resulted in a lower FA [54]. For image analyses 
Tract-Based Spatial Statistics [55] was conducted using 
FA as DTI metrics in this study. Mean FA skeleton was 
created by aligning each participant’s FA image to the 
Montreal Neurological Institute (MNI) 152 space tem-
plate. The FA threshold was set at 0.2 to suppress areas 
of low fractional anisotropy. Threshold of statistical 
maps was set to p < 0.05, with TFCE FWE fully cor-
rected for multiple comparisons.

Statistical analysis
Statistical analyses were conducted using Jupyter, scikit-
learn, NumPy, SciPy, and matplotlib packages (Python, 
version 3.6.2). Unsupervised machine learning was 
adopted to classify children into clusters. Z scores were 
applied for cognitive profiles measured in different met-
rological units. The inverse values were inverted to facili-
tate the creation of a numerical matrix, e.g., SWM and 
IED scores. Eight subscale Z-scores of AQ and SNAP-IV 
(Socialness, Mindreading, Patterns, Attention to Details, 
Perseveration, Inattention, Hyperactivity and ODD) for all 
164 children were input into the agglomerative hierarchical 
clustering to generate clusters. With stability to generate 
clusters even in small samples, agglomerative hierarchical 
clustering was performed. The optimal number of clusters 
was determined using two standard methods including 
the gap statistic [56] and the dendrogram. Cluster centers 
were plotted from 1000 repeated subsamples to assess the 
clustering solution’s robustness. To provide an efficient and 
more easily visualized method to describe cluster differ-
ences, linear discriminant analysis (LDA) was conducted. 
These discriminant functions were also used to test clas-
sification accuracy. Furthermore, symptoms were chosen 
as the classification variable to summarize the relationship 
between the symptom composite variables.

One-way analysis of variance (ANOVA) was used to 
compare ASD, ADHD and control groups, followed by 
Bonferroni multiple-comparisons test. We evaluated 
how the clusters differentiated on the symptoms, neuro-
cognition, and microstructural connectivity by ANOVA 
analysis with post-hoc Bonferroni correction. To pro-
vide a complementary diagnostic frame of reference for 
interpretation, the symptom clusters were mapped onto 
the DSM diagnostic categories. Pearson correlation was 
used to explore the association among FA values, cog-
nitions, and clinical symptoms. Statistical analyses were 
performed using SPSS (IBM, 26.0 version).

Finally, a mediating effect model was constructed 
using Amos version 21.0 to examine how cognition 
affected the relationship between brain structural con-
nectivity and the symptoms. The following indexes were 
used to check model fit [57]: a) root mean square error 
of approximation (RMSEA), with a value of 0.08 or less 
reflecting a reasonable fit; b) comparative fit index (CFI), 
with a value of 0.90 and higher indicating a good fit. The 
number of bootstrap samples for bias-corrected boot-
strap confidence intervals was 10,000.

Results
Demographic characteristics of participants
All participants were Han Chinese and right-handed. 
There were no significant differences among the 
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three groups (ASD, ADHD, and control groups) 
with respect to age, sex, maternal infection dur-
ing pregnancy, birth, neonatal diseases, and parental 
education levels (all P > 0.05). Although there were 
differences in IQ among groups (F = 15.20, p < 0.001, 
post-hoc t-tests, ASD < ADHD/TDC), all participants 
had a IQ > 70 (Table  1) (Table  1 was placed at the 
end of the document text). As seen in Table  1, there 
were significant differences in AQ and SNAP-IV (AQ: 
F = 16.254, p < 0.001, post-hoc t-tests, ASD > ADHD/
TDC; SNAP-IV: F = 31.558, p < 0.001, post-hoc t-tests, 
ADHD>ASD/TDC). Considering the imbalanced 

IQ distribution among groups, IQ was set as a con-
founder in the ANOVA analysis. Results showed 
differences among groups in PPT, VP, MC, VF-se, 
SOC, and SWM. Post hoc t tests revealed differences 
between ASD and ADHD in PPT, MC, and SWM 
(details in Table 1).

Unsupervised machine learning algorithms
The gap statistics and the dendrogram results showed 
that the optimal number of clusters was 3 (Fig.  1a, b). 
The robustness of clustering over the 1000 subsamples 
demonstrated good stability: the average adjusted Rand 

Table 1  General demographic characteristics of participants

Note: One-Way ANOVA with Bonferroni post-hoc test. *p < 0.05, **p < 0.01, ***p < 0.001. IQ: intelligence quotient. AQ Autism-Spectrum Quotient total scores; SNAP-IV 
Swanson Nolan and Pelham, Version IV Scale total scores; socialness: AQ socialness subscale, mindreading: AQ mindreading subscale, patterns: AQ patterns subscale, 
details: AQ attention to details, perseveration: AQ attention switching/perseveration subscale. IA: SNAP-IV inattention subscale, HI: SNAP-IV hyperactivity/impulsivity, 
ODD: SNAP-IV oppositional defiant disorder subscale; PPT Purdue Pegbord Test measuring fine motor function, VP visual perception, MC motor coordination, VMI 
visual motor integration, VF-se semantic verbal fluency, VF-ph phoneny verbal fluency, RVP rapid visual information processing, measure for sustain attention, SOC 
stockings of cambridge, measure for planning, SWM spatial working memory, measuring working memory, IED Intra−/Extra-dimensional Set-shift Task, measuring 
regular

ASD [1] N = 65 ADHD [2] N = 47 TDC [3] N = 52 F/χ2 p Post-hoc

Sex (Woman /Man) 10/55 6/41 9/43 0.396 0.821 –

age 9.27(3.56) 8.68(2.26) 8.48(2.42) 1.187 0.308 –

Min 3 6 5

Max 17 16 16

IQ 92.92(17.45) 109.2(16.99) 105.49(15.12) 15.206 < 0.001*** 1 < 2/3

Min 70 73 70

Max 128 143 135

AQ 44.00(13.85) 32.64(9.91) 33.56(11.13) 16.254 < 0.001*** 1 > 2/3

SNAP-IV 35.75(10.84) 41.51(9.61) 25.52(9.93) 31.558 < 0.001*** 2 > 1/3

Socialness 18.60(6.59) 11.79(5.94) 11.81(5.67) 24.17 < 0.001*** 1 > 2/3

Mindreading 12.29(6.15) 9.89(5.07) 8.25(5.04) 7.97 0.001** 1 > 3

Patterns 6.12(2.85) 6.34(2.53) 6.08(2.57) 0.14 0.872 –

Details 6.31(2.33) 5.79(2.30) 5.44(2.59) 1.92 0.15 –

Perseveration 10.11(3.79) 8.66(2.25) 8.10(3.01) 6.35 0.002** 1 > 3

IA 14.57(4.40) 18.38(3.25) 12.77(4.46) 23.72 < 0.001*** 2 > 1/3

HI 10.98(4.17) 14.17(4.91) 9.13(5.24) 14.17 < 0.001*** 2 > 1/3

ODD 8.18(4.13) 11.94(4.83) 8.25(4.79) 11.22 < 0.001*** 2 > 1/3

ADOS-G 18.04(5.28) – – – – –

ADI-R 41.66(16.71) – – – – –

PPT-hands 30.98 (9.93) 36.99 (8.01) 36.17 (6.65) 5.244 0.006** 1 < 2/3

PPT-assemble 17.60 (7.25) 22.00 (7.61) 25.61(6.69) 13.184 < 0.001*** 1 < 2 < 3

VP 103.06 (15.99) 108.04 (11.02) 113.67(11.48) 5.642 0.004** 1 < 3

MC 94.75 (18.04) 97.15 (17.88) 106.52 (14.06) 5.943 0.003** 1/2 < 3

VMI 96.06 (19.78) 99.57 (16.17) 105.48 (11.86) 2.874 0.59 1 < 3

VF se 14.14 (5.06) 15.13 (4.74) 16.85 (5.61) 3.211 0.043 * 1 < 3

VF ph 4.75 (2.92) 4.00 (2.54) 5.02 (3.04) 1.868 0.158 –

RVP 0.89 (0.09) 0.90 (0.08) 0.91 (0.07) 0.533 0.588 –

SOC 5.65 (3.17) 4.81(2.35) 6.27(2.42) 4.607 0.011* 2 < 3

SWM −54.58(25.12) −51.77 (26.13) −34.73 (27.39) 8.174 < 0.001*** 1/2 < 3

IED −47.23 (23.09) −48.09 (20.16) −39.62 (25.50) 2.267 0.107 –
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score was 0.66 (min 0.21, max 0.79) (Fig.  1c). The lin-
ear discriminant analysis (LDA) of the eight symptom 
dimensions showed that the classification accuracy in 
predicting clusters was 92% (Fig. 1d, Table 2). The selec-
tion of the optimal clustering was determined with 
various statistical techniques as guides, such as Silhou-
ette Score (0.23); Calinski-Harabaz Index(51.57); Dunn 
Validity Index(0.21).

The unsupervised machine learning algorithm identi-
fied a 3-cluster solution; characterized either by social 

Fig. 1  The characters of the unsupervised classification analysis. a The dendrogram for hierarchical clustering. The y-axis represents the distance 
between clusters. Colors represent the three-cluster solution chosen. b The gap statistic, calculated for cluster counts from 1 to 15. The line charts 
show the optimal cluster number based on the gap statistic values and the red circles indicate the optimal cluster number. In this context, the 
most optimal cluster number was 3. c The distribution of adjusted Rand scores visualized in a histogram. To evaluate the stability of the clustering 
solution, we repeated the clustering analysis in randomly selected subsamples (each containing 80% of the subjects) for 1000 times. In each of the 
1000 subsamples, the remaining 20% subjects left out were assigned to clusters using linear discriminant analysis classifiers. These two samples 
combined to form a complete cluster solution. We then tested the stability of clustering over the 1000 subsamples by calculating an adjusted Rand 
score, which represent the similarity between each clustering solution compared to the original clustering solution. The average adjusted Rand 
score was 0.66 (min 0.21, max 0.79). d. Linear discriminant analysis. Linear discriminant analysis is a supervised classification method that constructs 
a predictive model to evaluate the group membership, based on the theory of Bayes formula. Thus, these new variables are called discriminants 
functions (DF’s) that provide the best discrimination between the groups

Table 2  Classification accuracy to predict clusters

Note: The classification accuracy was 92%

Predicted cluster members

Original 1 2 3 Total

Cluster 1 62(92.5%) 2(3%) 3(4.5%) 67(100%)

Cluster 2 0 52(94.5%) 3(5.5%) 55(100%)

Cluster 3 0 2(4.8%) 40(95.2%) 42(100%)
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impairment symptoms (C1, n = 67), relatively normal 
children (C2, n = 55), or inattention/hyperactivity/
impulsivity symptoms (C3, n = 42) (Fig. 2a). Clusters did 
not significantly differ when considering age, sex, or IQ 
(Table S1). ANOVA results showed symptoms differ-
ences among subtypes, except in patterns and attention 
to detail symptoms (Fig.  2b, Table S1). As indicated in 
Table S2, the symptoms showed favorable discriminant 
function in separating the three clusters. The principal 
components analysis for the three symptom subtypes 
showed two mean PCs, C1 distributed in the PC1(social 
skill symptoms), C3 distributed in the PC2(IA/HI/ODD 

symptoms), while C2 distributed both in the two PCs 
(Fig. S1).

Validation of clusters differences via external 
measurements
Comparison with conventional diagnostic categories
Frequency distribution of DSM diagnostic categories 
in different clusters showed that clusters included chil-
dren from all diagnostic groups (× 2 = 47.28, p < 0.001), 
which suggested that clusters did not represent the 
original diagnosis (Table S3). As shown in Fig. 2c, chil-
dren with traditional diagnoses of ASD and ADHD 
were distributed across all three clusters.

Fig. 2  Symptom clusters with validations. *p < 0.05, ***p < 0.001. a Visual demonstration of clustering in 3-dimensional space. The original eight 
symptom dimensions were reduced to 3 dimensions by principal component analysis in this figure for visualization. Each component is a spatial 
dimension on the x-axis, y-axis, and z-axis. b Comparative radar plots of the symptoms in the three clusters. ***p < 0.001, Symptom Z scores on the 
y axis. Socialness: AQ socialness subscale, mindreading: AQ mindreading subscale, patterns: AQ patterns subscale, details: AQ attention to details, 
perseveration: AQ attention switching/perseveration subscale. IA: SNAP-IV inattention subscale, HI: SNAP-IV hyperactivity/impulsivity, ODD: SNAP-IV 
oppositional defiant disorder subscale. c Subtypes mapped across DSM diagnostic categories. Each slice of the area chart shows the numbers 
of children in that DSM diagnostic category fell into a specific symptom cluster. d Cognition profiles in three clusters. All values are expressed in 
standardized units to facilitate interpretation of profiles across measures. Error bars represent 1 standard error of mean (SEM). PPT: Purdue Pegbord 
Test measuring fine motor function, VP: visual perception, MC: motor coordination, VMI: visual motor integration, VF-se: semantic verbal fluency, 
VF-ph: phoneny verbal fluency, RVP: rapid visual information processing, measure for sustain attention, SOC: stockings of cambridge, measure for 
planning, SWM: spatial working memory, measuring working memory, IED: Intra−/Extra-dimensional Set-shift Task, measuring regular
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Neurocognition variations among symptom clusters
Clusters were expressed in a differential profile of cogni-
tive performance (Fig. 2d). Fine motor function, as meas-
ured by PPT hands test, was found to be worse in C1 than 
in C3 (Z-scores were − 0.213 in C1, − 0.019 in C2, and 
0.365 in C3; F2,164 = 4.51; p = 0.0124, ηp2 = 0.053; post-
hoc test showed C1 < C3). Semantic verbal fluency in C1 
was worse than that in C3 (Z-scores were − 0.213 for chil-
dren in C1, − 0.019 in C2, and 0.365 in C3; F2,164 = 4.51; 
p = 0.0341, ηp2 = 0.041; post-hoc test showed C1 < C3). 
There were no significant differences in other cognitions 
among clusters (p > 0.05, Table 3).

Microstructural connectivity differences among clusters
In the pairwise comparisons of voxel-wise analyzed by 
TBSS, we found lower FA of the corpus callosum in C1. 
Lower FA was found in the C1 compared with the C2 as 
voxels located along the corpus callosum, right cerebral 
peduncle, and posterior limb of the internal capsule; C1 
had lower FA in the body of the corpus callosum than C3 
(Fig. 3).

Symptoms associated with microstructural connectivity 
and cognitions
Pearson correlation analysis revealed a positive correla-
tion between splenium of corpus callosum (C2 < C3), 
IA/HI symptoms (r = 0.222, p = 0.03; r = 0.209, p = 0.04; 
respectively), cognitive skill-like motor function and ver-
bal fluency. The body of the corpus callosum (FA value 
C1 < C3) was found to be linked with perseveration symp-
toms (r = − 0.192, p = 0.04) and PPT-hands (r = 0.28, 

p = 0.003). The FA of the internal capsule (C1 < C2) was 
correlated with mindreading symptoms (r = − 0.231, 
p = 0.01), and was slightly correlated with fine motor 
function (r = 0.250, p = 0.01), planning (r = 0.206, 
p = 0.02), sustain attention (r = 0.214, p = 0.02) (Fig.  4). 
The PPT-hands test and semantic verbal fluency were 
negatively correlated with socialness symptoms (respec-
tively = − 0.158, p = 0.04; r = − 0.184, p = 0.02), the SOC 
was negatively correlated with SNAP total (r = − 0.159, 
p = 0.04) (Fig. 4).

Fine motor function mediating the relationship of the body 
of corpus callosum and perseveration symptoms
Across subtypes C1 and C3, PPT-hands were found to 
be linked with perseveration symptoms (r = − 0.22, 
p = 0.022) and the corpus callosum (r = 0.28, p = 0.003), 
the corpus callosum was correlated with the perse-
veration symptoms (r = − 0.19, p = 0.036). Moreover, 
the mediating effect model among the corpus callo-
sum brain structural connectivity, fine motor function, 
and perseveration showed adequate goodness of fit 
(χ2 = 10.803, df = 10, χ2 /df = 1.08, root mean square 
error of approximation, RMSEA = 0.027; comparative 
fit index, CFI = 0.990). The corpus callosum structural 
connectivity predicted the perseveration symptoms 
(total effect, c = − 0.257), while a direct path from 
corpus callosum to perseveration was not significant 
(direct effect, c’ = − 0.184, p > 0.05) (Fig.  5). These data 
suggested that fine motor function had a total mediat-
ing effect on the association between the corpus callo-
sum and perseveration symptoms.

Table 3  Cognition profiles among three clusters

Note: *p < 0.05, IQ intelligence quotient, PPT Purdue Pegbord Test measuring fine motor function, VP visual perception, MC motor coordination, VMI visual motor 
integration, VF-se semantic verbal fluency, VF-ph phoneny verbal fluency, RVP rapid visual information processing, measure for sustain attention, SOC stockings of 
cambridge, measure for planning, SWM spatial working memory, measuring working memory, IED Intra−/Extra-dimensional Set-shift Task, measuring regular

Cluster 1 Cluster 2 Cluster 3 F p Post-hoc

IQ 98.57(18.07) 101.99(17.02) 105.82(18.66) 2.15 0.1203 –

Min 70 70 70

Max 135 143 135

PPT-hands 32.47 (9.30) 34.18 (8.42) 37.58 (7.87) 4.51 0.0124 * C1 < C3

PPT-assemble 19.91(7.63) 21.79 (7.82) 23.27(8.18) 2.48 0.0871 –

VP 105.78 (14.13) 109.62 (11.83) 108.86(16.14) 1.29 0.2787 –

MC 95.87 (17.60) 102.73 (15.88) 99.79 (18.73) 2.40 0.0940 –

VMI 98.04 (19.01) 102.38 (14.41) 100.21 (16.51) 0.99 0.3734 –

VF se 14.01 (4.42) 16.00 (6.00) 16.36 (5.12) 3.45 0.0341 * C1 < C3

VF ph 4.42 (2.65) 4.65 (3.08) 4.90 (2.95) 0.38 0.6879 –

RVP 0.89 (0.09) 0.91 (0.07) 0.91 (0.07) 1.08 0.3416 –

SOC 5.46 (3.31) 5.73(2.48) 5.67(2.16) 0.15 0.8598 –

SWM −52.15(27.57) −47.58 (28.25) −39.90 (24.95) 2.62 0.0756 –

IED −46.00 (21.98) −42.29 (22.10) − 47.19 (26.75) 0.62 0.5408 –
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Discussion
The present study demonstrated a transdiagnostic 
approach to identify subtypes of a combined sample of 
ASD and ADHD defined by distinct profiles of symp-
toms, cognition and brain structural connectivity. Three 
symptom clusters (C1: social impairment symptoms, C2: 
relatively normal children, C3: inattention/hyperactivity/
impulsivity symptoms) were determined by using agglom-
erative hierarchical clustering, which were not mapped 
onto the DSM categories. This study indicated white mat-
ter variations among subtypes. Our results also revealed 
that the C1 subtype was distinct from the C3 subtype in 
fine motor dysfunction and verbal fluency. Neuroimage-
neurocognition-transdiagnostic symptoms interactions 
were investigated via correlation analysis, and the results 
revealed an association between WM structural con-
nectivity, motor functions/verbal fluency/EFs, and ASD/
ADHD symptoms. To the best of our knowledge, this was 
the first study to identify fine motor function as a mediator 
for the corpus callosum structural connectivity and perse-
veration symptoms. Our findings provided an opportunity 
for a more biomarker-based approach for disease subtyp-
ing, evidenced on precise phenotypes of a large category of 
neurodevelopmental disorders including ASD and ADHD.

C1 subtype had fine motor dysfunction, which was 
consistent with previous within-diagnosis research 
in ASD and ADHD [58, 59]. Our study also indicated 
that the fine motor function was associated with social 
symptoms. Although fine motor dysfunction was a 
non-diagnostic symptom of ASD, the impaired fine 
motor function was linked with social deficit and repet-
itive behaviors in ASD [58]. Previous studies suggested 
that fine motor skills were connected with social skill 
development in healthy children [60–62]. Moreover, 
fMRI study in ASD indicated that the abnormal func-
tional connectivity of the sensorimotor system contin-
ued to the middle-age and elderly adulthood [63]. These 
results suggested that fine motor function might be 
involved in the pathogenesis and progression of social 
skill impairment in children with ASD and ADHD.

Our study also indicated dysfunction of verbal flu-
ency in the C1 subtype, thus suggesting that deficit in 
verbal fluency was associated with impairment in social 
skills in ASD and ADHD. This result was partly in line 
with previous studies, which reported that ASD is asso-
ciated with various semantic abnormalities [64]. Fur-
thermore, our data showed that children with ADHD 
exhibited more impairment in verbal fluency than those 

Fig. 3  Brain white matter structural differences among C1, C2, C3 clusters on TBSS analysis. TBSS results within the International Consortium for 
Brain Mapping DTI-81 atlas are reported and labeled accordingly (TFCE FWE corrected, p < 0.05). red symbols FA values increase, blue symbols FA 
values decrease. First line: C1 < C2 (blue): Cerebral peduncle R; Posterior limb of internal capsule L; Posterior limb of internal capsule R; C1 > C2(red): 
Anterior corona radiata R. Second line: C1 < C3 (blue): Body of corpus callosum. Third line: C2 < C3 (blue): Body of corpus callosum; Splenium of 
corpus callosum
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Fig. 4  The correlation heatmap among symptoms, cognitions and microstructural connectivity. The gradient color barcode at the top-right 
indicates the minimum value in blue and the maximum in red. The correlation value shown in the cells were calculated by pearson correlation 
analysis

Fig. 5  Fine motor function mediating between the brain structural connectivity and perseveration symptoms. *p < 0.05, **p < 0.01; Fine motor: 
measured by purdue pegboard hands subtest; Corpus Callosum: the FA value of the body of the corpus callosum, which was the structural 
difference between C1 and C3(featured in the left picture); Perseveration: measured by the AQ-perseveration subscale. χ2 = 10.803, df = 10, χ2 /
df = 1.08, root mean square error of approximation, RMSEA = 0.027; comparative fit index, CFI = 0.990; a, b, c variables’ value represented the 
standard coefficient
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with IQ-matched ASD [65]. To sum up, this study pro-
vided further evidence in support of verbal fluency as 
the neurocognitive marker of neurodevelopment disor-
ders such as ASD and ADHD.

As for other cognition profiles of the three clusters, we 
failed to identify any differences in EF among the three 
symptom subtypes, which was somewhat surprising con-
sidering that specific EFs were shown to be linked with 
ASD and ADHD in a number of studies [66, 67]. In addi-
tion, one data-driven study found that transdiagnostic EF 
subtyping could not be attributed to symptom presenta-
tion in ASD and ADHD [36]. This indicated that EF was 
independent variable, not specific to categorize diagnos-
tic symptoms. Further studies with broader EFs and a 
larger sample size are needed to clarify the relationship 
between cognitive subtypes and the symptom severity of 
neurodevelopment disorders.

In the present study, three subtypes showed distinct 
neuroimaging profiles. Firstly, when comparing C1 with 
C3, C1 was characterized by decreased structural con-
nectivity in the body of the corpus callosum. The FA 
values showed differences in the body/splenium of the 
corpus callosum when comparing C2 with C3. The symp-
tom dimensional analysis showed that the corpus callo-
sum (C1 vs. C3) was associated with mindreading and 
perseveration symptoms, while the corpus callosum 
(C2 vs. C3) was associated with ADHD symptoms. This 
suggested that the corpus callosum played a role in the 
overlapping of ASD-ADHD spectrum disorders. Con-
sistent with our findings, a dimensional analysis showed 
that ASD symptom severity and inattention symptoms 
were associated with FA of the corpus callosum across 
ASD and ADHD [26]. However, previous studies also 
showed that ASD had a lower FA of the corpus callo-
sum compared to ADHD [26, 27], suggesting that the 
white matter morphology in the corpus callosum might 
be used to differentiate ASD from ADHD. The corpus 
callosum is the largest commissural tract in the human 
brain, connecting homologous regions of the two cere-
bral hemispheres [68], and is associated with social func-
tion [69], motor function [70], sustain attention and EF 
[71]. Lower FA in the corpus callosum in imaging stud-
ies indicated decreased directional organization of white 
matter microstructure, which might be due to changes 
in myelination, axonal density and axonal degeneration 
[72]. Combined with our findings, different white matter 
structural connections of the corpus callosum could par-
tially explain the neural mechanisms underlying behavio-
ral differences between ASD and ADHD.

We found decreased FA within the internal capsule in 
the C1 subtype compared with C2, and the internal cap-
sule was correlated with mindreading symptoms. The 
result was aligned with previous studies that indicated 

social communication was associated with internal cap-
sules in ASD [73, 74]. Additionally, although both C1 and 
C2 subtypes showed impaired social skills, the former 
was more severely affected. This suggested that internal 
capsule is a neuroimaging feature of social skill impair-
ment among ASD and ADHD. Both in C1 and C2, chil-
dren might have similar internal capsule abnormalities 
to varying degrees. The difference might be explained by 
cognitive types such as motor function and EFs. Further 
structural equation models with larger samples are nec-
essary to validate this hypothesis.

The existence of three independent symptom clus-
ters was statistically justified, which showed distinct 
symptom profiles cutting across DSM diagnostic cat-
egories. Yet, the discriminant analysis results showed 
good predictive accuracy (92%) of the symptom 
dimensions, thus indicating that the clustering analy-
sis result was reliable. There was no difference in two 
typical autism repetitive and stereotyped behaviors 
(RBBs) symptoms: patterns and attention to detail, 
which might be explained by the overlapping pheno-
typic characteristics of ADHD and ASD [9, 10, 75]. 
Stereotypical and repetitive behaviors were also com-
mon even in healthy infants and toddlers. It indi-
cated that RBB’s symptom dimension is still a group 
of syndromes, including different behavioral dimen-
sions (such as abnormal sensory experience, repeti-
tive behavior, monotonous hobbies), and may still have 
great heterogeneity. This suggested that it might be 
useful to adopt dimensional analysis to explore the eti-
ology of neurodevelopmental disorders.

The present study indicated several links among WM 
structural connectivity, cognitions, and ASD/ADHD 
symptoms. Nevertheless, determining how neuroimage is 
linked to ASD/ADHD symptoms and how cognition may 
be candidate endophenotypes for neurodevelopment 
disorders, including ASD and ADHD, is challenging. A 
simplified schematic form for neuroimaging-cognition 
endophenotypes- symptoms of ASD and ADHD are 
depicted in Fig. 6. As we proposed we have found asso-
ciations between the corpus callosum with sensorimo-
tor functions, which is consistent with previous studies 
[69, 74]. Fine motor function was found to have links 
with both social symptoms and the corpus callosum in 
the present study. To clarity brain-cognition-symptoms 
interactions, further structural equation model establish-
ment would be in need.

Our study successfully established one mediation 
model, which indicated that fine motor function had a 
total mediating effect between the corpus callosum and 
perseveration symptoms in a combined sample of ASD 
and ADHD. Previous studies showed that the micro-
structure of the corpus callosum was associated with 
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motor function [70], and fine motor impairment was 
increased in children with repetitive behavior [58]. In 
addition, Liu et  al. found that fine motor skill training 
promoted corticospinal tract plasticity in rats with spi-
nal cord injury [75]. The corpus callosum development 
affected the late stages of neurodevelopment in the fetus 
[76]. Axons of the neurons in the corpus callosum have 
been extensively pruned in the first 10 years of life [77], 
which is the onset time of neurodevelopment disorders. 
Therefore, we speculated that the abnormal remodeling 
of neurons represented by lower FA in the corpus cal-
losum might cause fine motor dysfunction and further 
induce the appearance of perseveration symptoms. To 
the best of our knowledge, this was the first study on the 

brain structural connectivity-cognition-symptoms inter-
action model in ASD and ADHD, thus providing further 
evidence of a treatment target for neurodevelopmental 
disorders such as ASD and ADHD. Nonetheless, future 
studies with a larger sample size are warranted to verify 
reported findings.

This study had a few limitations. First, the sample size 
was relatively small, which might lead to overfitting. 
Thus, future studies with larger samples are in need to 
generate more subtle neurodevelopmental disorders sub-
types. However, the validity of the clustering analysis had 
been validated to be robust in our data with parameters, 
such as, silhouette score, classification accuracy, adjusted 
Rand score and so on. Additionally, we also added 

Fig. 6  The hypothesis of the neuroimage- cognitions- ASD/ADHD symptoms. Note:Model 1 indicating that C1 and C2 are, in fact, different 
manifestations of the same overarching disorder with shared neuroimaging etiology. The manifestations range from C2 with few social symptoms 
to C1 as the most severe subtype characterized by severe social and ADHD problems. Model 2 proposed that cognitive endophenotypic traits 
mediate between C2/C3 subtypes distinct social symptoms and certain neuroimage abnormality. Model 3 demonstrated that the cognitive 
endophenotype is useful for mediating the associations between WM structural abnormality and ASD-ADHD spectrum. Differentiating between 
Models 2 and 3 is weather cognitive endophenotype and symptom are overlapping in subtypes
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neuroimaging and cognitive tests to validate the gener-
ated subtypes. Secondly, we included only high-func-
tioning ASD (IQ > 70), which may not represent the full 
spectrum of ASD. The inclusion criteria were made to 
balance the IQ among groups, to eliminate the influence 
of intelligence on cognition and white matter structural 
connectivity profiles of symptom clusters as possible. 
Finally, there was a possibility of selection bias, given 
that the present study participants incorporated several 
selective cognition tests assessing a number of cognitive 
domains. Further subtype validation is needed, such as 
longitudinal follow-up of the prognosis of different sub-
types, using broader neuroimaging methods and neuro-
cognitive testing. In our next study, we plan to employ 
machine learning analysis to explore brain and/or neuro-
cognitive measurements subtypes in a larger sample.

Conclusion
This study demonstrated the effectiveness of a transdi-
agnostic approach for identifying neurodevelopmental 
subtypes incorporating ADHD with ASD. Three sub-
types of symptom profiles were identified and validated 
across neurocognitive function and brain structural con-
nectivity domains. Fine motor function and structural 
connectivity in the corpus callosum might be essential in 
distinguishing ASD-related from ADHD-related symp-
toms. A fine motor function had a mediating effect on 
the linkage between the structural connectivity of cor-
pus callosum and perseveration symptoms. This study 
provided evidence for precise phenotyping by integrat-
ing behavioral and neurocognitive measurements as well 
as brain imaging data, thus promoting the exploration of 
new targeted interventions for neurodevelopmental dis-
orders such as ASD and ADHD.
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