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Machine Learning to Address the Enigma of
Temporal Lobe Epilepsy Lateralization

Artificial Intelligence for Classification of Temporal Lobe Epilepsy with ROI-Level MRI Data: A Worldwide
ENIGMA-Epilepsy Study

Gleichgerrcht E, Munsell BC, Alhusaini S, et al. Neuroimage Clin. 2021;31:102765. doi: 10.1016/j.nicl.2021.102765. Online ahead
of print.

Artificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on
pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with
temporal lobe epilepsy (TLE). The role of machine learning and artificial intelligence to increase detection of brain abnormalities
in TLE remains inconclusive. We used support vector machine (SV) and deep learning (DL) models based on region of interest
(ROI-based) structural (n = 336) and diffusion (n = 863) brain MRI data from patients with TLE with (“lesional”) and without
(“non-lesional”) radiographic features suggestive of underlying hippocampal sclerosis from the multinational (multi-center)
ENIGMA-Epilepsy consortium. Our data showed that models to identify TLE performed better or similar (68-75%) compared
to models to lateralize the side of TLE (56-73%, except structural-based) based on diffusion data with the opposite pattern seen
for structural data (67-75% to diagnose vs 83% to lateralize). In other aspects, structural and diffusion-based models showed
similar classification accuracies. Our classification models for patients with hippocampal sclerosis were more accurate (68-76%)
than models that stratified non-lesional patients (53-62%). Overall, SV and DLmodels performed similarly with several instances
in which SV mildly outperformed DL. We discuss the relative performance of these models with ROI-level data and the
implications for future applications of machine learning and artificial intelligence in epilepsy care.

Commentary

The ENIGMA (Enhancing Neuroimaging Genetics through
Meta Analysis) Consortium is an international neuroimaging
collaboration of over 1400 scientists across 43 countries
studying brain function and structure in health and disease.1

Over 50 working groups in ENIGMA leverage shared datasets
to address large-scale questions in neurological disorders that
may benefit from a “big data” approach. The ENIGMA-
Epilepsy working group was created to share research ideas
and increase sample size in epilepsy neuroimaging studies, and
data collection has included structural magnetic resonance
imaging (MRI), diffusion weighted imaging, resting-state
functional MRI (fMRI), and clinical variables across multiple
centers.2 Given marked heterogeneity across epilepsy patients,
single-center neuroimaging studies risk being under-powered to
address clinically important questions, such as those related
to epilepsy subtype classification and prediction of response to
therapy. Recent ENIGMA-Epilepsy studies have begun to
characterize white matter abnormalities across various epilepsy
syndromes, identifying reduced fractional anisotropy and in-
creased mean diffusivity in ipsilateral limbic pathways in
temporal lobe epilepsy (TLE) patients that are most pronounced
in individuals with mesial temporal sclerosis (MTS).3 Can

subtle neuroimaging abnormalities such as these observed in
TLE patients aid with diagnosis or lateralization?

In the presently highlighted study, Gleichgerrecht and col-
leagues leveraged ENIGMA-Epilepsy structural and diffusion-
weighted MRI data using a machine learning approach to
evaluate epilepsy patient and control subgroups.4 For structural
T1-weighted MRI analysis, data were collected from 16 centers
and included 336 unilateral adult TLE patients and 631 matched
control subjects, while diffusion data originated from 21 sites
and included 863 individuals with TLE and 976 controls.
Approximately 56% of TLE patients were diagnosed with left
sided seizure onset, and structural T1 data were only available
for patients with MTS, although diffusion data were obtained
for patients with MTS and non-lesional TLE. The authors
utilized support vector machine and deep learning models to
identify region-based MRI differences to help stratify patients
vs controls and left vs right-sided patients. This pipeline was
evaluated with a 10-fold cross-validation approach that included
a grid search technique, with 80% of data used for training and
validation of each model, and 20% saved to test the model
performance. Using structural data (cortical thickness and
surface area), models demonstrated 73-75% accuracy in dis-
tinguishing all patients vs controls, and 77-83% accuracy in
identifying left vs right TLE patients with MTS. Key regions of
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influence in the structural models included ipsilateral hippo-
campus, contralateral amygdala, ipsilateral thalamus, and var-
ious frontotemporal cortical areas. Diffusion-based models in
TLE patients predicted laterality in individuals with MTS using
both fractional anisotropy (74-76% accuracy) and radial dif-
fusivity (55-67%) measurements, while model accuracy for
lateralization in non-lesional patients was low (51-56%). Bi-
lateral cingulum and external capsule bundles contributed
strongly to diffusion models. Deep learning and support vector
machine models performed relatively similarly in most ana-
lyses. Overall, the authors argue that their models may allow
classification and lateralization of TLE patients using region-
level MRI data with moderate accuracy.

A notable strength of this study by Gleichgerrecht and
colleagues is its use of a large, multicenter dataset to achieve a
sample size rarely seen in neuroimaging studies of epilepsy.
Machine learning approaches are often limited by under-
sampling of data and overfitting models, and they are sometimes
applied inappropriately. Sizable, shared datasets such as
ENIGMA-Epilepsy are well-suited for investigations using
artificial intelligence to detect subtle abnormalities in MRI data.
The authors also appropriately used multiple cross validations to
generate models using a subset of data, which were then applied
to remaining data. Clinically, improved strategies for lateral-
izing TLE remains an important goal, as rapid contralateral
spread of mesial temporal lobe seizure activity is common in
this disorder,5 making confident electrographic lateralization
challenging in some cases. However, models in the highlighted
study will need to be improved in patients with non-lesional
TLE, where lateralization is more difficult than in individuals
with MTS visible on MRI. Along the same lines, expanding
these analyses to distinguish patients who harbor bilateral vs
unilateral temporal lobe seizure onset will be another important
goal in the future, as contralateral seizures in TLE may not be
captured during inpatient video-EEG studies that only span days
to weeks. In one study of ambulatory bilateral TLE patients
implanted with a neurostimulator, nearly one-third of individ-
uals required more than four weeks to manifest bilateral sei-
zures.6 Also, abnormal connectivity patterns of the contralateral
hippocampus may predict seizure recurrence after TLE sur-
gery,7 further suggesting that bilateral hippocampal pathology is
sometimes missed in this disorder.

A notable limitation of the highlighted study is that analyses
were performed on region-level structural and diffusion MRI
measurements, and raw data were unavailable. It is likely that
models based on these high-level features will perform less
favorably than those using sophisticated feature extraction from
raw imaging data, and the investigators cite this as an important
future goal. Also, surgical outcome prediction was not per-
formed in this investigation, and such an analysis may benefit
from the large dataset available in ENIGMA-Epilepsy. How-
ever, the lead authors did recently report studies in which
machine learning approaches were used to predict surgical
outcome with favorable accuracy using the MRI structural
connectome derived from raw diffusion and T1 data.8,9 In those
investigations and studies by other groups, models based on

structural MRI often outperform prediction accuracy based on
clinical variables alone.

While the growth of machine learning approaches in surgical
epilepsy is welcome, we must also remember not to neglect
traditional regression methods, which remain a powerful gold
standard in relating neuroimaging features to clinically mean-
ingful variables. For example, a recent T1 volumetric analysis
utilizing a software package approved by the US Food and Drug
Administration identified the presence or absence ofMTS in TLE
patients, with similar or improved accuracy compared tomachine
learning literature.10 Finally, in machine learning studies, we
should not allow the “machine” to turn into a pure black box. It is
worthwhile to simultaneously consider paradigms that create
directly interpretable predictive features without the need for
reverse interrogation of machine learning latent space or oc-
clusion mapping. Directly interpretable predictive features can
serve as hypothesis generators for future studies focused on
understanding the fundamental biophysical reality of epilepsy.
Thus, the future of machine learning applications in neuro-
imaging should balance model accuracy and hypothesis gener-
ation – this balance is needed to satisfy both the pragmatic
translation to the clinic to improve diagnosis and prognosis, and
the need for deeper fundamental understanding of the disease to
develop novel treatments. Overall, our field is extremely fortu-
nate to have a growing number of neuroimaging datasets in
which both “big data” and traditional regression methods can be
utilized by ENIGMA-Epilepsy and other collaborative groups.
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