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Abstract
The development of new and effective antibacterial drugs to treat multi-drug resistant (MDR) bacteria, especially Gram-
negative (G−ve) pathogens, is acknowledged as one of the world’s most pressing health issues; however, the discovery and
development of new, nontoxic antibacterials is not a straightforward scientific task, which is compounded by a challenging
economic model. This review lists the antibacterials, β-lactamase/β-lactam inhibitor (BLI) combinations, and monoclonal
antibodies (mAbs) first launched around the world since 2009 and details the seven new antibiotics and two new β-lactam/
BLI combinations launched since 2016. The development status, mode of action, spectra of activity, lead source, and
administration route for the 44 small molecule antibacterials, eight β-lactamase/BLI combinations, and one antibody drug
conjugate (ADC) being evaluated in worldwide clinical trials at the end of October 2019 are described. Compounds
discontinued from clinical development since 2016 and new antibacterial pharmacophores are also reviewed. There has been
an increase in the number of early stage clinical candidates, which has been fueled by antibiotic-focused funding agencies;
however, there is still a significant gap in the pipeline for the development of new antibacterials with activity against
β-metallolactamases, orally administered with broad spectrum G−ve activity, and new treatments for MDR Acinetobacter
and gonorrhea.

Introduction

Since their development in the 1940s, antibacterial drugs
have become lifesaving medicines that are integral to
human health. Unfortunately, antibacterial drug resistance
is widespread amongst pathogenic bacteria, which sig-
nificantly reduces the medical effectiveness of currently
marketed drugs. These drug-resistant and multi-drug resis-
tant (MDR) bacteria have been acknowledged by Govern-
ments and scientists as one of the world’s most pressing
health issues; however, the discovery and development of
new antibiotics and antibiotic-alternatives to treat these
infections is not straightforward. As a consequence, it is
important to analyze the antibacterial development pipeline

to capture a snapshot of what is happening today and
compare it to previous years. This review provides an
update to previous reviews in this series in 2015 [1], 2013
[2] and 2011 [3], which are complementary to recent
reviews that describe the pre-clinical [4] and clinical pipe-
line [5–11]. There have also been several important reviews
that analyze the lead discovery and development of anti-
biotics [12–22], antibiotic alternatives [23–25], β-lactam/
β-lactamase inhibitors [26, 27], and antibiotic conjugate and
prodrug strategies [28]. There has also been reviews that
discuss issues with antibiotic stewardship, resistance and,
the commercialization challenge [29–41].

This review details antibacterials launched since 2009
(Table 1; Table S1 from 2000 to 2009) and analyzes new
antibacterials approved (Figs. 1–3) since the previous
2015 review [1]. Small molecule antibacterials, BLI
combinations, and antibody drug conjugates (ADC) that
are being evaluated in phase-I, -II, or -III clinical trials
and under pre-approval regulatory evaluation as of 31
October 2019 (Tables 2–5, Figs. 4–12) are reviewed
highlighting their development status, mode of action,
spectra of activity, historical discovery, and origin of
the lead compound’s pharmacophore. The clinical trial
codes, which are predominantly from ClinicalTrials.gov
(NCT), are listed in parentheses for each antibacterial,
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Table 1 Antibiotics, β-lactamase inhibitor (BLI) combinations, and monoclonal antibodies (mAb) launched from January 2009 to October 2019,
their antibiotic class, activity spectra, country of first approval, and lead source

Year
approved

Drug namea,b Class Country of first
approval

Lead source

Small molecule antibacterials

2009 Tebipenem pivoxil Carbapenem Japan NP

2009 Telavancin Glycopeptide USA NP

2009 Antofloxacin Fluoroquinolone China S

2009 Besifloxacinc Fluoroquinolone USA S

2010 Ceftaroline fosamil Cephalosporin USA NP

2011 Fidaxomicinb Tiacumicin USA NP

2012 Bedaquilineb Diarylquinoline USA S

2012 Perchlozone Thiosemicarbazone Russia S

2014 Delamanid Nitroimidazole Europe S

2014 Dalbavancin Glycopeptide USA NP

2014 Oritavancin Glycopeptide USA NP

2014 Tedizolid phosphate Oxazolidinone USA S

2014 Nemonoxacin Quinolone Taiwan S

2014 Morinidazole (1)e Nitroimidazole People’s Republic
of China

S

2014 Finafloxacinc Fluoroquinolone USA S

2015 Zabofloxacin (2) Fluoroquinolone Republic of Korea S

2017 Delafloxacin (3) Fluoroquinolone USA S

2018 Plazomicin (4) Aminoglycoside USA NP

2018 Eravacycline (5) Tetracycline Europe NP

2018 Omadacycline (6) Tetracycline USA NP

2018 Sarecycline (7)c Tetracycline USA NP

2019 Pretomanid (8) Nitroimidazole USA S

2019 Lefamulin (9) Pleuromutilin USA NP

2019 Lascufloxacin (10) Fluoroquinolone Japan S

2019 Cefiderocol (11) Cephalosporin siderophore USA NP

BLI combinations

2014 Zerbaxa: ceftolozane+
tazobactamd

β-Lactam+ BLI USA NP+NP

2015 Avycaz: avibactamb+
ceftazidimed

DBO BLI+ β-lactam USA S+NP

2017 Vabomere: vaborbactamb

(12) + meropenemd (13)
Boronate BLI+ β-lactam USA S+NP

2019 Recarbrio: relebactam (14)
+ imipenem (15)d+
cilastatin (16)d

DBO BLI+ β-lactam + renal
dehydropeptidase inhibitor

USA S+NP+ S

mAbs

2012 Raxibacumab mAb USA mAb

2016 Obiltoxaximab mAb USA mAb

2016 Bezlotoxumab mAb USA mAb

BLI β-lactamase inhibitor, DBO diazabicyclooctane, mAb monoclonal antibody, NP natural product-derived, S synthetic, USA United States of
America
aThe structures of the antibiotics approved from 2000 to 2014 can be found in our previous reviews [1–3]
bFirst member of a new antibiotic or β-lactamase inhibitor class approved for human therapeutic use
cApproved for topical use
dFirst launches: tazobactam in 1992, ceftazidime in 1983, meropenem (13) in 1998, and imipenem (15)+ cilastatin (16) in 1985
eAlso approved for the treatment of amebiasis and trichomoniasis
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while non-registered trials are referenced at least by a
Press Release or peer-reviewed publication. A list of on-
line clinical trial databases can be found in the Supple-
mentary information. Repurposed drugs that have not
previously been approved as antibacterials have been
included in this analysis. Pro-drugs are grouped together
with their active metabolites, while ongoing trials of
antibacterial drugs that already approved anywhere in the
world are not discussed but are listed in Table S2. Com-
pounds for which no development activity has been
reported since 2017 are listed in Table 6. The anti-
bacterials in clinical development have been further ana-
lyzed by phase and source derivation (Fig. 13) and to the
previous 2011 [3], 2013 [2], and 2015 [1] reviews
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Fig. 1 New antibacterial and BLI classes January 2000 to October
2019 with new classes highlighted

Fig. 2 Structures of the recently
launched antibacterial drugs

Antibiotics in the clinical pipeline in October 2019 331



(Fig. 14). An analysis of new antibacterial pharmaco-
phores (Table 7, Figs. 15 and 16) and administration
routes (Figs. S1 and S2) has also been undertaken.

Data in this review were obtained by analyzing the
scientific literature and internet resources such as com-
pany web pages, clinical trial registers, The Pew Chari-
table Trusts (Philadelphia, PA, USA) [42, 43] and World
Health Organization (WHO) (Geneva, Switzerland)
pipeline analyses [5] and biotechnology newsletters.
Every effort has been undertaken to ensure that these data
are accurate; however, it is possible compounds in the
earlier stages of clinical development have been over-
looked as there is limited information available in the
public domain. An overview of the drug development and
approval process, antibiotic clinical trial categories and
abbreviations can be found in the Supplementary
information.

Antibacterial drugs launched since 2000

Since 2000, 38 new antibacterials (two NP, 16 NP-derived
and 20 synthetic-derived), four new β-lactam/BLI combi-
nations and three monoclonal antibodies (mAbs) have
been launched worldwide (Tables 1 and S1, Figs. 1 and 2).
Of the 38 new antibacterials, five were first-in-class:
linezolid (oxazolidinone, S, 2000), daptomycin (lipopep-
tide, NP, 2003), retapamulin (pleuromutilin, NP-derived,
2007), fidaxomicin (tiacumicin, NP, 2011) and bedaquiline
(diarylquinoline, S, 2012). These five antibacterials have
Gram-positive (G+ve) activity only; however, bedaquiline
is noteworthy as it was the first new drug class approved
for tuberculosis (TB) since 1963 [44]. Although the
approval of a new class of G-ve antibacterial is still elu-
sive, there has been two new BLI classes launched (dia-
zabicyclooctane (DBO)-BLI (avibactam, S, 2015) and
boron-type BLI (vaborbactam (12), S, 2017)) that have
activity in combination with β-lactams against G-ve bac-
teria. Two of the approved mAbs, raxibacumab [45] and

obiltoxaximab [46], help reduce the effects of anthrax
toxins but further work is required to fully establish their
efficacy in preclinical and clinical studies [47]. Bezlotox-
umab is a mAb that binds and neutralizes Clostridioides
difficile (formally Clostridium difficile [48]) toxin B,
which is approved to help reduce the occurrence of C.
difficile infections (CDI) in patients undergoing anti-
bacterial drug treatments [49, 50].

Description of antibacterial drugs launched
since 2016

Since the 2016, seven new antibacterials (Fig. 2) and two new
β-lactam/BLI combinations (Fig. 3) have been approved
around the world. These new approvals are discussed, along
with morinidazole (1) and zabofloxacin (2), which were not
detailed in the previous review [1].

Small molecules antibacterials

Morinidazole (1) was developed by Jiangsu Hansoh
Pharmaceutical (Lianyungang, People’s Republic of
China) and approved in China for the treatment of anae-
robic bacterial infections including appendicitis and pel-
vic inflammatory disease in February 2014 [51].
Morinidazole (1), which is also used to treat amebiasis
and trichomoniasis [52], belongs to the nitroimidazole
class [53] (Table 1, Fig. 2).

Zabofloxacin (2) (Zabolante, PB-101, DW-224a) is an
orally administered fluoronaphthyridone (fluoroquinolone
class) developed by Dong Wha Pharmaceutical (Seoul,
Republic of Korea) that was approved in March 2015 in
South Korea for the treatment of patients with acute bac-
terial exacerbation of chronic obstructive pulmonary disease
[54, 55]. Zabofloxacin (2) has activity against G−ve and
G+ve respiratory pathogens, notably Streptococcus pneu-
moniae [56, 57], and drug-resistant Neisseria gonorrhoeae
[58]. There is ongoing development for the treatment of

Fig. 3 Structures of the recently
β-lactam/β-lactamase inhibitor
(BLI) combinations
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respiratory infections and drug-resistant bacteria [59]. Dong
Wha has licensing and supply agreements with China and
12 Middle Eastern and North African countries [60].

Delafloxacin (3) (Baxdela, RX-3341, WQ-3034, ABT-
492) [61, 62], which is a fluoroquinolone that was being
developed by Melinta Therapeutics (New Haven, CT,
USA), was approved by the U.S. Food and Drug Admin-
istration (FDA) in June 2017 for the treatment of acute
bacterial skin and skin structure infections (ABSSSI) using
both intravenous (IV) and oral formulations [63]. In addi-
tion to activity against G+ve bacteria, delafloxacin (3) is
also approved for the treatment of the following G−ve
bacteria: Escherichia coli, Enterobacter cloacae, Klebsiella
pneumoniae, and Pseudomonas aeruginosa [64]; however,
3 is rarely used to treat these G−ve pathogens due to
resistance. In October 2019, Melinta announced that the
FDA had approved an sNDA for 3 for the treatment of
community-acquired bacterial pneumonia (CABP) [65].

Plazomicin (4) (Zemdri, ACHN-490), which is a
semi-synthetic derivative [66–68] of the aminoglycoside
sisomicin [69, 70] developed by Achaogen, Inc. (South
San Francisco, CA, USA). An IV formulation of 4 was
approved by the FDA in June 2018 for the treatment of
cUTI, including pyelonephritis, due to certain Enter-
obacteriaceae where treatment options are limited [71].
At the same time, Achaogen also sort the approval of pla-
zomicin (4) to treat bloodstream infection (BSI), but
the FDA indicated further trials would be required to
demonstrate its effectiveness. Achaogen had submitted an
marketing authorization application (MAA) in October

2018 with The European Medicines Agency (EMA)
for complicated urinary tract infections (cUTI), including
pyelonephritis, BSI due to certain Enterobacteriaceae, and
Enterobacteriaceae in patients with limited treatment
options [72]. However, in April 2019, Achaogen filed for
bankruptcy [73] and it was announced in June 2019 that
Cipla USA Inc. (Sunrise, FL, USA) had purchased the
worldwide rights to plazomicin (4) except for China where
the rights were held by QiLu Antibiotics Pharmaceutical
Co. (Jinan, People’s Republic of China) [74].

Eravacycline (5) (Xerava, TP-434), which is an IV
administered, synthetic fluorocycline-type tetracycline
derivative [75–77] developed by Tetraphase Pharmaceu-
ticals (Watertown, MA, USA), was approved for treatment
of complicated intra-abdominal infections (cIAI) by the
EMA in July 2018 [78] and by the FDA in August 2018
[79, 80]. Eravacycline (5) had also been evaluated in a cUTI
phase-III trial (NCT01978938) but did not achieve statis-
tical non-inferiority to ertapenem and no further develop-
ment is likely [81].

Omadacycline (6) (Nuzyra, amadacycline, PTK-0796)
[82], which a semi-synthetic minocycline derivative devel-
oped by Paratek Pharmaceuticals (Boston, MA, USA) with
both oral and IV administration, was approved by the
FDA in October 2018 for the treatment CABP and ABSSSI
[83–85]. As a ten-year European market exclusivity starts
after a product’s first approval, Paratek has decided to re-
submit their MAA for CABP and ABSSSI after the com-
pletion of their post-marketing CABP study for the FDA;
this is because the EMA required an addition CABP study

Table 2 Antibiotics with NDA/MAA submitted or in phase-III clinical trials

Name (synonym)a Compound class (lead source) Mode of action Administration; indication (developer)

NDA/MAA

Solithromycin (17) (T-4288) Erythromycin (NP) Protein synthesis inhibition iv/po; respiratory tract infection (FUJIFILM
Toyama)

Iclaprim (18) Trimethoprim (S) DHFR iv/po; ABSSSI (Motif Bio)

Phase-III

Sulopenem (19) (IV); oral prodrug: sulopenem
etzadroxil (20)+ probenecid (21)

Penem (NP) PBP (cell wall) po; uUTI, cUTI, and cIAI (Iterum)

Murepavadin (22) (POL7080) Protegrin I (P) β-barrel protein LptD (Imp/OstA)
inhibition (cell wall)

Inhalation, iv; bronchiectasis and VABP
(Polyphor)

SQ109 (23) “Ethambutol analog” (S) Cell wall synthesis po; TB (Infectex/Sequella)

Ridinilazole (24) (SMT 19969) bis-benzimidazole (S) Cell division inhibitor po topical; CDI (Summit)

Gepotidacin (25) Triazaacenaphthylene (S) DNA gyrase (GyrA)—different to
quinolones

po; UTI and gonorrhea (GSK)

Zoliflodacin (26) (ETX0914) Spiropyrimidinetrione (S) DNA gyrase (GyrB) po; gonorrhea (Entasis Therapeutics/
GARDP)

Contezolid (27) (MRX-I); prodrug: Contezolid
acefosamil (28)

Oxazolidinone (S) Protein synthesis inhibition iv/po; SSSI (phase-III) [ABSSSI phase-II]
(MicuRx)

Levonadifloxacin (WCK-771) (29); prodrug:
alalevonadifloxacin (WCK-2349) (30)

Fluoroquinolone (S) DNA gyrase (GyrA) and Topo
IV (ParC)

iv/po; MRSA and G−ve (Wockhardt)

ABSSSI acute bacterial skin and skin structure infections, CABP community-acquired bacterial pneumonia, CDI C. difficile infection, cIAI
complicated intra-abdominal infections, cUTI complicated urinary tract infections, DHFR dihydrofolate reductase, iv intravenous, MRSA
methicillin-resistant S. aureus, NP natural product, PBP penicillin binding protein, po per orem (oral), S synthetic, SSSI skin and skin structure
infections, TB tuberculosis, VABP ventilator-associated bacterial pneumonia
aUnderlined compounds are new antibacterial pharmacophores
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but voted to approve 6 for ABSSSI [86]. Omadacycline (6)
is also being evaluated in phase-II trials as a treatment
of acute pyelonephritis (NCT03757234) and cystitis (UTI,
NCT03425396).

Sarecycline (7) (Seysara, WC-3035, P005672, PTK-
AR01) was approved by the FDA in October 2018 as
a topical treatment of moderate to severe acne [87–90].
Sarecycline (7) is a semi-synthetic tetracycline derivative
discovered by Paratek Pharmaceuticals (Boston, MA, USA)
and developed by Allergan, plc (Dublin, Ireland), which
had its US dermatology assets acquired by Almirall S.A.
(Barcelona, Spain) in August 2018.

Pretomanid (8) (PA-824) is a nitroimidazole [53] derived
from CGI-17341 [91] that was approved by the FDA in

August 2019 as an orally-administered treatment for
extensively drug resistant (XDR)-TB in combination with
bedaquiline and linezolid under the Limited Population
Pathway for Antibacterial and Antifungal Drugs (LPAD)
[92]. The Global Alliance for TB Drug Development (TB
Alliance) (New York, NY, USA) has been evaluating pre-
tomanid (8) in three phase-III trials: in combination with
linezolid and bedaquiline (NCT03086486), linezolid
(NCT02333799), and linezolid, bedaquiline, moxifloxacin
and clofazimine (NCT02589782). A phase-III in combina-
tion with moxifloxacin and pyrazinamide was completed
in May 2018 (NCT02342886). Pretomanid (8) acts as
prodrug that is reductively activated by the deazaflavin
(cofactor F420)-dependent nitroreductase Rv3547 [93–95].
Pretomanid (8) inhibits cell wall growth in aerobic
conditions by hindering mycolic acid formation, while its
activity involves the induction of respiratory poisoning
under anaerobic conditions [93–95]. A recent report has
also implicated the production of methylglyoxal using an
untargeted metabolomics approach [96].

Lefamulin (9) (Xenleta, BC-3781) is a semi-synthetic
pleuromutilin [97–99] derivative developed by Nabriva
Therapeutics AG (Vienna, Austria) that was approved by
the FDA in August 2019 as a treatment for patients with
CABP [100]. Nabriva has also submitted an MAA for
lefamulin (9) to the EMA in June 2019 [101]. Lefamulin
(9) has had both oral and IV formulations approved,
which should lead to shorter hospital stays, and is the
second pleuromutilin derivative approved for human use
but the first that can be systemically administered. The
first approved pleuromutilin in 2007 was retapamulin,
which is a topical treatment for impetigo [97, 98].

Table 5 β-lactamase inhibitor/β-lactam combinations in clinical trials

Name (synonym) Compound (lead source) Administration; indication
(developer)

Phase-III

Enmetazobactam (68) (AAI 101) + cefepime (69) Clavulanic acid (67) (NP)+
cephalosporin (NP)

iv; UTI (Allecra Therapeutics)

ETX2514SUL [durlobactam (70) (ETX2514)+ sulbactam
(71)]

DBO (S)a+ clavulanic acid (67) (NP) iv; MDR Acinetobacter infections
(Entasis)

Taniborbactam (72) (VNRX-5133) + cefepime (69) Boronate (S)+ cephalosporin (NP) iv; cUTI (VenatoRx)

Phase-I

Nacubactam (73) (OP0595)+meropenem (13) DBO (S)a+ carbapenem (NP) iv; G−ve (NacuGen Therapeutics)

Zidebactam (74)+ cefepime (69) DBO (S)a & PBP2+ cephalosporin (NP) iv; G−ve (Wockhardt)

Prodrug: ETX0282 (75) + prodrug: cefpodoxime proxetil (77);
ETX1317 (76) + cefpodoxime (78)

DBO (S)a+ cephalosporin (NP) po; UTI (Entasis Therapeutics)

Prodrug: VNRX-7145 (79) + ceftibuten (80) Boronate (S)+ cephalosporin (NP) po; G−ve (VenatoRx)

Prodrug: ARX-1796 (81) (ARX-006) DBO prodrug of avibactam (82) prodrug po; G−ve (Arixa)

cIAI complicated intra-abdominal infections, cUTI complicated urinary tract infections, G−ve Gram-negative, iv intravenous, NP natural product,
MDR multi-drug resistant, po per orem (oral), S synthetic, UTI urinary tract infections
aThese DBO BLIs also have activity against selected Enterobacteriaceae

Fig. 4 Structures of antibacterials in the NDA and MAA develop-
ment stage
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Like other pleuromutilins, lefamulin (9) inhibits bacterial
protein synthesis and has activity against a range of skin
[102], respiratory [103, 104] and sexually transmitted
pathogens [105].

Lascufloxacin (10) (Lasvic, KRP-AM1977) is a
fluoroquinolone with broad-spectrum activity [106, 107]
that was developed by Kyorin Pharmaceutical Co.,
Ltd (Tokyo, Japan). In September 2019, Kyorin
announced that an oral formulation of 10 (called KRP-
AM1977X) has been approved for the treatment of CAP,
otorhinolaryngological and respiratory tract infections
[108], while an NDA for the IV formulation (KRP-
AM1977Y) is under preparation.

Cefiderocol (11) (Fetroja, S-649266) is an IV adminis-
tered, semi-synthetic cephalosporin-type β-lactam devel-
oped by Shionogi & Co., Ltd. (Osaka, Japan), which
incorporates a catechol siderophore that facilitates active
transport into the bacteria via iron transporters, that has
activity against MDR G-ve pathogens including carbape-
nemase producers [109–112]. Cefiderocol (11) is first
approved antibacterial that exploits the iron transport
uptake mechanism. Shionogi filed an NDA with the FDA
in December 2018 for cUTI including pyelonephritis and
an MAA with EMA in March 2019 multi-drug G-ve
infections [113]. In November 2019, the FDA approved
cefiderocol (11) for the treatment of cUTI [114].

Fig. 5 Structures of compounds
in phase-III clinical trials
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Cefiderocol (11) has been evaluated in phase-III trials as a
treatment for carbapenem-resistant G-ve pathogens at
various sites (NCT02714595) and hospital-acquired
pneumonia (HAP)/ventilator-associated pneumonia
(VAP)/healthcare-associated pneumonia (HCAP)
(NCT03032380). Positive results for a phase-II trial
against cUTI (NCT02321800) has recently been published
[115].

β-lactam/BLI combinations

Vabomere is an IV administered combination of the first-in-
class boronate-type BLI, vaborbactam (12) (RPX7009), and
meropenem (13) that was discovered by Rempex Pharma-
ceuticals. Rempex were acquired by The Medicines Com-
pany (Parsippany, NJ, USA) in December 2013, who were

granted FDA approval in the August 2017 for the treatment
of G-ve cUTIs (E. coli, K. pneumoniae and E. cloacae
species complex), including pyelonephritis [116, 117].
Soon after this approval, The Medicines Company sold its
anti-infective business units to Melinta Therapeutics (New
Haven, CT, USA) [118]. In November 2017, the EMA
approved Vabomere for the treatment of patients with cIAI,
HAP/VAP, bacteremia, and other aerobic G-ve organisms
with limited treatment options [119]. Vaborbactam (12) is
noteworthy for its rapid movement from Rempex’s 8
August 2011 patent filing [120] to its first approval in just
over six years on 29 August 2017 (Table 1, Fig. 3).

Recarbrio, which is a combination of the relebactam
(14), imipenem (15) and cilastatin (16) developed by Merck
& Co (Rahway, NJ, USA; known as Merck Sharp & Dohme
(MSD) outside of the USA), was approved by the FDA in

Fig. 6 Structures of NP-derived
compounds in phase-II
clinical trials
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July 2019 as an IV administered treatment of cUTI and cIAI
[117, 121–123]. Relebactam (14) is a DBO-type BLI [124]
that is administered with the imipenem (15), which is a
carbapenem first launched in 1987, and cilastatin (16),
which is a dehydropeptidase inhibitor that improves the
in vivo stability of imipenem (15) [125].

Compounds undergoing clinical evaluation

The compounds currently undergoing clinical trials or under
regulatory evaluation for the treatment of bacterial infec-
tions as of the end of October 2019 are detailed in the
following tables and figures: NDA and phase-III in Tables 2

Fig. 7 Structures of synthetic
compounds in phase-II
clinical trials
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and 5 with structures in Figs. 4, 5, and 11, phase-II in
Table 3 with structures in Figs. 6 and 7, and phase-I in
Tables 4 and 5 with structures in Figs. 8–10 and 12.

Compounds in NDA/MAA filing

Solithromycin (17) (T-4288, CEM-101) is a semi-synthetic
2-fluoroketolide [126] that is being evaluated by FUJIFILM
Toyama Chemical Co., Ltd. (Tokyo, Japan) in several phase-
III trials in Japan as an oral treatment for sinusitis (JPRN-
JapicCTI-173733), otorhinolaryngological (head and neck)
infections (JPRN-JapicCTI-163467), respiratory tract infec-
tions (JPRN-JapicCTI-163438) and CAP (JPRN-JapicCTI-
163439). The National Institute of Allergy and Infectious
Diseases (NIAID) (Bethesda, MD, USA) has also been
evaluated 1 in a phase-I trial for gonorrhea (NCT02348424).
In April 2019, FUJIFILM Toyama applied for a NDA in
Japan with the Japanese Pharmaceuticals and Medical
Devices Agency (PMDA) as a treatment bacterial infections
in otorhinolaryngology (ear, nose and throat) [127]. Soli-
thromycin (17) was discovered by Optimer Pharmaceuticals
(San Diego, CA, USA) and was being developed in the USA
by Cempra Pharmaceuticals (Chapel Hill, NC, USA). Cem-
pra submitted an NDA for CABP to the FDA in May 2016
but the FDA sent a Complete Letter Response in December

2016 that requested additional clinical safety information and
the satisfactory resolution of manufacturing facility inspec-
tion deficiencies [128]. Cempra withdrew the CABP MAA
for the EMA in March 2017 [129]. Cempra merged in
August 2017 with Melinta Therapeutics (New Haven, CT,
USA), who are not currently developing solithromycin (17)
(Table 2, Fig. 4).

Iclaprim (18) is an IV and orally dosed trimethoprim
analog that was being developed by Motif Bio plc (London,
UK) [130, 131]. Iclaprim (18) was discovered by Roche
(Basel, Switzerland; coded RO-48-2622) and licensed in
2001 to their anti-infectives spin-out Arpida AG (Reinach,
Switzerland; coded AR-100). Arpida completed two phase-
III trials evaluating 18 for SSSI but the FDA rejected their
NDA in 2009, while their MAA was later withdrawn due to
concerns about not reaching non-inferiority to its com-
parator antibiotic and potential QT interval prolongation
issues [132]. Motif Bio started to develop iclaprim (18) in
2015 and submitted an NDA with the FDA in June 2018 for
ABSSSI from data derived from two phase-III trials
(NCT02600611 and NCT02607618) [133] with altered
dosing regimens compared with Arpida’s trials [131];
however, the FDA required an additional clinical trial
before granting approval [134] and Motif Bio have sub-
sequentially halted development.

Fig. 8 Structures of NP-derived
compounds in phase-I
clinical trials
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Compounds in phase-III trials

Sulopenem (19) (CP-70,429) is a synthetic thiopenem
β-lactam discovered in Pfizer’s Japanese laboratories that
underwent clinical evaluation in the mid-1990s but develop-
ment was discontinued due to high development costs and
market return concerns [135]. Interestingly, the R enantiomer
of sulopenem caused unpleasant sulfurous odors when dosed
in human volunteers and the racemate CP65,207 could not be
used [136]. Pfizer re-started clinical development in 2003
using a more efficient production-scale synthesis procedure to
help alleviate the cost issue [137, 138]. In late 2015, Iterum
Therapeutics plc (Dublin, Ireland) licensed sulopenem (19)
and its prodrug sulopenem etzadroxil (20) (PF-03709270)
from Pfizer [139]. Iterum are now evaluating 19 using IV
administration followed by oral dosing of 20 in phase-III
studies for the treatment of cIAI (NCT03358576) and cUTI

Fig. 9 Structures of synthetic-
derived compounds in phase-I
clinical trials

Fig. 10 Structure of the mAb-rifamycin antibiotic conjugate in phase-
I trials
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Fig. 11 Structures of BLIs and
associated β-lactam antibiotics
in phase-III clinical trials and
clavulanic acid (67)

Fig. 12 Structures of BLIs and
associated β-lactam antibiotics
in phase-I clinical trials
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(NCT03357614) and oral 20 alone for uUTI (NCT03354598).
In these trials, sulopenem etzadroxil (19) is administered
along with probenecid (21) [140], which is a marketed drug
for gout and hyperuricemia that increases uric acid produc-
tion, that inhibits the tubular secretion of some β-lactams and
leads to a longer drug half-life and higher serum concentra-
tions [141] (Table 3, Figs. 6 and 7).

Murepavadin (22) (POL7080, RG7929) is a synthetic
cyclic peptide 14-mer based on protegrin I that is being
developed by Polyphor, Ltd. (Basel, Switzerland) [142–144].
Murepavadin (22) has a new mode of action through binding
to the N-terminal of the β-barrel protein LptD (Imp/OstA)
from P. aeruginosa [142, 145], which affects lipopoly-
saccharide transport to the cell surface and leads to bacterial
death [146]. As this binding pocket is only present in
P. aeruginosa LptD, murepavadin (22) displays selective anti-
P. aeruginosa activity, which should help to reduce resistance
and microbiome disturbance. Polyphor have been evaluating
murepavadin (22) in two phase-III trials for the treatment of
Pseudomonas nosocomial pneumonia (NCT03582007) and
VAP infections (NCT03409679); however, it was announced
in May 2019 that there was an increase in serum creatinine
and acute kidney injury using IV administration in the
nosocomial pneumonia trial [147]. In July 2019, Polyphor
announced that this trial had been closed but stressed that the
inhaled administration route was not impacted [148].

SQ 109 (23) is an ethambutol analog discovered at the
NIAID (Bethesda, MD, USA) [149, 150] that was first
developed by Sequella, Inc (Rockville, MD, USA), who later
licensed the development for the Russian Federation and
Commonwealth of Independent States to Infectex (Moscow,
Russia). In March 2017, Infectex announced positive results
from a phase-II/III trial for the treatment of MDR pulmonary
TB [151, 152], but since then there has been no update.
Results from a Sequella-sponsored phase-II trial evaluating
high range oral doses of rifampicin, moxifloxacin and SQ109
(23) for treating TB (NCT01785186) has been published
[153]. Although SQ109 (23) is structurally derived from
ethambutol, SQ109 (23) has different modes of action and
activity against other bacteria and parasites. Ethambutol
targets arabinofuranosyl transferases EmbA and EmbB
[154, 155], which are involved in cell wall synthesis, and was
recently reported to show synergy with isoniazid targeting a
transcriptional repressor of the inhA gene [156] and gluta-
mate racemase (MurI) [157]. Conversely, SQ109 (23) has
been reported to inhibit mMpl3, which is a trehalose
monomycolate transporter important in cell wall synthesis
[158], as well as inhibit the quinone biosynthesis enzymes
MenA and MenG and affect bacterial respiration and electron
transfer [159, 160].

Ridinilazole (24) (SMT19969) is a synthetic bis-benzimi-
dazole [161] that is being developed by Summit Therapeutics
plc (Oxford, UK). Ridinilazole (24) will be evaluated in two
phase-III trials as for the treatment of CDI compared with
vancomycin (NCT03595553 and NCT03595566) with assis-
tance from the Biomedical Advanced Research and Devel-
opment Authority (BARDA) (Washington DC, USA), which
is an office of the U.S. Department of Health and Human
Services [162]. The mode of action of 24 has not been fully
elucidated but has been shown to affect cell division [163].
Importantly, ridinilazole (24) has been shown to reduce toxin
production [163] and be less harsh on the gut microbiome
compared with vancomycin [164].

Gepotidacin (25) (GSK-2140944) is an orally bioavail-
able, first-in-class antibacterial (triazaacenaphthylene class),
which is new type of bacterial Type II topoisomerase
inhibitor [165], being developed by GlaxoSmithKline
(GSK) (London, UK) that has just started phase-III trials
as a treatment for uncomplicated UTI (NCT04020341)
and uncomplicated urogenital gonorrhea (NCT04010539).
Gepotidacin (25) has previously completed three phase-II
clinical trials: G+ve ABSSSI (NCT02045797), uncompli-
cated urogenital gonorrhea caused by N. gonorrhoeae
(NCT02294682) [166, 167] and uncomplicated UTI
(NCT03568942). Gepotidacin (25) has activity against
range of both G+ve and G−ve pathogens [168–170],
including several species associated with sexually trans-
mitted infections (STIs) such as N. gonorrhoeae [166, 171],
Mycoplasma, and Ureaplasma [172].
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Zoliflodacin (26) (ETX0914, AZD0914) is the first
member of a new class of topoisomerase inhibitor class
[173] called the spiropyrimidinetriones being developed by
Entasis Therapeutics (Waltham, MA, USA) that has started
a phase-III trial (NCT03959527) as an orally administered
treatment of uncomplicated gonorrhea [174] in collabora-
tion with the Global Antibiotics Research and Development
Partnership (GARDP) (Geneva, Switzerland). Zoliflodacin

(26) also has activity against Mycoplasma genitalium,
which could enhance its usefulness in treating STIs [175].
Entasis completed a phase-II trial (NCT02257918) that
showed that zoliflodacin (26) was able to successfully treat
uncomplicated urogenital and rectal gonococcal infections
but was less efficacious against pharyngeal infections [176].

Contezolid (27) (MRX-I) is an oxazolidinone being
evaluated by MicuRx Pharmaceuticals (Hayward, CA, USA
and Shanghai, People’s Republic of China) [177]. MicuRx
announced positive results for a China-based phase-III trial
for cSSTI and they plan to file an NDA with the Chinese

Table 7 New antibacterial
pharmacophores by compound
name, phase, class, lead source,
activity, mode of action, and
administration

Name—phase Class (lead source) Mode of action—administration

Murepavadin (22)—III “Protegrin” (P) Cell wall (LptD)—inhalation (previously iv)

Afabicin (40)—II Benzofuran naphthyridine (S) Cell wall (FabI)—iv/po

Macozinone (47)—II Benzothiazinone (BTZ) (S) Cell wall (DprE1)—po

BTZ-043 (48)—I Benzothiazinone (BTZ) (S) Cell wall (DprE1)—po

OPC-167832 (49)—II 3,4-dihydrocarbostyril (S) Cell wall (DprE1)—po

TBA-7371 (65)I Azaindole (S) Cell wall (DprE1)—po

TXA709 (60)—I FtsZ benzamide (S) Cell wall (FtsZ)—po

Ridinilazole (24)—III bis-Benzimidazole (S) Cell wall (division)—po topical

XF-73 (35)—II Porphyrin (NP) Cell wall/membrane perturbation—topical

Gepotidacin (25)—III Triazaacenaphthylene (S) DNA (GyrA)—iv/po

Zoliflodacin (26)—III Spiropyrimidinetrione (S) DNA (GyrB)—po

MGB-BP-3 (34)—II Distamycin (NP) DNA (groove binding)—po topical

ACX-362E (56)—I Dichlorobenzyl guanine (S) DNA (DNA polymerase IIIC)—po topical

SPR 720 (58)—I “Ethyl urea benzimidazole” (S) DNA (GyrB and ParE)—po

GSK656 (50)—II Oxaborole (S) Protein synthesis (leucyl-tRNA synthetase)
—po

Telacebec (46)—II Imidazo[1,2-a]pyridine amide (S) Oxidative phosphorylation (respiratory
complex bc1)—po

Niclosamide (39)a—II Salicylanilide (S) Oxidative phosphorylation (quorum
sensing?)—topical

Auranofin (38)a—II “Gold complex” (S) Thioredoxin reductase—po

Fluorothyazinone (57)—I Thyazinone (S) Virulence (type III secretion system)—po

aRepurposed drugs
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National Medical Products Administration (NMPA) before
the end of 2019 [178]. Contezolid (27) has completed a
phase-II trial against ABSSSI (NCT02269319) using oral
dosing. Contezolid (27) was selected for development due
to a proposed superior safety profile compared with line-
zolid [177] and promising activity against G+ve bacteria
[179, 180] and TB [181]. The prodrug of contezolid (27),
contezolid acefosamil (28) (MRX-4) [182], is being eval-
uated in a phase-II trial for the treatment of ABSSSI in both
China and the USA (NCT03747497) using an IV to oral
switch route.

Levonadifloxacin (29) (WCK-771) and its alanine prodrug
alalevonadifloxacin (30) (WCK-2349) [183] are currently
being evaluated in a phase-III trial for CSSSI in India
[184, 185] using IV and oral administration. Levonadifloxacin
(29) is the arginine salt of the fluoroquinolone S-(–)-
nadifloxacin [186–188]; racemic nadifloxacin has been topi-
cally used to treat acne and MRSA [186].

Compounds in phase-II trials

BOS228 (31) (LYS228) is an IV-administered monobactam
with potent activity against both serine and metallo-
β-lactamase expressing [189] discovered by Novartis (Basel,
Switzerland) [190–192]. Novartis started phase-II trials of
BOS228 (31) for G−ve cUTI (NCT03377426) and cIAI
(NCT03354754); however, after Novartis exited antibiotic
development in July 2018, these trials were halted and 31 was
licensed to Boston Pharmaceuticals (Cambridge, MA, USA)
for further development [193] (Table 3, Figs. 6 and 7).

Benapenem (32) is a carbapenem, which is structurally
similar to ertapenem and shares its longer half-life com-
pared with other carbapenems, that is currently being
evaluated phase-II trial as a treatment for a cUTI including
pyelonephritis by Sihuan Pharmaceutical (Beijing,
People’s Republic of China) using IV administration
(CT20181302) [194]. Benapenem (32) has completed
three phase-I trials (NCT03570970, NCT03578588, and
NCT03588156) and results from these trials indicated that
32 was well tolerated and the PK data supported once-
daily IV dosing [195].

Nafithromycin (33) (WCK 4873) is an orally bioavail-
able ketolide being developed by Wockhardt Limited
(Mumbai, India) that completed a CABP phase-II trial
(NCT02903836) in July 2017. Nafithromycin (33) recently
started a new multiple dosing phase-I trial (NCT03981887)
and has activity against both G+ve (e.g., S. pneumoniae
and Staphylococcus aureus) and G−ve (e.g., Haemophilus
influenzae, Moraxella catarrhalis, Legionella pneumophila,
Mycoplasma pneumoniae, and Chlamydophila pneumo-
niae) bacteria [196, 197].

MGB-BP-3 (34) is a DNA binding antibacterial being
developed by MGB Biopharma (Glasgow, UK) that recently

started a phase-II trial for the treatment of patients with
C. difficile-associated diarrhea (CDAD) (NCT03824795).
MGB-BP-3 (34) was first synthesized at the University of
Strathclyde (Glasgow, UK) and its structure is based on the
actinomycetes-derived minor groove binders the distamycin,
netropsin and thiazotropsin (“lexitropsins”) [198].

XF-73 (35) (exeporfinium chloride) is a topically admi-
nistered, photosensitizing porphyrin with derivative broad
spectrum G+ve activity [199–202] that is being developed
by Destiny Pharma (Brighton, UK). XF-73 (35) has recently
started a phase-II trial to study its effect on nasal S. aureus
in patients at risk of post-operative staphylococcal infec-
tions (NCT03915470). XF-73 (35) has been evaluated in
phase-I/II trials for the prevention of postsurgical staphy-
lococcal nasal infections (NCT02282605) and positive data
from a phase-I trial have been reported (NCT01592214)
[203].

TNP-2092 (36) (CBR 2092) is currently being developed
by TenNor Therapeutics (Suzhou, People’s Republic of
China) in a phase-II trial for the treatment of G+ve ABSSSI
infections using IV dosing (NCT03964493). TenNor are
also evaluating TNP-2092 (36) against catheter-related
bloodstream infections and prosthetic joint infections
[204]. TNP-2092 (36) is a rifamycin-quinolizinone hybrid
antibacterial discovered by Cumbre Pharmaceuticals [205]
that had excellent activity against G+ve pathogens [206].
The rifamycin lead was rifampicin, while the quinolizinone
component lead was ABT-719, which had a similar activity
profile to quinolones [205]. It was shown that the G+ve
antibacterial activity of 36 was via the modes of action
of the hybrid components: RNA polymerase (rifamycin)
and balanced DNA gyrase and DNA topoisomerase IV
(quinolone) inhibition [207].

ATx201 is a topical formulation of niclosamide (37),
which is a halogenated salicylanilide derivative being
developed by UNION Therapeutics A/S (Hellerup, Den-
mark; previously called AntibioTx) [208, 209]. Niclosamide
(37) was discovered in the late 1950s by Bayer (Leverku-
sen, Germany) and is currently used an anthelmintic, pre-
dominantly to treat tapeworm infections [210]. ATx201
completed phase-II trials in 2018 for the treatment
for impetigo (NCT03429595) and atopic dermatitis
(NCT03304470) with its future development being focused
on atopic dermatitis (EudraCT2019-002771-33) [211].
In addition to bacterial infections [212–215], there have
also been efforts to “re-purpose” 37 as a treatment for
Parkinson’s disease, Type 2 diabetes, viral infections and
oncology [216, 217]. Niclosamide (37) has multiple
mechanisms in these therapeutic areas [216]. In bacteria,
there is evidence that 37 interferes with oxidative phos-
phorylation in TB, which could affect membrane potential
and pH homeostasis [218], and inhibit P. aeruginosa
quorum sensing [219].
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Auranofin (38), which is a 2,3,4,6-tetra-O-acetyl-1-thio-
β-D-glucopyranosato-[triethylphosphine] gold complex first
approved as a rheumatoid arthritis drug in 1985 [220–222],
is currently being evaluated in a phase-II trial by The
Aurum Institute (Johannesburg, Republic of South Africa)
as an adjunctive host directed therapies to assess its
potential to shorten TB treatment and/or prevent permanent
lung damage (NCT02968927). Auranofin (38) primarily
exerts its biological activity through inhibition of thior-
edoxin reductase [223–225] but its mode of action in bac-
teria is more complex [226–228]. There has also been
interest in re-purposing auranofin (38) for C. difficile [229],
Helicobacter pylori [230], and MRSA, S. pneumoniae and
Enterococcus faecalis [223, 226, 231, 232].

MBN-101 (39) (bismuth ethanedithiol, BisEDT) has
broad spectrum, topical antibacterial and antibiofilm activ-
ity, and is being developed by Microbion Corporation
(Bozeman, MT, USA) [233, 234]. MBN-101 is currently
being evaluated in a phase-II trial patients diagnosed with
an orthopedic infection (NCT02436876), and a phase-Ib/IIa
trial as a topical treatment for diabetic foot infection
(NCT02723539). Microbion licensed MBN-101 to Haisco
Pharmaceutical Group (Chengdu, People’s Republic of
China) for development in China in February 2016 [235].
Bismuth has some intrinsic antibacterial activity as
demonstrated by bismuth subsalicylate (later called Pepto
Bismol®), which has been used since 1900 to help treat
stomachaches and traveler’s diarrhea [236], and Xeroform®,
which is a petrolatum-based fine mesh gauze containing 3%
bismuth tribromophenate [237]. Bismuth is also used in
combinations with other antibiotics and a proton pump
inhibitor to treat H. pylori infections [238].

Afabicin (40) (Debio 1450, AFN 1720), which is a
prodrug of afabicin desphosphono (41) (Debio 1452, AFN-
1252), is being evaluated by Debiopharm Group (Lausanne,
Switzerland) in a phase-II trial (NCT03723551) using an
IV/oral switch strategy for the treatment of S. aureus bone
or joint infection [239]. Afabicin (40) had previously
completed another phase-II ABSSSI trial (NCT02426918).
Afabicin (40) specifically inhibits staphylococcal FabI
[240, 241], which is an essential enzyme in the final step of
the fatty acid elongation cycle [242, 243], and the initial
lead was discovered [244, 245] by GSK (London, UK) and
further developed [246] by Affinium Pharmaceuticals
(Austin, TX, USA) before licensing to Debiopharm.

OPS-2071 (structure not disclosed) is a quinolone-based
antibacterial being developed by Otsuka Pharmaceutical
(Tokyo, Japan) that has completed a phase-II trial against C.
difficile and enteric infections (NCT02473393) [247]. In
February 2019, Otsuka announced an additional phase-II
trial evaluating OPS-2071 as an add-on therapy for Crohn’s
disease where patients show symptoms of active inflam-
mation during ongoing treatment (NCT03850509).

Delpazolid (42) (RMX2001, LCB01-0371) is an oxazo-
lidinone discovered by LegoChem Biosciences, Inc. (Dae-
jeon, Republic of Korea), which has activity against G+ve
bacteria [248], TB [249] and Mycobacterium abscessus
[250], that is being evaluated in a phase-II trial for the
treatment of TB using oral administration (NCT02836483).
Delpazolid (42) is being co-developed in China with
HaiHe Biopharma (Shanghai, People’s Republic of China)
and China Shijiazhuang Holding Group Co (Hong Kong,
People’s Republic of China) [251].

Sutezolid (43) (PF-2341272, PNU-100480) [252] is an
oxazolidinone-type antibacterial that was originally developed
alongside linezolid by Upjohn & Co (later Pharmacia &
Upjohn), which was later absorbed into Pfizer (New York,
NY, USA) in 1995. Sutezolid (43) has potent activity against
TB [253–255] and Sequella (Rockville, MD, USA) licensed
43 from Pfizer in 2013 and a phase-II trial was completed as a
treatment for naive patients with drug-sensitive pulmonary
tuberculosis using oral administration (NCT01225640) [256].
Sequella and the TB Alliance (New York, NY, USA) have
recently started a phase-II trial evaluating sutezolid (43) in
combination with bedaquiline, delamanid, and moxifloxacin
against a combination of bedaquiline, delamanid, and moxi-
floxacin (NCT03959566).

DNV-3837 (44) (MCB-3837) is an oxazolidinone–
quinolone hybrid prodrug of DNV-3681 (45) (MCB-3681)
developed by Morphochem AG/Biovertis AG, which was
acquired in 2018 by Deinove (Montpellier, France). that
recently started a phase-II trial as a potential treatment of
CDI (NCT03988855) [257]. DNV-3837 (44) is adminis-
tered intravenously, which differentiates it from other anti-
bacterials being developed for CDI that are delivered orally
with little or no systemic distribution (po topical). DNV-
3837 (44) shows activity against G+ve bacteria including
MRSA, C. difficile, Francisella tularensis, and Bacillus
anthracis [258–261].

Telacebec (46) (Q203) is an orally bioavailable imidazo
[1,2-a]pyridine amide [262, 263] that is currently being
developed by Qurient Co., Ltd. (Seongnam-si, Republic
of Korea) in a phase-II trial for treatment of TB
(NCT03563599). The imidazo[1,2-a]pyridine amide phar-
macophore was identified during phenotypic high-content
assay in infected macrophages and inhibits TB growth via
targeting QcrB, which is a subunit of the menaquinol
cytochrome c oxidoreductase (bc1 complex) [262, 264, 265].
Infectex (Moscow, Russia), who has licensed 46 from
Qurient, announced the successful completion of a Russian
phase-I trial in June 2017 [266].

Macozinone (47) (PBTZ169) is a benzothiazinone
(BTZ) derivative being evaluated by Nearmedic Plus LLC
(Moscow, Russia) in a phase-II trial for the treatment of TB
in Russia and Belarus but the trial was discontinued due to
slow enrollment in February 2018 (NCT03334734).
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The Innovative Medicines for Tuberculosis (iM4TB)
Foundation (Lausanne, Switzerland) is leading the devel-
opment in the rest of the world and are currently evaluating
oral dosing of macozinone (47) in a phase-I trial
(NCT03776500). Macozinone (47) is a second generation
BTZ043 (48; Fig. 8) analog, which had potent in vitro
activity against TB but suboptimal in vivo efficacy, that has
enhanced physico-chemical properties [267]; however,
macozinone (47) still has relatively poor solubility, which
could affect oral bioavailability [268]. The nitro group
present BTZs is reduced in vivo and the reactive nitroso
intermediate forms a covalent semi-mercaptal adduct
with cysteine-387 of Mycobacterium tuberculosis dec-
aprenylphosphoryl‐β‐D‐ribose (DPR) 2′‐oxidase (DprE1),
which is an essential enzyme used to cell wall synthesis
[269–271]. Macozinone (47) has activity against a range of
Mycobacterium species but resistance can arise through
amino acid polymorphism of cysteine-387 [271, 272].
It has been recently shown that macozinone (47) and
BTZ043 (48) can be de-aromatized in vivo through for-
mation of a Meisenheimer complex, which could also
reduce their in vivo half-lives [273].

OPC-167832 (49) is an orally bioavailable 3,4-dihyrdo-
carbostyril derivative being developed by Otsuka Pharmaceu-
tical (Tokyo, Japan) as a potential treatment for uncompleted
pulmonary TB in a phase-I/II trial (NCT03678688) [274, 275].
OPC-167832 (49) exerts its antimycobacterial activity through
inhibition of cell wall synthesis target DprE1 [274], which is
the same target as the BTZ-043 (48) and macozinone (47)
[269, 273, 276].

GSK656 (50) (GSK3036656) is a boron containing
leucyl t-RNA synthetase inhibitor [277, 278] being devel-
oped by GSK (London, UK) that is currently being eval-
uated in a phase-II trial as a treatment for patients with drug-
sensitive pulmonary TB using oral dosing (NCT03557281).
GSK3036656 (50) was discovered in collaboration
with Anacor Pharmaceuticals (Palo Alto, CA, USA), who
had identified that 3-aminomethylbenzoxaboroles inhibit
leucyl-tRNA synthetase [277, 279]. The closely related
epetraborole (AN3365, GSK 2251052), which is the
dechloro-derivative GSK656 (50), entered phase-II clinical
trials in 2012 but was discontinued to the rapid emergence
of resistance [280, 281].

Compounds in phase-I trials

TP-6076 (structure not disclosed) is an IV administered,
fully synthetic fluorocycline (tetracycline class) being
developed by Tetraphase Pharmaceuticals (Watertown,
MA, USA) that is being evaluated in a phase-I trial
(NCT03691584). TP-6076 has shown promising activity
against carbapenem-resistant Acinetobacter baumannii
clinical isolates [282] and Tetraphase has received support

from CARB-X (Boston, MA, USA) to help with develop-
ment [283] (Table 4, Figs. 8–10).

TP-271 (51) is another fully synthetic fluorocycline being
developed by Tetraphase Pharmaceuticals (Watertown, MA,
USA) that completed two phase-I trials investigating oral
administration (NCT03450187 and NCT03024034) and two
phase-I trials evaluating IV administration (NCT02724085
and NCT03234738). TP-271 (51) has activity against G +ve
and G −ve pathogens associated with respiratory tract
infections [284] and the biothreat pathogens F. tularensis
[285] and B. anthracis [286].

SPR 741 (52) (NAB 741), which is a polymyxin derivative
with antibiotic potentiating activity being developed by Spero
Therapeutics (Cambridge, MA, USA), has completed two
phase-I trials (NCT03022175 and NCT03376529). SPR 741
(52) will need to be partnered with another antibacterial and
be administered using an IV route to show clinical effect.
The mode of action of polymyxins involves membrane dis-
ruption but is complex [287]. SPR 741 (52) was initially
developed by Northern Antibiotics (Helsinki, Finland)
and designed to have less nephrotoxicity by reducing the
number of positive charges [288–290]. The replacement of
the 3-hydroxyoctanoate group with an acetate leads to a
significant reduction in antibacterial activity, while maintain-
ing Lipid A binding in a similar way to polymyxin non-
apeptide; the combination of these effects leads to strong
synergisms and enhanced G-ve activity of several anti-
bacterials [290–293].

SPR 206 (53) is an IV administered polymyxin deriva-
tive [294] with activity against MDR G-ve bacteria being
developed by Spero Therapeutics (Cambridge, MA, USA)
that has recently started a phase-I trial (NCT03792308). In
January 2019, Spero announced that Everest Medicines
(Shanghai, People’s Republic of China) had licensed SPR
206 (53), along with an exclusive option to rights to
SPR741 (52), in China, South Korea and several Southeast
Asian countries [295].

GT-1 (54) (LCB10 0200) is an IV administered cephalos-
porin siderophore β-lactam being developed by Geom Ther-
apeutics (San Francisco, CA, USA), which is a joint venture
with LegoChem Biosciences (Seoul, Republic of Korea).
GT-1 (54) started a phase-I trial (ACTRN12618001980224) in
Australia in March 2019 but the trial has been stopped due to
safety concerns. There has been no subsequent update about
whether development will continue.

Apramycin (55) is an aminoglycoside-type protein synth-
esis inhibitor being developed by Juvabis Therapeutics
(Zurich, Switzerland) that recently started a phase-I trial
evaluating IV dosing (NCT04105205). Apramycin (55) was
discovered at Eli Lilly & Co (Indianapolis, IN, USA) in
the 1960s [296] and its structure was published in 1976 [297].
Apramycin (55) is currently being used as veterinary anti-
biotic to treat E. coli infections [298] and it will be interesting
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to follow the impact of the possible re-purposing a veterinary
drug into a human medicine and how this could impact its
future animal use. Apramycin (55) has activity against car-
bapenem- and aminoglycoside-resistant Enterobacteriaceae,
A. baumannii and P. aeruginosa [299–301].

ACX-362E (56) is a bis-substituted guanine derivative
[302, 303] that is being evaluated in a phase-I trial by Acurx
Pharmaceuticals (White Plains, NY, USA) [304, 305].
ACX-362E (56) inhibits bacterial DNA polymerase IIIC
and will be evaluated as potential treatment for CDI [306].
DNA polymerase IIIC, which is a new target for clinical
development, is an essential enzyme in low guanine and
cytosine classes of bacteria such as Bacillus, Clostridioides,
Enterococcus, Mycoplasma, Lactobacillus, Listeria, Pneu-
mococcus, Staphylococcus and Streptococcus. The dis-
covery of ACX-362E (56) and a historical overview of the
development of DNA polymerase IIIC inhibitors has
recently been reviewed [305].

Fluorothyazinone (57) (C-55, fluorothyazinon) recently
completed a phase-I trial (NCT03205462), which was
sponsored by Gamaleya Research Institute of Epidemiology
and Microbiology, Health Ministry of the Russian Federa-
tion (Moscow, Russia). Fluorothyazinone (57) is an orally
administered inhibitor the bacterial type III secretion system
(T3SS) [307–309], which is highly conserved in many
G−ve pathogens that is considered to be a promising anti-
virulence target [310]. It will be interesting to follow the
clinical development and later stage clinical trial design of
this antivirulence agent.

SPR720 (58) (pVXc-486) is a prodrug of the DNA
gyrase inhibitor SPR719 (59) (VXc-486) that is being
evaluated in a phase-I trial by Spero Therapeutics
(Cambridge, MA, USA) as a potential oral treatment for TB
and nontuberculous Mycobacterium (NTM) infections such
as Mycobacterium avium complex and M. abscessus
(NCT03796910) [311–314]. SPR720 (58) inhibits DNA
synthesis via DNA gyrase GyrB and Topoisomerase IV
parC, which is similar to novobiocin [315]. The develop-
ment of SPR720 (58) is being supported by the Novo
REPAIR Fund (Copenhagen, Denmark) and the Bill &
Melinda Gates Medical Research Institute (Cambridge,
MA, USA), who fund the TB development [316]. SPR720
(58) and SPR719 (59) were discovered by Vertex Phar-
maceuticals (Boston, MA, USA) [311, 312].

TXA709 (60) is an orally bioavailable prodrug of
TXA707 (61) that belongs to the new FtsZ benzamide class,
which inhibits an essential enzyme FtsZ (bacterial homolog
of tubulin) in bacterial cell wall division in both G+ve
and G−ve bacteria [317, 318]. TXA709 (60) is currently
being evaluated in a phase-I trial by TAXIS Pharmaceu-
ticals (Monmouth Junction, NJ, USA) [319]. The benza-
mide class, as exemplified by PC190723 [320–322] that has
a Cl in place of the CF3 in TXA707 (61), was discovered by

Prolysis Ltd (Oxford, UK). Prolysis were bought in
November 2009 by Biota Holdings (Melbourne, Australia)
and Biota’s FtsZ IP portfolio was licensed to TAXIS in
August 2014 [323]. The development of PC190723 and its
prodrug TXY541 [324] was hindered by poor physico-
chemical and PK properties; however, TXA709 (60) has
enhanced metabolic stability, PK properties and superior
in vivo efficacy against S. aureus compared with TXY541
[325, 326].

BTZ-043 (48), which is a member of the anti-TB BTZ
class, has recently completed a phase-I trial (NCT03590600).
This trial was sponsored by the University of Munich
(Munich, Germany), Hans-Knöll Institute (Jena, Germany)
and the German Center for Infection Research (DZIF)
(Heidelberg, Germany). As with macozinone (47), BTZ-043
(48) inhibits the essential mycobacterial cell wall biosynthesis
enzyme DprE1 [269, 273, 276].

TBI-223 (62) is an oxazolidinone being developed by
the TB Alliance (New York, NY, USA) and the Institute
of Materia Medica (Shanghai, People’s Republic of China)
that is currently being evaluated in a phase-I trial using
oral dosing (NCT03758612). TBI-223 (62) has similar
in vitro TB activity and in vivo properties in mouse
models but has a higher safety margin in pre-clinical
studies and enhanced metabolic properties compared to
linezolid [327, 328].

TBI-166 (63) (pyrifazimine) is an orally bioavailable
clofazimine (64) analog [329] (riminophenazine class) that
is being evaluated in a phase-I trial (ChiCTR1800018780)
as a treatment for TB by the Global Alliance for TB Drug
Development (New York, NY, USA) in partnership with
the Institute of Materia Medica (Shanghai, People’s
Republic of China), Chinese Academy of Medical Sci-
ences (Beijing, People’s Republic of China) and Peking
Union Medical College (Beijing, People’s Republic of
China). Clofazimine (64) has been used to treat leprosy
since 1962 and has more recently been incorporated into
short-course MDR-TB regimens [330, 331]; however,
clofazimine (64) has suboptimal PK/PD that leads to tissue
accumulation, which due to its red color causes skin
discoloration that can take months to clear. TBI-166 (63)
was designed to have improved PK/PD properties, while
maintaining potent anti-TB activity with less skin dis-
coloration [332, 333].

TBA-7371 (65) is a 1,4-azaindole that is being developed
by the Global Alliance for TB Drug Development
(New York, NY, USA), which has completed a phase-I trial
(NCT03199339) that evaluated safety, tolerability, PK, and
PK interactions using oral dosing. TBA-7371 (65) is a non-
covalent DprE1 inhibitor that was discovered by researchers
at AstraZeneca’s Bangalore site in India by scaffold hop-
ping from telacebec (46), which has a different mechanism
[334–336].
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TNP-2198 (structure not disclosed but likely to be hybrid
like TNP-2092 (36)) is being developed by TenNor Ther-
apeutics (Suzhou, People’s Republic of China) for diseases
of anaerobic infections, which includes gastrointestinal
diseases associated with H. pylori, bacterial vaginosis and
CDAD [337]. TNP-2198 is being evaluated in a phase-I
trial examining an ascending dose regimen and the effect of
eating (CTR20190734).

BCM-0184 (structure not disclosed) is currently being
evaluated by Biocidium Biopharmaceuticals (North Van-
couver, BC, Canada) in a phase-I trial [338]. BCM-0184
has activity against MRSA and has oral and topical for-
mulations, but no further information is available.

DSTA4637S (66) (RG7861, Sym009) is an IV admi-
nistered thiomab-type S. aureus mAb-rifamycin ADC
[339, 340] being developed by Genentech (South San
Francisco, CA, USA) that has successfully completed a
phase-1 trial in healthy volunteers (NCT02596399) [341]
and is currently being evaluated in a phase-I trial in patients
with S. aureus bacteremia that are receiving antibacterials
(NCT03162250). DSTA4637S (66) is designed to cleave
in phagocytic cells, which can be a reservoir for S. aureus
infections, and being developed for the treatment of serious
S. aureus infections including MRSA. DSTA4637S
(66) has an engineered human immunoglobulin G1 (IgG1)
anti-S. aureus mAb (MSTA3852A) that was discovered in
collaboration with Symphogen (Ballerup, Denmark), which
binds to teichoic acid β-O-linked N-acetylglucosamine
sugars in the cell wall, attached via a protease-cleavable
valine–citrulline linker to a rifamycin derivative
(dmDNA31) with an average stoichiometry of two anti-
biotic units to one mAb [339, 340, 342, 343]. The rifa-
mycin derivative dmDNA31 exerts is activity through
inhibition of RNA synthesis.

β-lactam and β-lactamase inhibitor (BLI)
combinations undergoing clinical evaluation

The discovery of the first β-lactamase inhibitor clavulanic
acid (67) [344–346], which was isolated from Streptomyces
clavuligerus, was an important breakthrough that rescued
β-lactams antibacterial activity. Augmentin, which is com-
bination of clavulanic acid (67) and amoxicillin, is still
heavily used today after 38 years of being sold. There have
been four new BLI combinations approved in the last five
years (Table 1, Fig. 3): Zerbaxa in 2014 (new cephalosporin
ceftolozane), Avycaz in 2015 (new DBO-type BLI
avibactam), Vabomere in 2017 (new boronate-type BLI
vaborbactam (12)), and Recarbrio in 2019 (new DBO-type
BLI relebactam (14)). In this section, new BLI combina-
tions undergoing clinical evaluation are discussed (Table 5,
Figs. 11 and 12).

β-lactam/BLI combinations in phase-III trials

Enmetazobactam (AAI 101) (68) is a clavulanic acid (67)-
type BLI [347–349] with activity against extended spectrum
β-lactamases (ESBLs) and some class A and D carbape-
nemases that is currently being evaluated by Allecra
Therapeutics Gmbh (Weil am Rhein, Germany)/Allecra
SAS (Saint Louis, France) in combination with cefepime
(69) in a phase-III trial for cUTI using IV administration
(NCT03687255) (Table 5, Fig. 11).

ETX2514SUL is an IV administered combination of the
DBO-type BLI durlobactam (70) (ETX2514) [350–352],
which also has antibacterial activity, and clavulanic acid-type
BLA inhibitor sulbactam (71), which was first launched in
1986. ETX2514SUL is active against MDR Acinetobacter
spp. [353, 354] and is being evaluated by Entasis Ther-
apeutics (Waltham, MA, USA) is a phase-III trial as a treat-
ment for infections caused by A. baumannii–calcoaceticus
complex (NCT03894046). ETX2514SUL has also been
evaluated in a phase-II trial for acute pyelonephritis and cUTI
(NCT03445195).

The boronate-type BLI taniborbactam (72) (VNRX-
5133) [355] and cefepime (69), which is a fourth-generation
cephalosporin first approved in 1994, are being evaluated
by VenatoRx Pharmaceuticals (Malvern, PA, USA) in a
phase-III trial (NCT03840148) as an IV treatment for cUTI
and acute pyelonephritis. Taniborbactam (72) has activity
against both serine- and metallo-β-lactamases, including
ESBL, OXA, KPC, NDM and VIM enzymes, and it was
recently shown by X-ray crystallography that 72 bound to
NDM-1 though cyclization of its acylamino oxygen onto
the boron of the bicyclic core [356].

β-Lactam/BLI combinations in phase-I trials

Nacubactam (73) (OP0595, FPI-1459, RG6080, RO7079901),
which is a DBO-type BLI [357–359], and meropenem (13),
which is a carbapenem first approved in 1998, was developed
by Meiji Seika Pharma, Co. Ltd. (Tokyo, Japan) and Fedora
Pharmaceuticals (Edmonton, AB, Canada). Meji and Fedora
formed the joint venture NacuGen Therapeutics (Edmonton,
AB, Canada) in January 2019 for further development of
nacubactam (73) [360]. Meiji Seika and Fedora had previously
partnered with Roche (Basel, Switzerland) [361, 362] and
several phase-I trials using IV dosing have been completed
(Meiji Seika: NCT02134834; Roche: NCT02972255,
NCT02975388 and NCT03174795) (Table 5, Fig. 12).

A DBO-type BLI, zidebactam (74) (WCK 5107), is
being developed in combination with the fourth generation
cephalosporin cefepime (69) (combination WCK 5222,
FEP-ZID) by Wockhardt Limited (Mumbai, India) and
has completed five phase-I trials using IV dosing
(NCT02532140 [363], NCT02674347, NCT02707107,
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NCT02942810, NCT03630094). Zidebactam (74) inhibits
PBPs and several β-lactamases while enhancing β-lactam
activity [364] and the combination shows in vitro and
in vivo activity against G−ve bacteria such as A. bau-
mannii, P. aeruginosa and CRE [364–368].

ETX0282CPDP, which is a combination of the DBO-
type BLI ETX0282 (75) and cefpodoxime proxetil (77), is
currently being evaluated in a phase-I trial using oral dosing
(NCT03491748) by Entasis Therapeutics (Waltham, MA,
USA) with partial CARB-X (Boston, MA, USA) funding
[369]. Both ETX0282 (75) and cefpodoxime proxetil (77)
are prodrugs that are hydrolyzed in vivo releasing their
active metabolites, ETX1317 (76) and cefpodoxime (78)
[370, 371]. ETX0282 (75) is noteworthy as the N-oxy-
sulfonic acid group previously found in DBO BLIs has been
replaced with (R)-2-(N-oxy)-2-fluoroacetic acid; ETX0282
(75) also displays antibacterial activity against E. coli in
addition to BLI activity.

A combination of the boronate-type BLI VNRX-7145
(79) [372, 373] and ceftibuten (80), which is a third gen-
eration cephalosporin first approved in 1995, is currently
being developed by VenatoRx Pharmaceuticals (Malvern,
PA, USA) [374]. VNRX-7145 (79) has activity against
CRE (KPC and OXA carbapenemases) and ESBLs. Both
VNRX-7145 (79) and ceftibuten (80) are orally bioavail-
able, which is a differentiator to VenatoRx’s more advanced
IV administered, phase-III taniborbactam (72) and cefepime
(69) program.

ARX-1796 (81) (ARX-006) is an orally bioavailable pro-
drug derivative of the approved DBO-type BLI avibactam
(82) [375, 376] being developed by Arixa Pharmaceuticals
(Palo Alto, CA, USA) that recently started a phase-I trial
(NCT03931876).

Compounds discontinued from clinical
development

Compounds and β-lactam/BLI combinations that have been
discontinued from clinical development or have had their
development halted since the 2015 review [2] are listed in
Table 6 with comments about their the development halt or
cessation noted if known.

Analysis of compounds undergoing clinical
trials

Numbers of compounds undergoing clinical
evaluation and their source derivation

There are currently 44 compounds, eight β-lactam/BLI
inhibitor combinations currently and one ADC undergoing

clinical trials (Figs. 13 and 14). Of the 44 compounds, two
are in NDA/MAA (Table 2, Fig. 4), eight are in phase-III
(Table 2; Fig. 5), 18 in phase-II (Table 3; Figs. 6 and 7) and
16 in phase-I (Table 4; Figs. 8 and 9), three β-lactam/BLI
combinations in phase-III (Table 5; Fig. 11) and five in
phase-I (Table 5; Fig. 12) and one ADC in Phase-I (Table 4,
Fig. 10). Of the 44 compounds, 27 antibacterials were
synthetically-derived (S), 14 were NP-derived (NP), one
protein/mammalian peptide-derived (P), one ADC and the
derivation of two are not known (Fig. 13).

There has been a similar number of compounds in the
different development phases between 2011, 2013 and
2015, except for in phase-III trials in 2011 (6) compared
with 2013 (16) and 2015 (15). In 2019, the number in
phase-III/NDA (13) and phase-II (18) is similar to previous
years, but the number in phase-I trials (22) in 2019 has
increased from an average 12 compounds in the previous
reviews [1–3]. Thirteen of the phase-I compounds target
G−ve bacteria (seven compounds including one anti-
virulence and five BLI combinations), while there are nine
with G+ve activity (including five against TB and one for
CDI). It will be interesting to monitor how many of the
current phase-I antibacterials move to phase-II studies and
beyond in the next few years and whether this higher
number of antibacterials in phase-I level will be maintained
or even increased.

New antibacterial pharmacophore analysis

The modes of action of nearly all antibacterial drugs can be
categorized into four major “macro” level classes: cell wall,
protein synthesis, DNA synthesis and RNA synthesis inhi-
bitors [377]. In the TB field, there is also an emerging mode
of action around the mycobacterial respiratory system,
which is inhibited by bedaquiline (launched 2012) and the
clinical candidate telacebec (46) [378]. Recent work has
also shown that inhibition of the respiratory system in other
bacteria is an important factor in bacteria cell death [379].
The “macro” mode of action classes (e.g., cell wall
inhibitors) are further divided into structure classes (e.g.,
β-lactam), which and sometimes further into structure sub-
classes (e.g., penicillins, cephalosporins, carbapenems, and
monobactams). A pharmacophore is the common sub-unit
of active molecules that interacts with the biological target
(e.g., the β-lactam subunit of the β-lactam antibacterials).

In this review, new pharmacophores not previously used
in a human antibacterial drug have been analyzed as a
measure of antibacterial structure innovation (Table 7).
There are 19 different compounds with six in phase-I, 9 in
phase-II and 4 in phase-III (Fig. 15) and this is slightly
higher than previous reviews: 11 in 2011, 17 in 2013 and 15
in 2015 (Fig. 16). Fifteen of these compounds have new
structure classes and/or new mode of action of the well-
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established “macro” targets: cell wall (9), DNA (5) and
protein synthesis inhibition (1). There are no new RNA
synthesis inhibitors in clinical development. There are no
new BLI classes in development after the recent approvals
of the DBO (avibactam, 2015) and boronate classes
(vaborbactam, (12), 2017). The ADC DSTA4637S (66) was
not classified as a new pharmacophore as the payload is a
rifamycin derivative; however, if approved, it would be a
first antibacterial ADC alongside and would add to the three
approved mAbs, raxibacumab, obiltoxaximab, and bezlo-
toxumab (Table 1).

Existing antibacterial classes that inhibit the bacterial cell
wall include the β-lactams, glycopeptides, fosfomycin,
cylcloserine; daptomycin (lipopeptide) and polymyxin. The
new cell wall antibacterials inhibit several different targets
(LptD: murepavadin (22), FabI: afabicin (40), 3 × DprE:
macozinone (47)/BTZ-043 (48), OPC-167832 (49), and
TBA-7371 (65), and FtsZ: TXA709 (60)) and two that have
less defined mechanisms (ridinilazole (24) and XF-73 (35))
(Table 7).

There is currently one class of DNA synthesis inhibitors
(DNA gyrase GyrA and Topoisomerase IV parC), the qui-
nolones, in clinical use. Novobiocin has not been clinically
used for many years but it inhibits DNA gyrase GyrB and
Topoisomerase IV parE [313, 315]. SPR720 (58) is an
“ethyl urea benzimidazole” that also inhibits GyrB and
parE, while geptotidacin (25) inhibits GyrB at a different
site to the quinolones and zoliflodacin (26) inhibits GyrB
[315]. The dichlorobenyl guanine ACX-362E (56) inhibits
a new target DNA polymerase IIIC. MGB-BP-03 (34)
belongs to the distamycin class that is a DNA groove
binder, which is the mechanism also found in several
anticancer drugs, such as daunorubicin, dactinomycin, and
bleomycins.

The protein synthesis inhibitor class has many repre-
sentatives that include the macrolides, aminoglycosides,
tetracyclines, lincosamides, chloramphenicol, oxazolidi-
nones, pleuromutilins, and streptogramins. Other protein
synthesis inhibitors include fusidic acid, which inhibits
elongation factor G, and mupirocin that inhibits isoleucine
t-RNA synthetase (IleRS). The oxaborole GSK656 (50) is
a new pharmacophore that inhibits leucine t-RNA syn-
thetase (LeuRS), which would be a new antibacterial
mechanism.

Telacebec (46) and bedaquiline both have inhibitory
effects on the bacterial electron-transport chain (respiration).
Auranofin (38) targets thiol-redox homeostasis through
thioredoxin reductase inhibition, while niclosamide (39)
inhibits oxidative phosphorylation (amongst other mechan-
isms) but also has been reported to inhibit quorum sensing
in P. aeruginosa. Fluorothyazinone (57) inhibits the G−ve
type III secretion system, which is an antivirulence target
that has not been previously explored in the clinic.

Administration analysis

The antibacterial clinical pipeline’s administration routes
(po, oral; iv/po intravenous oral switch; iv, intravenous; po
topical, CDI oral; topical, topical or drops) was analyzed by
development phase (Fig. S1) and lead source (Fig. S2). Oral
administration is the most predominate route (27) with just
under 50% (13) being 13 TB clinical candidates, for which
oral administration route is almost mandatory. The second
highest category is iv administration with 17, while there are
six candidates that use iv/po; the iv/po switch strategy is used
when patients move from iv administration in intensive care
to oral afterwards. Eight of the 15 iv administered drugs are
derived from NP lead, which is not unexpected due their
physico-chemical properties [21, 380]. The po topical (5)
administration route is used to treat for gastrointestinal
infections, such as C. difficile and H. pylori. For po topical,
the clinical candidates are taken orally as tablets, but are not
significantly systemically absorbed; this contrasts with po
administered compounds that are taken orally but pass
through the gut and into blood for delivery throughout the
body. Interestingly, one of the CDI clinical candidates, DNV-
3837 (44) is being developed using iv administration, which
differentiates it to the other five CDI clinical candidates in
development and marketed drugs that use the po topical route.
Finally, there are three topical delivered candidates that can be
delivered as creams and eye drops.

Conclusion and outlook

The antibacterial pipeline composition (number, phase
breakdown, and pharmacophores) is similar previous numbers
in 2011 [3], 2013 [2], and 2015 [1] except for a spike in the
number of phase-I candidates from 11 in 2015 to 21 in 2019
(Fig. 14). It is likely that this increase in phase-I candidates
has been helped by increased funding and the development
expertise offered by organizations like the Wellcome Trust
(London, UK), BARDA (Washington DC, USA), GARDP
(Geneva, Switzerland), CARB-X (Boston, MA, USA) and the
Novo Holdings’s REPAIR Impact Fund (Copenhagen, Den-
mark), as well as funding provided for the development of
new anti-Mycobacterium drugs by organizations such as the
TB Alliance (New York, NY, USA) and Bill & Melinda
Gates Foundation (Seattle, WA, USA). However, despite this
increase, there are also some unmet medical needs that need
to be addressed in the clinical pipeline: new antibacterials
with activity against β-metallolactamases, orally administered
that have broad spectrum G−ve activity, and new treatments
for MDR Acinetobacter and gonorrhea. It is imperative that
we discover and develop new antibacterials, especially against
these unmet medical needs, to keep replenishing the pipeline
and help limit the health impacts of MDR bacteria.
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