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Abstract: The development of coastal vermetid reefs and rocky shores depends on the activity
of several reef builders, including red crustose coralline algae (CCA) such as Neogoniolithon sp.
To initiate studies on the interaction between Neogoniolithon sp. and its associated bacteria, and
their impact on the algae physiological performance, we characterized the bacterial community by
16S rRNA gene sequencing. These were extracted from the algal tissue and adjacent waters along
two sampling campaigns (during winter and spring), in three study regions along a reef in the east
Mediterranean Israeli coast and from laboratory-grown algae. The analysis revealed that aquaria and
field communities differ substantially, suggesting that future research on Neogoniolithon sp. interaction
with its microbiome must rest on aquaria that closely simulate coastal conditions. Some prokaryote
classes found associated with the alga tissue were hardly detected or absent from surrounding water.
Further, bacterial populations differed between sampling campaigns. One example is the presence
of anaerobic bacteria and archaea families in one of the campaigns, correlating with the weaker
turbulence in the spring season, probably leading to the development of local anoxic conditions.
A better understanding of reef-building activity of CCA and their associated bacteria is necessary for
assessment of their resilience to climate change and may support coastal preservation efforts.

Keywords: microbiome; reef builder; 16S rRNA sequencing; algal; bacteria; interaction

1. Introduction

Vermetid reefs along the warm ultra-oligotrophic eastern Mediterranean coast con-
stitute a hotspot of biodiversity and ecosystem functioning. Despite the prevailing harsh
natural conditions, including hydration–desiccation cycles, mechanical stress, rapid pH
shifts, and fluctuating light intensity [1], these reefs, consisting of structures termed abra-
sion platforms [2], are among the most important biogenic habitats of temperate waters.
They play a major role in preventing coastal erosion, altering the sediment and nutrient
transport, and providing a habitat for a variety of fish, invertebrates, and algae [2–5]. These
ecosystem engineering functions are largely attributed to two species of intertidal vermetid
gastropods [2] and to crustose coralline algae (CCA) such as Neogoniolithon brassica-florida,
which cements the reef structures [5,6]. Coralline algae are ubiquitous key ecosystem engi-
neers in temperate rocky shores, including in the Mediterranean Sea. Further studies are
needed to determine who is there and assess their abundance [7]. Cementing is achieved
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through deposition of calcareous thalli, giving rise to various bioconstructions such as
coralligenous concretions, rims, and beds (see [7–9], and references therein). However, the
engineering role played by CCA extends beyond the macro-scale. The balance between
inorganic carbon uptake, photosynthesis, calcification, and decalcification [1,10] has been
shown to create temporal and spatial variability in pH, alkalinity, and specific ion avail-
ability on the CCA surface [11–13]. These processes create an altered microenvironment in
the immediate surrounding of the algae by affecting hydrology, mineralogy, carbohydrate
composition, and pH that may support the development of microbial communities. These
communities are distinct from those prevailing in the surrounding seawater [14–16] and
may contribute to the function and diversity of the reefs.

Similar to other organisms and habitats, the CCA-associated microbiomes are impli-
cated with host health [17], metabolism [18], and reproduction [15]. Thus, changes in the
microbiome composition may serve as an indicator of biotic [17] and abiotic [19,20] stresses,
may be applied as a useful tool in the design of coastal preservation efforts [18], and as a
measure for CCA responses to long-term climate change [7,17]. Most of our knowledge on
the importance of host–microbe relationships rests on studies on tropical CCA species [15].
However, despite the importance of CCA for Mediterranean vermetid reefs and the need
to monitor their function [1], studies characterizing their associated microbiome in the
Mediterranean ecosystem are scarce [7]. Examination of reef-building CCA tissue with-
drawn from the abrasion platforms along the eastern Mediterranean shore in the reefs
of Sdot-Yam, Israel (Figure 1A), illustrated the tight association between bacterial cells
and algal surface (Figure S1). Here, we initiated studies on the composition and potential
functions of the natural microbial community associated with reef-building CCA identified
as Neogoniolithon sp. along these reefs, as compared with their surrounding water and with
samples collected from the same site and grown in controlled aquaria. Our results show
distinct differences between the prokaryote compositions associated with the Neogoniolithon
sp. surface and shed light on potential interspecies interactions.
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Figure 1. (A) Study sampling site in the Sdot-Yam abrasion platform. Study regions included tidal pools (TP, 1 and 2) and 
platform edge (E). (B) Hierarchical clustering of samples from field- and aquaria-grown Neogoniolithon sp. surfaces and 
the seawater surrounding the natural population. S1 = sampling 1, S2 = sampling 2, TP (1 and 2) = tidal pools, E = platform 
edge, w = water sample, a, b, c = biological replicates. Note the branching of aquaria samples from both algal surface and 
water clusters. 

2. Materials and Methods 
2.1. Sample Collection and Processing  

Samples of rocks bearing CCA (using hammer and chisel) and their surrounding sea-
water (see below) were collected from an eolianite vermetid reef on the eastern Mediter-
ranean shore, Sdot-Yam, Israel (32°29’38.61’’ N, 34°53’16.65’’ E; Figure 1A), during sam-
pling campaigns 1 and 2 (January 2017 and May 2018, respectively). Due to the wide sea-
sonal range of abiotic conditions (including ~15 °C temperature amplitude [21] and vast 

Figure 1. (A) Study sampling site in the Sdot-Yam abrasion platform. Study regions included tidal pools (TP, 1 and 2) and
platform edge (E). (B) Hierarchical clustering of samples from field- and aquaria-grown Neogoniolithon sp. surfaces and the
seawater surrounding the natural population. S1 = sampling 1, S2 = sampling 2, TP (1 and 2) = tidal pools, E = platform
edge, w = water sample, a, b, c = biological replicates. Note the branching of aquaria samples from both algal surface and
water clusters.
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2. Materials and Methods
2.1. Sample Collection and Processing

Samples of rocks bearing CCA (using hammer and chisel) and their surrounding
seawater (see below) were collected from an eolianite vermetid reef on the eastern Mediter-
ranean shore, Sdot-Yam, Israel (32◦29′38.61′′ N, 34◦53′16.65′′ E; Figure 1A), during sampling
campaigns 1 and 2 (January 2017 and May 2018, respectively). Due to the wide seasonal
range of abiotic conditions (including ~15 ◦C temperature amplitude [21] and vast precipi-
tation differences (3.7 vs. 131 mm monthly average; https://ims.data.gov.il/, accessed on
14 March 2021)) in these reefs, sampling campaigns were timed to the winter (sampling 1)
and spring (sampling 2). In addition, the anthropogenic activities on or nearby the reefs
varies between these seasons, as Sdot-Yam abrasion platforms are a popular recreation site
during spring and summer, including fishing, maritime sports, and sailing activities from a
small marina. Based on morphological characteristics [22], the CCA samples were origi-
nally identified as Neogoniolithon brassica-florida, but since we were unable to characterize
each one of them, we referred to them as Neogoniolithon sp.

In this study, tide pools and platform edges are defined as different “study regions”
on the reef of Sdot-Yam (Figure 1A). Each study region may create a distinct biological
niche, possibly differentially affected by environmental conditions (e.g., exposure to waves,
light, and temperature shifts), impacting the microbial diversity.

The samples were collected from three study regions on the reef—two tidal pools—TP1
(eastern, closer to shoreline) and TP2 (western, closer to open sea), about 10 m apart from
one another, and the platform edge (Figure 1A). Biological independent replicates were
sampled in each study region (n = 2 in sampling 1 and n = 3 in sampling 2) from various
parts in the tidal pools and the platform edge, making sure that different individuals
were sampled in each site. Sampling was performed as described in [15] with several
modifications. Briefly, water samples (n = 3) were taken from each CCA study region using
a 30 mL sterile syringe by opening the syringe underwater, rinsing 3 times, and then closing
before removal from the water column. Samples were kept on ice until processing (<3 h).
Under sterile conditions in the lab, seawater samples were pooled and filtered through a
0.22 µm sterile filter (Millex-GV, 33 mm, Merck Chemicals, Darmstadt, Germany) and then
filters were removed into sterile tubes and stored at −80 ◦C.

CCA-covered rocks were thoroughly rinsed under a stream of 30 mL of filtered
(through 0.22 µm filters) artificial sea water (ASW; Red Sea Coral Pro Salt in filtered de-
ionized water to 36 PSU, pH 8.2) to remove excessive particulate matter. Samples were
taken by scraping the surface (1–3 cm2) of CCA-covered rocks using a sterilized scalpel
blade, thereby collecting algal tissues as well as microbial communities. Tissues containing
scalpel blades were placed in 1 mL tubes and frozen immediately in liquid nitrogen until
further treatment.

Next, 1 mL of filtered ASW was added to each tube containing either seawater sample
filters or scalpel blades, followed by vigorous shaking. Suspensions were centrifuged for
25 min at 13,000× g and the pellet was stored at −80 ◦C.

Neogoniolithon sp.-covered rocks were collected from various places in the site shown
in Figure 1A and placed in aquaria for future host–microbiome interaction studies. For
microbial community analysis of aquaria samples, these algal-covered rocks were thor-
oughly rinsed with ASW to remove excessive particulate matter and epifauna, with the
help of tweezers, under a dissecting scope (Kyowa optical, SDZ-PL, Tokyo, Japan). This
procedure was repeated monthly as a maintenance treatment. Rocks were kept in glass
aquaria circulated with ASW through naturally developed biological filters (on synthetic
sponges and ceramic beads) for over a year prior to the analyses described here, to allow
enough time for biomass accumulation of these slow-growing algae. Growth conditions
were 25 ◦C, 30 µmol photons m−2 s−1 at the surface with 12:12 h light/dark cycles using a
LED array (warm white, 3000 ◦K, SMD 3528 600Leds). Growth tanks were bubbled with air
at ~200 mL min−1 [1]. Algal tissue from aquaria algal-covered rocks (n = 3) was collected
and processed as described above for fresh rocks.

https://ims.data.gov.il/
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2.2. Sequencing

Microbial DNA was extracted using a PowerSoil DNA isolation kit (MO BIO, Jef-
ferson City, MO, USA). Microbial community analysis was based on high-throughput
sequencing of 16S rRNA gene amplicons designed to amplify the relevant prokaryote se-
quences using paired-end 16S community sequencing on the Illumina platform. Extracted
DNA samples were sent to Hylabs (Rehovot, Israel) for sequencing. Each sample was
tagged with a unique barcode combination and 515F [23] and 806R [24] modified primers,
515F 5′-GTGYCAGCMGCCGCGGTAA-3′, 806R 5′-GGACTACNVGGGTWTCTAAT-3′ for
the 16S SSU rRNA V4 region, following the Earth Microbiome Project (EMP) guidelines
(https://earthmicrobiome.org/, accessed on 1 December 2019).

Samples were cleaned using AMPure beads and checked for DNA concentration and
size via Qubit and TapeStation. Samples were then loaded on the Illumina MiSeq for a
paired-end run and raw reads were de-multiplexed using the Illumina MiSeq software.
Sequencing data were deposited in NCBI public domain (accession numbers—BioProject:
PRJEB38881, BioSamples: ERS4666887-ERS4666911).

2.3. Data QC and Analysis

Sequencing raw reads were adapter and quality trimmed using cutadapt v2.8 using
pair-end mode and following parameters: −e 0.2 −q 15,15 −m 150 −discard-untrimmed.
ASVs were generated using trimmed reads and DADA2 package v1.10.1 [25] using the
pooled (function call dada (..., pool = TRUE)) approach following parameters:
truncLen = c(200,150), maxN = 0, rm.phix = TRUE, compress = TRUE, multithread = TRUE,
minLen = 150 with R v3.6. Taxonomic assignment was conducted using DADA2 and SILVA
database v138. The number of inputs, processed, and final reads of the DADA2 pipeline
are shown in Table S1. Subsequently, ASVs representing chloroplasts and mitochondria
were removed.

The data processing procedure described above resulted in two different tables: (i) A
rarefied table with integer counts for each of the technical and biological replicates. Rar-
efaction analyses were generated to ensure that a sufficient number of reads were obtained
for each sample (Figure S2). They were performed with sample size n = 3000 as this is the
minimum resulting reads (see Table S1). (ii) A table with relative abundance where techni-
cal replicates are averaged. This table was generated by: first, removing singletons; second,
calculating relative abundance; third, technical replicates were averaged by arithmetic
mean; fourth, rare biosphere <0.1% relative abundance was removed. The rare biosphere
was removed to avoid overinterpretation of very low abundance species [26–28].

Microbial community analysis was performed using R v3.6, with the following pack-
ages: phyloseq 1.26.1 [29], vegan 2.5.6. Alpha diversity measures were calculated on
the rarefied table, significance was calculated using ANOVA and Tukey’s Honest Sig-
nificant Difference method. NMDS plots are based on the relative abundance table
and the Bray–Curtis dissimilarity. PERMANOVA to compare microbial communities
on ASV level was performed using Bray–Curtis dissimilarity using the adonis func-
tion of the vegan package. Bubble plots were generated using the processed relative
abundance with the help of custom and public functions provided: https://github.com/
AlexanderBartholomaeus/BubblePlot accessed on 16 March 2021. Bar charts and den-
drograms are based on the relative abundance table. All bubble, bar, 2D scatter, and
box plots excluding the Venn diagrams (VennDiagram v1.6.20) and dendrogram (R base,
hclust plot) were generated using ggplot2 v3.3.0 plotting library in R. The dendrogram
was generated using Pearson correlation and average linkage clustering. The scripts
and tables for the data analysis, processing, and generation of the plots are provided at
github: https://github.com/AlexanderBartholomaeus/ReefBuilderMicrobiome accessed
on 16 March 2021. Unique and shared taxa were identified by manual inspection of the data.

Functional annotation of ASV was generated using FAPROTAX 1.2.3 complete pack-
age [30] using the “collapse_table.py” script against the FAPROTAX database (http://
www.loucalab.com/archive/FAPROTAX, accessed on 16 March 2021). Final functional

https://earthmicrobiome.org/
https://github.com/AlexanderBartholomaeus/BubblePlot
https://github.com/AlexanderBartholomaeus/BubblePlot
https://github.com/AlexanderBartholomaeus/ReefBuilderMicrobiome
http://www.loucalab.com/archive/FAPROTAX
http://www.loucalab.com/archive/FAPROTAX
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annotation values were obtained by multiplying ASV abundance with presence/absence
functional annotation. Since one ASV can have multiple functions, summed functional
annotation for each sample may be larger than 1.

3. Results
3.1. Neogoniolithon sp. Hosts a Distinct Prokaryotic Community on Its Surface

We analyzed the composition of the microbial community within samples withdrawn
from the surfaces of Neogoniolithon sp. as compared with those in the surrounding water.
With this being an exploratory study and to minimize damage to the protected tidal
pools within abrasion platforms, we limited our sampling to three close-by study regions
(Figure 1A) during two sampling campaigns, in January 2017 and May 2018 (hereafter,
sampling 1 and 2, respectively, see Section 2).

After the removal of low abundant amplicon sequence variants (ASVs, see Section 2),
the tissue surface and water samples from Neogoniolithon sp. inhabiting the reef and
that collected from aquaria-derived samples were clustered. These were the first data
sets confirming the development of distinct communities on the algal surfaces in each
habitat (Figure 1B). All the algal samples branched separately from their surrounding
water samples. Further, and interestingly, the patterns observed also revealed a clear
separation between reef- and aquarium-grown samples, likely because the latter were kept
under constant laboratory conditions that differ from those in the reef. Different study
regions and sampling campaigns demonstrated partially overlapping clustering with no
unique branching.

There are clear indications that the Neogoniolithon sp. surfaces-associated microbiome
differs from that present in the surrounding water. First, alpha diversity values were
higher in algal samples compared to water samples, indicating that the algal communities
are more diverse (p value = 0.0155, Figures 2A and S3). Algal-associated communities
from different samplings could not be clearly distinguished by alpha diversity analyses,
with the exception of samples from the platform edge region taken during sampling 1
(Figure 2B). Second, a clear separation between the algal-associated and water sample
communities is also indicated by the beta diversity analyses (p value = 0.001, i.e., non-
metric multidimensional scaling, NMDS, Figure 2C). Significant differences could also be
observed between sampling 1 and sampling 2 (p value = 0.002, Figure 2D). In addition,
samples from aquaria demonstrated larger variance in their alpha diversity, which was
generally lower compared to most field algal samples (Figure S4). Examination of the
similarity between specific algal tissue samples and their surrounding water at the ASV
level revealed only a 2.2–9.0% overlap (Figure S5A), compared with 25–31% between algal
samples and 44–72% between the well-mixed water samples (Figure S5B).

Prokaryote samples withdrawn from natural Neogoniolithon sp. surfaces were domi-
nated by Proteobacteria (49.09 ± 11.66%), Bacteroidota (25.22 ± 12.64%), Cyanobacteria
(5.33 ± 3.83%), and Actinobacteriota (4.73 ± 2.60%), (Figure 3, the complete list is provided
in Table S2). Those were present in all the samples tested, regardless of time of sampling
and location, and are shown in Figure 3. Therefore, they are hereby defined as the core
community associated with Neogoniolithon sp. In most cases, the community composition
was largely reproducible across biological replicates. However, in some cases, a larger
variation was observed (see asterisks in Figure 3). This could result from differences in
the local microenvironment conditions but might also be due to sampling of a different
Neogoniolithon species.
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Figure 2. (A,B) Alpha diversity analyses calculated using the Shannon index of Neogoniolithon
sp. surfaces and their surrounding water (A) in sampling 1 (triangles) and sampling 2 (circles),
in different study regions (tidal pools, turquoise; platform edge, red). Water was collected from
the same study region where the algal samples were collected. Significance was calculated using
ANOVA and Tukey’s Honest Significant Difference method, p value = 0.0155. (B) Alpha diversity
analysis of algal samples in tidal pools and platform edge. Significant differences were observed
only for sampling 1 tidal pool–Edge (p value = 4.8 × 10−4) and sampling 1–Edge–sampling 2–Edge
crossings (p = 9.2 × 10−3). Other alpha diversity indices demonstrated similar trends, see Figure S3.
(C) NMDS analyses with Bray–Curtis distance (stress value 0.091) for algal and water samples.
A significant difference between community structure of algal and water samples was observed
(PERMANOVA, p value = 0.001). (D) NMDS analyses with Bray–Curtis distance (stress value 0.1104)
for algal samples in samplings 1 and 2. Samplings 1 and 2 also demonstrate distinct community
structures (p value = 0.002). (C,D) Circles, algal samples; triangles, water samples; closed symbols,
tide pools; empty symbols, edge; during sampling 1 (black) and sampling 2 (grey).

Since each of these phyla contains organisms that may differ substantially in their
functional characteristics, the latter was also examined at the class and family levels. Within
the phyla identified in Figure 3, most ASVs belonged to the classes Alphaproteobacte-
ria (35.21% ± 11.13%), Bacteroidia (25.15 ± 12.66%), Cyanobacteriia (5.32 ± 3.81%), and
Acidimicrobiia (3.84 ± 2.32%) (Figure 4). The complete list of classes belonging to the
core community (the four main phyla, Figure 3) is provided in Table S3. The analysis re-
vealed that some classes were detected in the algal but not in the water samples (Figure 4).
This include Dadabacteriia (Dadabacteria), Thermoleophilia (Actinobacteriota), Myxo-
coccia (Proteobacteria), Polyangia (Proteobacteria), Phycisphaerae and Planctomycetes
(Planctomycetes), Anaerolineae (Chloroflexi), and Deinococci (Deinococcota).
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Further, the analysis revealed that some of the classes were present in all the samples
withdrawn regardless of timing and study region. Examples (the more abundant) include
Alphaproteobacteria, Gammaproteobacteria, Bacteroidia, Acidimicrobiia, and Cyanobac-
teriia (Figure 4). Others showed a distinct temporal and spatial presence. As an example,
samples withdrawn from Neogoniolithon sp. within the tidal pools in sampling 2, but not
in sampling 1, were characterized by the presence of Methanobacteria, Methanomicrobia
and Methanosarcinia (Euryarchaeota), Clostridia and Negativicutes (Firmicutes), OM190
(Planctomycetes), and Coriobacteriia (Actinobacteriota). Others, such as Planctomycetes
and Phycisphaerae (Planctomycetes) were present in a higher abundance in sampling 2
compared to sampling 1 (Figure 4). Those were all missing in the samples withdrawn from
the well-aerated aquaria.

Sampling 1 samples were richer in Deinococci (Deinococcota) and Anaerolineae (Chlo-
roflexi). Of particular interest are those families that were abundant in the algal tissue
as compared with their surrounding water (Figure S6). Sampling 2 tidal pools included
sequences related to anaerobic bacteria belonging to Lachnospiraceae and Ruminococ-
caceae (Clostridia), Veillonellaceae (Negativicutes), Enterococcaceae (Bacilli), as well as
aerobic bacteria such as Rikenellaceae and Barnesiellaceae (that belong to Bacteroidota—
also known as Bacteroidia and Bacteroidetes ([31], Figure S5). Those were not detected in
either sampling 1 or the surrounding water. In contrast, the classes Fusobacteriia (Fusobac-
teriota) and Parcubacteria (Patescibacteria) were present only in water samples collected in
sampling 1 (Figure 4).
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and Methanosarcinia (Euryarchaeota), Clostridia and Negativicutes (Firmicutes), OM190 
(Planctomycetes), and Coriobacteriia (Actinobacteriota). Others, such as Planctomycetes 
and Phycisphaerae (Planctomycetes) were present in a higher abundance in sampling 2 
compared to sampling 1 (Figure 4). Those were all missing in the samples withdrawn 
from the well-aerated aquaria. 

Figure 4. Relative abundance of bacterial ASVs associated with Neogoniolithon sp. surfaces in class taxonomic level, from
tidal pool and water samples in sampling 1 (n = 2) and sampling 2 (n = 3). Colors indicate the various phyla that the
classes belong to. Bubble size represents the abundance in percentage of each class (see scale). For family level analysis, see
Figure S6.

3.2. Functional Analysis of the Neogoniolithon sp.-Associated Community

Taxonomic profiling of the microbiome provides information about “who is there”
and reveals variations that may occur under various temporal and spatial scales. However,
linking these variations to the microenvironment and the cellular functions is in most cases
challenging. Based on an extensive literature survey and manual curation, Louca and
colleagues combined experimental-based metabolic functions with relevant taxonomic
groups [30], allowing them to obtain a presumptive functional annotation of ASV data
(Figure 5A). Although this functional annotation does not provide a comprehensive picture,
to our knowledge it is currently the best available for the Mediterranean marine system.
Naturally, the most prominent general functions associated with the algal samples, through-
out the study regions, are those related to basic metabolism, such as chemo-heterotrophy
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and fermentation. Where and when cyanobacteria were detected, their photosynthetic
activity is noted as photo-autotrophy (Figure 5A).
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To reveal the dynamic nature of spatial and temporal events underlying changes in
functional groups, we identified the specific classes associated with some of the functional
annotations for each study region and sampling time (Figure 5B). Noticeably, though
fermentation capability is noted at all times, the nature of the classes performing it is
sampling-time dependent (Figure 5B). Functional annotations reflecting the presence of
anaerobic eubacteria and archaea in the tide pools, such as nitrate reduction, methanogene-
sis, and others corresponding to animal and human parasites and human guts (Figure 5),
were recorded only in sampling 2.

4. Discussion

It is widely accepted that the microbiome composition and changes therein may serve
as an indicator for the growth conditions of the relevant host [32–35]. We previously
showed that despite its resilience and its wide distribution in the eastern Mediterranean
rocky shore, Neogoniolithon sp. is quite sensitive to abiotic stress [1]. Previous studies on
the roles played by CCA-associated microbiome (see Section 1), and the close proximity
between bacterial cells and the algal thallus (Figure S1) prompted us to initiate studies
on the nature of the bacteria associated with the alga. In future studies, this may serve to
examine the bacterial impact on the algal fitness in the harsh conditions of the vermetid
reefs. The first phase of the study, presented here, was to identify “who is there”. In
this respect, it should be noted that relative abundance is not a measure of ecological
or functional importance and that these should be assessed through studies of direct
host–microbe interactions [36].

Although Neogoniolithon sp. is an important component of the eastern Mediterranean
rocky shore environment, information on the microbial community associated with it in the
Mediterranean is scarce [17]. We show that the Neogoniolithon sp. samples examined here
host a distinct core community that is far more diverse than previously observed [17]. Fur-
ther, this core community differs substantially from that observed in the water surrounding
the algal samples in this study (Figures 2 and 4) and in the aquaria cultures (Figure S1B).
The four main phyla found to be associated with Neogoniolithon sp. were also identified in
several other CCA microbiome surveys, despite being generated from a wide range of geo-
graphical locations, including the Caribbean Sea, the Great Barrier Reef, the South Atlantic
Ocean, and the North Sea [14,16,37,38]. The relative abundance of Proteobacteria (49%),
one of the “core members” in our samples (Figure 3 and Table S2), is lower than previously
reported (97%) for Alphaproteobacteria associated with N. brassica-florida populations from
the western Mediterranean basin [17]. Further, the second most abundant phyla observed
here, Bacteroidota (25.2%), was not identified by Quéré et al. [17]. The reason(s) for the
discrepancies between the two studies is unknown; it may reflect biotic or abiotic factors
associated with the temporal and spatial characteristics of each study (e.g., western [17]
and eastern (this study) parts of the Mediterranean Sea).

The abrasion platforms where the samples were collected from are a popular recreation
site during spring and summer, hosting fishing, maritime sports and sailing activities from
a small marina. In addition, the vermetid reefs of the eastern Mediterranean shore are often
exposed to prolonged hot and dry eastern wind events during the spring and autumn
seasons [39], leading to reduced circulation and water replacement in the pools. This may
explain the effect of sampling timing on the microbiome associated with the Neogoniolithon
sp. surface. The higher diversity observed in sampling 2 versus 1 edge samples (Figure 2)
may also be attributed to the reduced circulation during springtime (where sampling 2
took place) and the development of a diversity of local conditions at the platform edge
(which is constantly washed by waves during winter). Presence of sequences affiliated
with anaerobic bacteria such as Clostridia (mainly Lachnospiraceae and Ruminococcaceae)
and archaea involved in methanogenesis (Figure 4) in the tidal pools during sampling 2 but
not in the surrounding water are just a few examples likely reflecting diverse conditions.
It may be related to recreation activities during this time of the year; however, further
sampling is required to support such conclusions. Though seasonality is likely to be an
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important driver of these distinct patterns, additional sampling during the year is required
to establish more robust correlations, to be balanced with the need to minimize the damage
to the protected abrasion platforms.

Several observations lend support to the possibility that the bacteria composition is
affected by the local conditions in the reef, but detailed studies are needed to establish this
notion. Examples include the presence of Deinococci bacteria (Figure 4). One of the members
of this group, Deinococcus radiodurans, is considered the world’s toughest bacterium [40].

The high relative abundance of Bacteroidota (Figure 3 and Table S2) is more noticeable
in association with the Neogoniolithon sp. surface than in the surrounding waters (Figure S6).
Because they are abundant in various environments from animal guts to soil and marine
habitats [41], they are often referred to as “environmental bacteria”, but the specific role of
the various bacteria belonging to this group, if any, is yet to be established.

Taken together, though the interactions with prokaryotes likely play an important part
in the algal life cycle and the ability of Neogoniolithon sp. to withstand the harsh conditions
in the reef, it is yet to be experimentally revealed. This would require construction of a
library of Neogoniolithon sp.-associated bacteria to test for specific interactions with the
alga and their functional role. However, the observation that the bacterial community
composition in laboratory (aquaria)-grown Neogoniolithon sp. differs from that observed
in the field (Figure 1B) raises additional challenges. Given the limited access to field
Neogoniolithon sp. Populations, interaction-directed studies may not be feasible in the field.
A sophisticated aquarium is required to accurately simulate the harsh conditions of the
vermetid reefs similarly to the environmental chamber constructed to study organisms
inhabiting biological soil crust [42].

Finally, in an era where temperate coastal habitats are increasingly threatened by an-
thropogenic activities, a better understanding of the succession of the microbial community
associated with Neogoniolithon sp. surfaces is essential to establish a deeper knowledgebase
for this important reef builder. This may support the development and implementation of
future conservation and monitoring strategies [43].
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