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Cooperative behavior, which pervades nature, can be significantly enhanced when agents interact in a
structured rather than random way; however, the key structural factors that affect cooperation are not well
understood.Moreover, the role structure plays with cooperation has largely been studied through observing
overall cooperation rather than the underlying components that together shape cooperative behavior. In this
paper we address these two problems by first applying evolutionary games to a wide range of networks,
where agents play the Prisoner’s Dilemma with a three-component stochastic strategy, and then analyzing
agent-based simulation results using principal component analysis. With these methods we study the
evolution of trust, reciprocity and forgiveness as a function of several structural parameters. This work
demonstrates that community structure, represented by networkmodularity, among all the tested structural
parameters, has the most significant impact on the emergence of cooperative behavior, with forgiveness
showing the largest sensitivity to community structure. We also show that increased community structure
reduces the dispersion of trust and forgiveness, thereby reducing the network-level uncertainties for these
two components; graph transitivity and degree also significantly influence the evolutionary dynamics of the
population and the diversity of strategies at equilibrium.

T he earliest formation of the very building blocks of life, such as RNA,may not have cooperatively formed into
complex biological systems without the structural scaffolds required for catalytic processes to evolve1,2. Just
as these building blocks required structured interactions in order to evolve, the structure of social interac-

tions also aide in the emergence of cooperative behavior3–7.
Models of emergence and survival of cooperation among selfish agents are often based on game theoretic social

dilemma constructs which capture the interaction ofmultiple players simultaneously or relatively simple pairwise
interaction where each player only interacts with a single player at a time.While the former, usually modeled as a
public goods game8,9, is useful for understanding tragedy of the commons type situations that challenge prosocial
behavior10–12, the latter, adopted in this work, allows exploration of a straightforward strategy space and also lends
itself directly to network-based simulation methods. Here agents in a pairwise interaction have two actions to
choose from, cooperate or defect. While mutual cooperation provides a Pareto efficient outcome, each player
individually gets less than if they were to defect while the other cooperates. This makes mutual defection the Nash
Equilibrium of the single shot game, thereby creating a social dilemma where both players together receive a
higher payoff if they cooperate but maximize their minimum payoff by mutually defecting. The relative payoffs
for each combination of player moves can be changed to result in games with different characteristics or dilemma
strengths13,14.

The gloomy prediction of mutual defection made by single-shot social dilemma games contrasts with observa-
tions of real world social behavioral in which cooperation between players is common15. This difference has been
ascribed to repeated interactions and incomplete information16, as well as the role of interaction structure as our
scope widens from two player interaction to the community level. Spatial and structural effects on behavior have
commonly been studied based on evolutionary game theory as the underlying theoretical framework and using
agent-based simulation. These studies show that structure has a strong effect on cooperative behavior17–19. Local
coupling within network structures enables cooperators to cluster together and survive in an environment where
defectors have the upper hand14; however, defectors are weakened when surrounded by their own kind20. If
strategy and structure are allowed to evolve together, defection tends to break apart tightly clustered cooperative
communities21.

OPEN

SUBJECT AREAS:

COMPLEX NETWORKS

STATISTICAL PHYSICS

SOCIAL EVOLUTION

NONLINEAR PHENOMENA

Received
2 November 2014

Accepted
25 February 2015

Published

Correspondence and
requests for materials

should be addressed to
D.A.G. (dgianett@

stevens.edu) or B.H.
(babak.heydari@

stevens.edu)

SCIENTIFIC REPORTS | 5 : 9340 | DOI: 10.1038/srep09340 1

7 April      2015 

mailto:dgianett@stevens.edu
mailto:dgianett@stevens.edu
mailto:babak.heydari@stevens.edu
mailto:babak.heydari@stevens.edu


Since social ties allow for cooperators to cluster together and improve
their survival, aremore connections always better? Not necessarily, since
many studies have demonstrated the opposite effect. Foundational work
by Ref. 22 and Ref. 23 demonstrated that cooperative or altruistic genes
may dominate a neighborhood when distributed locally due to an
increase in the relatedness of individuals; however, this localized disper-
sion creates competition for resources that naturally limits the spread of
these genes. This balance between sufficient structure for interactions
between like individuals and the challenges of local competition was
later studied by Ref. 17, who found that relatively sparse connectivity
encourages cooperation with the intuition that agents with fewer ties
value their relations more than agents with more ties and so are more
likely to exhibit prosocial behavior in order tomaintain those ties. These
opposite effects suggest that link distribution rather than merely link
density plays a significant role in the survival of cooperation. The effect
of link distribution has been shown for some special structures, such as
scale-free networks with power-law connectivity, where they support
higher cooperation levels than homogeneous networks24–27, though this
affect may be limited by participation costs28 as well as frequency of
interaction where more frequent interaction can negate the cooperative
advantage of heterogenous networks over homogeneous29. Beyond
some of these special structures, the current literature lacks a general
understanding of the way link distribution affects cooperation.
Cooperation is not a single-parameter behavior, rather it is com-

posed of a host of components such as trust, reciprocity and forgive-
ness, that together shape cooperative behavior, yet the majority of
studies regard cooperation as a whole. Moreover, many of these
works are based on deterministicmodels that naturally neglect a wide
range of mixed strategies that emerge in real-life situations and shape
the overall cooperative behavior of a social network. A model sug-
gested by Nowak and Sigmund30,31 can address both of these issues at
the same time by introducing stochastic strategies and breaking them
down into three different components of cooperative behavior, (y, p,
q), where y is the probability of cooperating (c in equation (2)) on the
first move of a repeated two-player game, p is the probability of
cooperating when an opponent cooperates, and q is the probability
of cooperating after an opponent defects (d in equation (2)), hence
we characterize each of the components of the (y, p, q) triple as trust,
reciprocity, and forgiveness respectively for this work30. Despite its
advantages, to the best of our knowledge, the use of this model for the
study of structural effects is limited to Ref. 32 for lattice structures
and Ref. 33 who study the effects of cognitive capacity of agents in
scale-free networks. In this paper, we use this construct as the build-
ing-block of our model and will refer to it as the (y, p, q) model.
The goals of this paper are two-fold. Our first goal is to identify

network structural characteristics that have the highest impact on the
emergence and survival of cooperative behavior. These characteris-
tics will also give us the necessary tools to tackle the link distribution
effect described earlier. Our second goal is to investigate the impact of
network structure on individual components of cooperative behavior
(namely trust, reciprocity, and forgiveness). To further these goals we
employ stochastic agent-based simulations on a wide range of net-
work structures using the (y, p, q) model, and perform multivariate
statistical analysis on simulation results. We utilize these methods to
provide evidence for the key role of modularity in the evolution of
cooperation. Modularity can neutralize high stakes games, similar to
how active linking, or giving agents the ability to manage their local
connections34, can reduce the effective strength of cooperative
dilemmas. Finally, we show the leadership role of forgiveness in
underpinning sustained cooperation in a noisy environment, where
forgiveness emerges first in order to dampen the effect of defectors
and this allows for reciprocal behavior and trust to emerge.

Results
Our agent-based35 model is built upon an evolutionary games on
graphs3 framework and operates on four levels: pairwise interaction

between agents, the execution of an agent’s strategy, the evolution of
strategy over time, and the network structure through which inter-
actions take place. The lowest level is where decisions are made by
agents who receive payoffs in a pairwise game according to equation
(4). The strategy of each agent, is a three-component stochastic vec-
tor, (y, p, q), introduced by Ref. 30. The evolutionary layer is where
players imitate the strategies of their neighbors with a probability
proportional to their relative payoff (see equation (5)) until an equi-
librium of strategies is achieved. Above all, we structure these inter-
actions through a variety of networks where each player occupies a
node position and nodes are connected via edges or links through
which games are played.
The majority of networks we have analyzed have 24 nodes. Our

initial sensitivity analysis showed that graphs of approximately this
size balance the trade-off between computational efficiency and sens-
itivity to structural variations needed for this work. Small deviations
from this size include lattice structures (10 and 15 in figure 1) which
have 27 nodes (33 33 3) and 25 nodes (53 5) respectively, and the
Coxeter36 graph (12 in figure 1) with 28 nodes. Many of the graphs
were generated with a one-dimensional Watts-Strogatz (WSR)37

model (7,8,13,16–20 in figure 1), followed by Erd}os–Rényi (ER)38

(2–5 in figure 1), and lattice (6,10,15 in figure 1). The remainder
include a variety of cubic graphs including the McGee graph39 (9
in figure 1), a Goldberg snark40 (G3 described in41 (11 in figure 1)),
and the Coxeter36 graph (12 in figure 1). The Coxeter and Goldberg
graphs are non-hamiltonian in that they do not contain a path that
visits each vertex exactly once, whereas the McGee graph is hamilto-
nian42. Other tested graphs include a classic ring (21 in figure 1), a
fully connected graph (1 in figure 1), and a scale-free graph43 (14 in
figure 1). The variety of structures we chose was sufficient to deter-
mine the key structural characteristics, as borne out by the high
variance captured in the multivariate analysis discussed later in this
work.
To make our results more reliable and generalizable we relaxed

three limiting assumptions that are typically used for reducing com-
putational load and analysis complexity. First, each simulation run
draws new starting strategies from a random distribution instead of
picking from a set of representative strategies, this allows us to
explore the strategy space more completely. Second, we randomize
all three strategy components so no starting cooperative bias exists.
Third, though the simulation system was designed to return only
converged results on a run-by-run basis this does not ensure that
the final results themselves are stable. Hence we performed a pro-
cedure where runs were continually collected until no observable
shift in the results was observed. This process required a total of
5.4 core-months of execution time on a Cray XE6 computer to com-
plete successfully.
Which are the key network characteristics effecting cooperation

emergence? To help answer this question we applied principal com-
ponent analysis (PCA) of the graph characteristics degree, transitiv-
ity, girth, path length, and modularity in addition to the strategy
components ~y, ~p, and ~q at the final equilibrium of all runs. We then
reviewed a biplot44 representation, shown in figure 2 panel (B), which
captures 96% of variation in the data as a whole. We calculated the
modularity index based on themeasurement of community structure
Q developed by Ref. 45, where Q5 1 is a maximum that indicates a
strong community structure, with community detection performed
by a random-walk46 method.
From table 1, themodularity eigenvector correlates well (cos(hmod)

5 0.995) with the first and most significant principal component,
due to its alignment with the horizontal axis (hmod 5 6.75u from
table 1); the primary component (PC1) accounts for 83% of variance
in the data set as a whole (figure 2 panel (B)). This indicates that
modularity is most representative of the primary variation structure
in the data (see Ref. 47 for PCA interpretation methods). Moreover,
from table 1 the loading, or weight, of modularity is the highest
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among all network characteristics; degree and transitivity have a
similar loading though they are less correlated with PC1 (20.839
for transitivity and 20.788 for degree). Further, since ~y, ~p, and ~q all
correlate positively with the modularity, increases in modularity will
be met with increases in each of these cooperation components,
which is in general agreement with Ref. 48, who study the emergence
of total cooperation versus modularity. Transitivity, and degree are

negatively correlated to the cooperation components; however, this
holds true even more for trust (y), which directly opposes to trans-
itivity (within 5 degrees) and degree. Hence, relatively sparse graphs
with less connectivity should encourage more cooperative behavior
than more dense highly-connected graphs, this agrees Ohtsuki’s b/c
. k rule17 which Ref. 49 associated with Hamilton’s rule50 and the
notion of inclusive fitness51 for bi-transitive graphs (or graphs that

Figure 1 | ST-Plane Network Comparison Results. Panel (A) shows a set of 4 3 3 cooperation images of ST-planes covered by equation (3) from a

representative 4-structure subset of the 21 structures tested, rows are ordered top to bottom ~y, ~p, and ~q respectively, columns are ordered left to right from

the 1-Full structure to 14-BA. Each image pixel represents the median cooperation level at coordinates (T, S) for its respective structure (column) and

component (row). Panel (B) is comprised of 21 panels (sorted from low to high average path length), one for each network structure in this work. Panel

(C) shows average cooperation of each component for all S as a function of modularity (Q) vertically versus temptation to defect T horizontally.

Figure 2 | Cooperation Emergence Results Summary. Panel (A) shows the cooperation trend versus modularity for all structures with representative

samples shown as dashed vertical lines with each respective structure embedded; the corresponding points for each sample line are shown in blue. The

two-dimension square lattice data result is indicated by a red arrow in the figure. Panel (B) is a biplot44 where vectors (angles shown in table 1) represent

the relative correlation of each continuous variant with the first two, most significant, principal components; proportion of variance for each component,

is noted on panel (B). A dashed horizontal line on panel (B) is a guide to the eye for comparing the modularity biplot vector with the most significant

component (PC1). Panel (C) shows the improvement in each cooperative component (Ci) over the 1-Full graph as modularity increases, where 1

represents a 100% improvement and 0 is the baseline for comparison (the fully connected graph). The red horizontal line is a guide for the eye

representing the highest improvement, or 139% for component p.
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look the same from any pair of nodes). The direction of girth also
agrees with the analytical model results fromRef. 52 who suggest that
as graph girth increases cooperation is enhanced due to the improve-
ment in local cooperator cluster formation; however, since the girth
vector opposes the trust vector in the vertical direction (figure 2 panel
(B)) there is a subtle secondary effect present that reduces trust rela-
tive to reciprocity and forgiveness as girth increases.
From figure 2 panel (A) the positive trend of each individual

cooperative element is evident; ~y and ~p have similar slopes, though
~y starts at a higher cooperation level. Component ~q improves at a
much higher rate with modularity than the other components, from
figure 2, and so begins to mix with ~p above the 10-Lattice structure.
Indeed all components improve with modularity but forgiveness (~q)
improves by nearly 3/2 (139%) followed by reciprocity (~p) and trust
(~y) at 1/2 and 1/5 respectively. So as communities form and become
more distinct, forgiveness improves the most until a degree of bal-
ance is formed with reciprocity.
Cooperation differences across the PD game ST-plane (figure 6)

are largely non-existent for ~y (top row of figure 1 panel (A) and left
column of panel (C)); however, ~p shows significant improvement in
the low stakes region (upper left corner of ST-plane). This effect is
somewhat evident in the ~q (bottom row of figure 1 panel (A)) as well.
By averaging across all fear (S) the effect of modularity on each
component is more clear, shown in figure 1 panel (C). Though the
highest cooperation levels are attained in �y and �p, the cooperation
gradient is highest for �qwhere the games with the lowest stakes stand
to improve the most with modularity.
There are significant differences in the evolutionary dynamics of

the different structures tested. Indeed, run convergence time varies
widely across different networks and its structural dependency can
provide some interesting insights. From figure 3, for graphs with zero
transitivity, higher average degree graphs tend to converge quicker
than lower degree graphs; however, once the graphs become more
transitive the convergence time builds significantly–to a factor of five
over the fastest converging structure. Since a more transitive graph is
more locally homogenous, that is the local structure is less distinctive
across the network from a given local agent’s perspective49, it follows
that this lack of distinction requires more time to converge since
similar strategies may become locally stable across the network but
will compete in the margins for global convergence.

Discussion
All strategic components show improvement with network modu-
larity; however, forgiveness shows the most sensitivity to structure
which results in a factor of 2.4 improvement in the probability that an
agent forgives ~qð Þ a defection action by an opponent for the 14-BA
graph (Q 5 0.6) compared to an unstructured (well-mixed) popu-
lation (Q 5 0). This makes intuitive sense because forgiveness is
necessary in order for cooperation to evolve since the initial condi-
tions are equally populated by defectors and cooperators. Without
forgiveness there would be no cooperative acts to reciprocate and so

higher levels of forgiveness improvement relative to reciprocity and
trust indicates that forgiveness underpins the other cooperative
behaviors. Moreover, forgiveness can more easily evolve in more
modular structures since community boundaries and limited inter-
action protect the more forgiving strategies from being exploited by
agents in other communities. This finding naturally extends the
previous literature on the role of forgiveness in the emergence of
cooperation, first demonstrated by Ref. 31 for an unstructured popu-
lation and later shown to be even more significant by Ref. 32 who
showed a factor of 2 improvement in forgiveness for a variety of
square lattice structures compared to the unstructured model. Our
results agree with this factor of 2 improvement; however, we extend
this result to show that the probability of forgiveness can be even
higher for structures with higher levels of modularity than lattice
structures.
The impact of motivation, or payoffs, changes with modularity as

well. Indeed, increasing community structure also increases trust
behaviors across a range of fearful and greedy motivators. In other
words, community structure improves societal trust in-general,
because of the invariance of the improvement in ~y to S and T as
modularity increases, shown in figure 1. Since the strategies are
reactive in that they react to past moves of their opponents, initial
distrusting moves cause an enduring effect that reduces cooperative
levels.With higher degree networks that are lessmodular the effect of
these distrusting moves is felt globally across the network; however,
withmodular structure the impact is contained to a local community
level. The level of motivation, or the stakes of the game have little
effect on trust because the decision to trust, as we have modeled it,

Table 1 | Correlation of Network Parameters to Modularity

parameter PC1 loading h cos(hmod 2 hparam)

transitivity 20.360 2147 20.899
degree 20.366 2142 20.856
girth 0.224 274.1 0.159
path length 0.335 253.0 0.504
~y 0.375 28.3 0.930
~p 0.384 11.7 0.996
~q 0.384 5.71 1.000
modularity 0.373 6.75 1.000

The PC1 Loading column shows the relative contributionweight of each parameter to PC1 (highest independent variable loading is in bold), which is a linear combination of each parameter andweight. The
angle of each parameter eigenvector (from figure 2 panel (B)) is shown in column h (degrees). The correlation between each parameter in the biplot by the cosine of the angle difference between the
modularity eigenvector and each respective parameter eigenvector, or cos(hmod 2 hparam).

Figure 3 | Run Convergence. The figure shows the effect of degree on
convergence time ~t conditioned on transitivity, where the left panel has a

transitivity of zero and the right panel has a transitivity .0.
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must be made with no information as to the benefits and risks of
trusting and so this result is consistent with emergent unconditional
trusting behavior.
The cooperation gradient across the ST-plane in figure 1 panel (A)

is consistent with that of Refs. 27, 53; however, the gradient dissolution
with modularity is a novel effect. The differences in the flattening of
the gradient, or the reduction in dispersion (s/m) across the ST-plane
as a function of modularity is shown in figure 4. Here the dispersion in
reciprocity ~pð Þ is nearly unaffected by modularity, however trust ~yð Þ
dispersion reduces dramatically along with forgiveness ~qð Þ. This sug-
gests that trust and forgiveness behaviors are moderated by modular-
ity or modularity reduces the uncertainty of system-wide global trust
and forgiveness behaviors under uncertain conditions.
Why does the influence of payoffs on behaviors reduce as mod-

ularity increases? Community structures, or modularity, allow more
diverse strategies to evolve and become stable since community
boundaries reduce the influence of outside strategies on conditional
cooperators. Conversely modularity can be thought of as an emer-
gent property that improves survival in the presence of diverse envir-
onmental effects and reactive agents54,55. We summarize the effect of
these diverse strategies as a flattening of the ST-plane gradient. The
significant increase in strategy diversity is shown in figure 5 where
transitive graphs tend to have less diverse strategies than non-trans-
itive graphs. Intuitively this is because the similar local structures of
the transitive graphs provide fewer local niches that support the
evolution of diverse strategies.
We summarize effect of modularity and incentives (payoff)

together in figure 1 panel (C). Here, the angular gradient can be
interpreted with respect to modularity or payoff. From a modularity
perspective, less modularity is needed to attain the same level of
cooperation improvement when stakes are relatively low; however,
as stakes increase more modularity is needed to sustain the same
cooperative behaviors. From a payoff perspective, the influence of
payoffs on sustained cooperative behaviors decreases as modularity
increases, or modularity has the ability to neutralize the effect of

payoffs on behaviors such that relatively high levels of cooperation
can be sustained into even the strongest social dilemmas (high T).
The effect of modularity on cooperative behavior can also be

shown analytically, using a simplified model (see Methods). In this
deterministic model, we assume that the temptation to defect is equal
to b and the higher this temptation the more modular a connected
component needs to be in order for cooperation to survive and
propagate. Defining a as the ratio of internal community links kin
and external links kout for node i, we can show that

aw b2

1zb2
: ð1Þ

Equation (1) aligns qualitatively with the modularity gradient in
figure 1 panel (C), where increased modularity reduces the effect of
higher T(b) on cooperation for p and q.
Additional insight can be gained by expanding the present work to

other two-player games such as the Snowdrift and Stag Hunt games

Figure 4 | Cooperation Dispersion. The figure shows the dispersion (s/m)

of each cooperation component versus modularity. The dashed blue lines

trace a local fit for each component.

Figure 5 | Strategy Diversity. The figure shows the median euclidian

distance between strategies at equilibrium as a function of modularity,

conditioned on transitivity, where the left panel has a transitivity of.0 and

the right panel has a transitivity of zero. The vertical axis is scaled

logarithmically.

Figure 6 | Stylized Games Payoff Structure. The figure, adapted from

Ref. 60, presents a two-dimensional plane of payoffs where S is received by

by a player (or paid from a player when S , 0) for cooperating while an

opponent defects and T is received by a player who defects while an

opponent cooperates. Hence, S is representative of fear motivation (the

more negative the more fear) and T is representative of greedy motivation

(the more positive the more greed)33. The shaded region represents the

payoff range of the current work, namely the Prisoner’s Dilemma game.
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and studying the effect of modularity across the wider multi-game
greed-fear (T2 S) plane of payoffs, shown in figure 6. Initial condi-
tions may also be varied including studying the the changes in struc-
tural effects when initially mean or nice strategies are present. Does
the central role of modularity hold for a wider variety of strategies?
The three-component strategy framework can be extended to four,
from Ref. 31, where (p1, p2, p3, p4) are the probabilities to cooperate
after a (C, C), (C, D), (D, C), and (D, D) respectively in the prior
round as well as the probability to cooperate in the first round, giving
a five component strategy that adds the notion of self-knowledge
relative to an opponent’s past moves.
Finally, given that selection strength can alter the dynamics of

evolving structured populations56 future work should also focus on
testing the robustness of the present results with both strong and
weak selection through the use of the more common Fermi evolu-
tionary rule.

Methods
Our model operates at four levels: game (behavioral), strategy, evolution, and net-
work. At the behavioral level we first adopt a simplified symmetric two-player
repeated game, shown in equation (2) described by Ref. 57, 58, where the defecting
player receives T (temptation to defect) if their opponent cooperates (c) but receives P
5 0 if their opponent defects (d), which is the punishment for mutual defection. In
this workwe limit the scope of our analysis to the Prisoner’s Dilemma range of payoffs
(lower right quadrant of figure 6) and reserve the other game structures for future
work.

If both players mutually cooperate they each receive R 5 1; however, the
cooperating player receives S , R (suckers payoff) if their opponent defects.
Though P and R are fixed, we vary S and T over a range of payoffs within the
Prisoner’s Dilemma (PD) game, which is characterized by 1 , T , 2 and 21 , S
, 03, shown in figure 6.

c d

c

d

R~1 S

T P~0

 ! ð2Þ

In our simulations we draw T and S from uniform distributions within the range of
PD payoffs, shown in equation (3).

R S

T P

� �
~

1 U {1,0ð Þ
U 1,2ð Þ 0

� �
: ð3Þ

All scores that players receive in repeated games are not counted equally; each
iteration i of the game contributes less than the previous iteration to the total
score since it is common to discount the future relative to the present14. We apply
a discount factor w to account for this such that the i’th round is worth a mere wi

of the first round score. The player with the highest total score upon completion is
the winner. Equation (4) describes how the payoff Po is determined, where ko is
the degree of node o, wo is the node’s discount factor which is drawn from a
uniform distribution wo~U(0:8,0:9), g is the number of repeated games played
(fixed at 50), and Poi/ni is the payoff received by player o versus its neighbor n in
game i.

Po~
1
ko

Xko
n~1

Xg{1

i~0

wi
oPoi/ni : ð4Þ

For the logic behind player’s behaviors or their strategy we apply the (y, p, q)
cooperation component framework from Ref. 30. Past studies usually simplify this
framework by assuming that the first component y is fixed at y 5 1 (i.e., always
cooperate on the first move), either with the rationale that a single move becomes less
important in an infinitely repeated game31 or that a two-strategy framework lends
itself well to a two dimensional representation59. Since our purpose is to study how
structure impacts trust as well as reciprocity and forgiveness we do not assume y is
fixed and so begin each simulation with a completely random (y, p, q) strategy variant
for each network node. This leads both to unique insights and to increased generality
of our results since there is no starting bias, whereas the assumption of y 5 1 is a
certainly a cooperative one.Moreover, our strategy space is highly stochastic since the
initial y, p, q values are each drawn from a uniform distribution for every node,
resulting in millions of starting strategies across the simulation runs performed for
this work. This also effectively eliminates distribution effects between cooperators
and defectors, described by Ref. 53.

The evolutionary process is as follows. We first initialize each node in the network
to an initial strategy so which is defined by the triple (yo, po, qo) each component of
which is drawn from a uniform distribution U(0,1). From then on, for each time step,

the population is evolved through a pairwise comparison rule where the game score of
each node in the network Po is sequentially compared with a randomly chosen
neighborPn; strategies are then updated with the probabilityW(sn R so) defined in
equation (5), which was introduced by Ref. 24.

W sn?soð Þ~Pn{Po

D:kmax
: ð5Þ

The kmax variable in equation (5) is the maximum degree of nodes o and n, and
D 5 T 2 S for the PD game. Equation (5) has the nice property of evolving both
high and low degree nodes at the same rate, which the commonly-used Fermi
function lacks6. This is an important characteristic for this work because of the
variety of network structures we test; however, equation (5) gives up the ability to
adjust the evolutionary selection strength b, present in the Fermi function but we
keep evolutionary strength constant for this work and so are unaffected by the
inability to control it.

Using equation (5), the evolutionary process continues for multiple generations
until no more than one node updates its strategy within a sequential time window of
100 generations. To aide in convergence we also provide a strategy adoption fixed
noise threshold E~0:01, below which nodes will not update their strategy.

Finally, nodes that switch strategies adopt the average of their present strategy and
the chosen new strategy. This method greatly enhances the simulation convergence
time (.103 faster over a simple copy process) by reducing the cycling of strategies
through the network while also exploring a greater variety of strategies.

Derivation of modularity relation. To help understand the effect of modularity on
agents as game stakes increase we have derived the relation equation (1) which shows
that the more temptation to defect (b), the moremodular (a) the component needs to
be in order for cooperation to survive and propagate, which aligns qualitatively with
themodularity gradient in figure 1 panel (C). This section details the derivation of this
relation.

Our goal is to demonstrate that modularity increases the chance of survival and
expansion of cooperative behavior in a network. We use a Prisoner’s Dilemma
framework with R 5 1 and T 5 b . 1 and assume there are only two deterministic
payoff structures: Cooperation (Si5 1) and Defection (Si5 0). The agents learn from
their more successful agents with a probability proportional to the difference in their
aggregate payoffs. We test the structural conditions under which a group of coop-
erators cannot be invaded by defectors but a group defectors have a finite probability
of becoming cooperators.

For the first goal, we pick any connected component of cooperators within the
network and show that this connected component is a module. For each node in
this component, either all the neighbors are already cooperators, meaning that the
node is fully embedded in the component, or the node has a mixed set of
neighbors, in which case we call it a boundary node. Since the boundary node is a
member of the connected component of cooperators, it cannot have any coop-
erative neighbor that is outside of the component. If the degree of the boundary
node i is ki, the neighborhood can be divided into a set of cooperating neighbors
kin and defecting neighbors kout.

In order for the component to stay cooperative, every boundary node i needs to
have a larger aggregate payoff than any of its defecting neighbors (node j). The payoff
for node i is simply equal to kin and the payoff for node j is bk’j . We need to have
kinwbk’j . The variable k’j , the number of cooperating agents of node j, can take any
number between 1 (since i already is a cooperator) to kj, the degree of node j; this
condition must hold especially for the k’j~kj since it is the worst case for cooperator
survival. Thus we have:

kinwbkj: ð6Þ

Now consider the same component and assume that all the members are defectors.
We want to identify the structural condition under which boundary nodes, of this
defector component, have a finite chance of becoming cooperators. These boundary
nodes exclusively derive their payoffs from cooperators and all of them lie outside of
the defector component. This score is bkout and needs to be smaller than the score of a
cooperative neighbor. The latter is simply k0j. So for node i we have:

bkoutvk’’j: ð7Þ

We also have 0# k0j # kj 2 1. Thus we have bkout, kj 2 1. Combining this with
equation (6) gives:

bkoutz1vkjv
kin
b
: ð8Þ

This gives a condition for the relative value of kin and kout for node i. Assuming that
bkout is much larger than 1, and defining a as the ratio of kin to ki, that is a measure of
how modular the connected component is, equation (8) turns into:

aw b2

1zb2
: ð1Þ

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 9340 | DOI: 10.1038/srep09340 6



1. Vaidya, N. et al. Spontaneous network formation among cooperative rna
replicators. Nature 491, 72–77 (2012).

2. Attwater, J. &Holliger, P. Origins of life: The cooperative gene.Nature 491, 48–49
(2012).
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