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Epidemiological data suggest that postprandial hyperglycaemia and hypoglycaemia are potential risk factors for cardiovascular
disease. However, the effects of repetitive postprandial glucose spikes, repetitive hypoglycaemia, and their combination on the
progression of atherosclerosis remain largely unknown.The present study investigated the effects of rapid rises and falls in glucose,
and their combination, on the progression of atherosclerosis in apolipoprotein (apo) E-deficient mice. In this study, apo E-deficient
mice with forced oral administration of glucose twice daily for 15 weeks were used as a model of repetitive postprandial glucose
spikes, and apo E-deficient mice given an intraperitoneal injection of insulin once a week for 15 weeks were used as a model of
repetitive hypoglycaemia. In addition, we established a model of both repetitive postprandial glucose spikes and hypoglycaemia by
combining the above interventions. Atherosclerosis was evaluated in all mice by oil red O staining. Administration of ipragliflozin,
a selective inhibitor of sodium-glucose cotransporter 2, in the mouse model of repetitive glucose spikes inhibited the progression
of atherosclerosis, whereas long-term repetitive glucose spikes, repetitive hypoglycaemia, and their combination had no significant
impact on atherosclerosis. However, repetitive hypoglycaemia was associated with poor survival rate. The results showed that
repetitive hypoglycaemia reduces the survival rate without associated progression of atherosclerosis in apo E-deficient mice.

1. Introduction

Patients with type 2 diabetes mellitus (T2DM) are at high risk
of developing cardiovascular disease (CVD), which is also the
most frequent cause of death in these patients. Thus, one of
themain goals ofmanagement of T2DM is to reduce the onset
of CVD.

While hyperglycaemia is presumed to play a significant
role in the progression of atherosclerosis, several epidemi-
ological studies have suggested that postprandial hypergly-
caemia per se is an independent risk factor for developing
CVD [1, 2]. In this regard, we demonstrated previously that

temporary hyperglycaemia induces monocyte adhesion to
endothelial cells in the aorta of rats [3] and that repetitive
glucose spikes enhance atherosclerotic lesions in apolipopro-
tein (apo) E-deficient mice [4]. In the second of these studies,
the progression of atherosclerosis was attenuated by admin-
istration of an 𝛼-glucosidase inhibitor with the associated
reduced amplitude of glucose spikes [4]. Furthermore, an
in vitro study showed that intermittent treatment of high
blood glucose levels increases apoptosis of endothelial cells
by increasing oxidative stress [5]. Similarly, T2DM patients
with glucose spikes had high oxidative stress level and
endothelial dysfunction [6]. Although data on this topic
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remain controversial [7], the studies cited above suggest that
glucose fluctuation could adversely affect the progression of
atherosclerosis.

On the other hand, most clinical studies showed that
reducing HbA1c levels had no beneficial effects on the
incidence of CVD [8–10], possibly due to attenuation of the
beneficial glucose-lowering effect by increased incidence of
hypoglycaemic events. Indeed, a recent study reported that
hypoglycaemia was associated with increased risk of car-
diovascular events and all-cause mortality in insulin-treated
patients with type 1 diabetes mellitus and T2DM [11]. While
it is well known that hypoglycaemia affects cognition, mood,
and consciousness, it has also profound effects on blood
constituents [12, 13], inflammatory cytokine levels [14, 15],
and coagulation and fibrinolysis factors [16, 17], all of which
could potentially enhance the progression of atherosclerosis.
Indeed, we found that repetitive hypoglycaemia induced
monocyte adhesion to endothelial cells in the aorta [18] and
enhanced neointima formation after vascular injury [19] in
nonobese diabetic Goto-Kakizaki (GK) rats through a surge
of sympathetic nerve activity.

The above studies investigated the effect of either rapid
rises or falls in glucose levels on monocyte adhesion to
endothelial cells or neointima formation after vascular injury.
On the other hand, no convincing in vivo data exist about
the combined effect of downward and upward spikes in
circulating glucose using a mouse model of atherosclerosis.
The present study investigated the effects of rapid rises
and falls in glucose, and the combination thereof, on the
progression of atherosclerosis in apo E-deficient mice.

2. Materials and Methods

2.1. Animal Experiments. The study protocol was reviewed
and approved by the Animal Care andUse Committee of Jun-
tendo University. Eight-week-old male apo E-deficient mice
were purchased from Jackson Laboratory or Charles River
Japan (Yokohama, Japan) and housed in specific pathogen-
free barrier facilities at the Institute of Nihon Bioresearch
Inc. (Gifu, Japan). Mice were maintained under a 12 h
light/dark cycle and fed a standard rodent diet (CRF-1, Lot
numbers 131008, 131203, and 140206, Oriental Yeast Co.). At
12 weeks of age, the apo E-deficient mice were divided into
five treatment groups matched by body weight (BW) and
plasma glucose level (Figure 1). Mice of the control group
(𝑛 = 22) were provided with water by oral gavage twice
a day (9:00 AM and 4:00 PM) and received intraperitoneal
injections of 10mL/kg saline in the morning once a week.
Mice of the glucose group (𝑛 = 22) were provided with
glucose (2.0 g/kg) by oral gavage twice a day and received
intraperitoneal injections of 10mL/kg saline once a week.
Mice of the glucose (2.0 g/kg) plus ipragliflozin group (a
sodium-glucose cotransporter 2 (SGLT2) selective inhibitor,
Astellas Pharma Inc.; 𝑛 = 22) were provided with glucose
(2.0 g/kg) twice a day and ipragliflozin (3mg/kg) once a
day by oral gavage and received intraperitoneal injections
of 10mL/kg saline once a week. Mice of the insulin group
(𝑛 = 22) were provided with water by oral gavage twice a
day and received intraperitoneal injections of 8 IU/kg insulin

once a week. Mice of the glucose plus insulin group (𝑛 = 22)
were provided with glucose (2.0 g/kg) by oral gavage twice a
day and received intraperitoneal injections of 8 IU/kg insulin
once a week. Food intake and BW were measured weekly.
At days 18 and 102, we recorded changes in plasma glucose
and insulin concentrations in almost half of the mice after
oral administration of saline or glucose or ipragliflozin while
feeding normally. We also monitored changes in plasma glu-
cose concentrations in almost half the remaining mice after
insulin or saline injection at day 22 and day 92 while feeding
normally. In those experiments, the mice in each group were
further divided into two groups (𝑛 = 11, each) to reduce
the burden of frequent blood sampling for measuring plasma
glucose and insulin. All mice in all groups were sacrificed at
27 weeks of age to evaluate atherosclerotic changes.

2.2. BloodTesting. Plasma glucose levelsweremeasured spec-
trophotometrically (U-3010, Hitachi High-Technologies Cor-
poration), and plasma insulin levels (immunoreactive insu-
lin, IRI) were measured by ELISA (Ultra Sensitive “PLUS”
Mouse Insulin ELISA Kit, Morinaga Institute of Biological
Science, Inc.) using a microplate reader (Powerscan HT, DS
Pharma Biomedical Co.). Total cholesterol, high-density-
lipoprotein cholesterol, low-density-lipoprotein cholesterol,
and triglycerides were also measured with automated chem-
istry analyzer (AU 400, Beckman Coulter Biomedical K.K.)
by enzyme method, direct measuring method, enzymatic
assay, or glycerol blanking method, respectively. The levels of
various serum cytokines, including tumour necrosis factor-
𝛼, interleukin-1𝛽, and interleukin-6, were measured using
a Multiplex kit (Merck Millipore) that uses nonmagnetic
polystyrene bead-based luminex 200xPONENT technology
(Merck Millipore).

2.3. Immunohistochemistry. After sacrifice with intraperi-
toneal sodium pentobarbital (1mg/kg; Abbott Laboratories),
the heart and aorta of allmicewere flushedwith normal saline
followed by 10% buffered formalin, as described previously
[20–22]. The aorta was excised from the root to the abdom-
inal area, and then the connective and adipose tissues were
removed from the aorta manually. For quantitative analysis
of atherosclerotic lesions in the aortic sinus, the hearts were
cut in half and the top half was embedded in optimal cutting
temperature compound. Then, 4 𝜇m thick cross sections at
50 𝜇m intervals were prepared with a cryostat. Six consecu-
tive sections were also taken sequentially from just above the
aortic valve throughout the aortic sinus and allowed to dry
at room temperature for 30 minutes, before staining with oil
red O. In addition, whole aortas were also stained with oil
red O. Histological images were analyzed by ImagePro Plus
software. The lesion areas were calculated by dividing the oil
red O-positive area by the total luminal area of the aorta.

2.4. Statistical Analysis. Results are presented as mean ±
SEM of available data from surviving mice. Differences of
laboratory blood test values among groups were examined by
the Tukey post hoc or Student’s 𝑡-test. Differences of histo-
pathological parameters among groups were examined by
Dunnett’s multiple test or Student’s 𝑡-test. The cumulative
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Figure 1: Experimental protocol. Mice of the control group (𝑛 = 22) were provided with water by oral gavage twice a day (9:00 AM and 4:00
PM) and received intraperitoneal injections of 10mL/kg saline in the morning once a week. Mice of the glucose group (𝑛 = 22) were provided
with glucose (2.0 g/kg) by oral gavage twice a day and received intraperitoneal injections of 10mL/kg saline once a week. Mice of the glucose
(2.0 g/kg) plus ipragliflozin group (𝑛 = 22) were provided with glucose (2.0 g/kg) twice a day and ipragliflozin (3mg/kg) once a day by oral
gavage and received intraperitoneal injections of 10mL/kg saline once a week. Mice of the insulin group (𝑛 = 22) were provided with water by
oral gavage twice a day and received intraperitoneal injections of 8 IU/kg insulin once a week. Mice of the glucose plus insulin group (𝑛 = 22)
were provided with glucose (2.0 g/kg) by oral gavage twice a day and received intraperitoneal injections of 8 IU/kg insulin once a week.

survival rates were compared by the log-rank test. A 𝑃 value
< 0.05 was considered significant. All tests were performed
using the SAS software (SAS Institute, Japan).

3. Results

After 15 weeks of intervention, BW, food consumption, and
lipid parameters were comparable among the five groups
(Table 1). Table 2 shows plasma glucose concentrations after
oral administration of saline or glucose with or without
ipragliflozin at 18 days and 102 days. As expected, the glucose
group exhibited a significant increase in plasma glucose after
the administration of glucose twice a day. In addition, the
glucose plus insulin group showed a similarly acute rise in
plasma glucose levels to those of the glucose group. Plasma
glucose levels were comparable between the control group
and the insulin group. Unexpectedly, the use of ipragliflozin
significantly increased glucose levels before the first admin-
istration of glucose and caused only a modest decrease in
plasma glucose levels after glucose administration.

Table 3 shows plasma insulin concentrations after oral
administration of saline or glucose with or without ipragli-
flozin at 18 and 102 days. Increases in plasma insulin concen-
tration in correspondence with glucose spikes were con-
tinuously observed in the glucose group, the glucose plus
ipragliflozin group, and the glucose plus insulin group.
Interestingly, glucose-induced insulin secretion tended to
diminish by concomitant use of ipragliflozin.

At days 22 and 92, we evaluated the effects of insulin
injection on plasma glucose levels (Table 4). As expected,
insulin injection induced hypoglycaemia both in the insulin
group and in the glucose plus insulin group, but not in
the other three groups. However, mice of the glucose plus
insulin group showed only modestly higher glucose levels at
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Figure 2: Survival rates of each treatment group. Kaplan-Meier
curves indicated significantly reduced survival rates of mice of the
insulin group. 𝑃 < 0.05 by the log-rank test.

92 days after repeated administration, compared with those
measured at day 22. On the other hand, serum cytokine levels
were not different among the groups (Table 1).

Figure 2 shows the Kaplan-Meier curves, representing
the survival rate of each group. Intriguingly, the survival
rate was significantly lower in the insulin group compared
with the other groups. To investigate the progression of
atherosclerosis, we evaluated the oil red O-positive areas at
the aortic valve level (Figure 3).The areas of oil redO staining
of the aortic sinus were comparable among groups, although
those of the glucose and glucose plus insulin groups tended to
be slightly larger (Figure 3(a)). On the other hand, the oil red
O-positive areas relative to the entire aorta of the glucose plus
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Table 1: Body weight, food intake, and laboratory data for each group after 15 weeks’ administration.

Control group
(𝑛 = 21)

Glucose
group
(𝑛 = 21)

Glucose + iplagliflozin group
(𝑛 = 22)

Insulin group
(𝑛 = 17)

Glucose + insulin group
(𝑛 = 20)

Body weight (g) 25.6 ± 0.3 25.7 ± 0.3 25.3 ± 0.3 25.8 ± 0.5 25.5 ± 0.4
Food intake (g/day) 3.1 ± 0.1 3.0 ± 0.1 3.0 ± 0.1 3.0 ± 0.1 2.9 ± 0.1
HbA1c (%) 3.8 ± 0.0 3.8 ± 0.1 3.8 ± 0.0 3.8 ± 0.0 3.8 ± 0.0
Total cholesterol (mmol/L) 14.0 ± 0.4 13.5 ± 0.5 14.8 ± 0.5 14.2 ± 0.5 14.2 ± 0.6
HDL cholesterol (mmol/L) 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0
LDL cholesterol (mmol/L) 2.2 ± 0.1 2.2 ± 0.1 2.4 ± 0.1 2.2 ± 0.1 2.3 ± 0.1
Triglycerides (mmol/L) 0.9 ± 0.1 0.7 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 0.9 ± 0.1
Tumour necrotic factor-𝛼 (pg/mL) 15.8 ± 1.0 15.6 ± 0.9 14.4 ± 0.5 14.0 ± 0.7 15.1 ± 0.9
Interleukin-1𝛽 (pg/mL) 32.0 ± 3.0 30.5 ± 1.9 27.1 ± 1.4 28.7 ± 0.8 30.5 ± 3.0

Interleukin-6 (pg/mL) 11.9 ± 1.3
(𝑛 = 20)

21.4 ± 6.9
(𝑛 = 20)

11.7 ± 1.3
(𝑛 = 21) 13.8 ± 2.4 12.9 ± 1.4

Data are mean ± SEM.

Table 2: Daily plasma glucose profile of each group.

Control
group

Glucose
group

Glucose +
ipragliflozin group

Insulin
group

Glucose +
insulin group

Day 18 (𝑛 = 11) (𝑛 = 11) (𝑛 = 11) (𝑛 = 10) (𝑛 = 11)

Glucose level (mmol/L) after first administration
0min 11.9 ± 0.5 11.7 ± 0.4 13.5 ± 0.3∗# 13.0 ± 0.3 12.9 ± 0.3
15min 12.3 ± 0.5 18.0 ± 0.5∗ 16.9 ± 0.4∗ 14.3 ± 0.6#† 21.8 ± 0.8∗#†¶

30min 13.7 ± 0.6 15.6 ± 0.7 16.1 ± 0.5 15.1 ± 0.4 18.9 ± 1.0∗¶

60min 12.8 ± 0.7 12.4 ± 0.6 12.8 ± 0.4 13.5 ± 0.4 14.4 ± 0.5
120min 10.6 ± 0.4 10.3 ± 0.4 10.0 ± 0.2 12.2 ± 0.3∗#† 11.9 ± 0.3#†

Glucose level (mmol/L) after second administration
0min 9.9 ± 0.4 10.4 ± 0.3 10.2 ± 0.4 11.0 ± 0.3 11.1 ± 0.2
15min 10.5 ± 0.4 17.4 ± 0.4∗ 15.4 ± 0.4∗# 11.2 ± 0.3#† 19.3 ± 0.8∗†¶

30min 11.4 ± 0.5 13.6 ± 0.7 12.6 ± 0.7 12.7 ± 0.5 14.3 ± 1.0∗

60min 10.5 ± 0.6 10.8 ± 0.3 9.7 ± 0.3 10.7 ± 0.4 11.6 ± 0.3
120min 9.2 ± 0.5 8.5 ± 0.2 8.8 ± 0.6 10.0 ± 0.4 11.0 ± 0.2∗#†

Day 102 (𝑛 = 11) (𝑛 = 11) (𝑛 = 11) (𝑛 = 8) (𝑛 = 10)

Glucose level (mmol/L) after first administration
0min 10.3 ± 0.4 10.5 ± 0.5 12.3 ± 0.4∗# 11.2 ± 0.2 11.6 ± 0.4
15min 10.4 ± 0.6 18.0 ± 0.4∗ 16.0 ± 0.7∗ 11.8 ± 0.2#† 17.9 ± 0.6∗¶

30min 11.3 ± 0.5 15.1 ± 0.6∗ 14.4 ± 0.7∗ 13.2 ± 0.3 15.3 ± 0.5∗

60min 10.8 ± 0.6 12.6 ± 0.6 11.8 ± 0.5 11.7 ± 0.3 13.0 ± 0.3∗¶

120min 10.0 ± 0.2 9.6 ± 0.3 10.5 ± 0.4 10.9 ± 0.3 11.5 ± 0.2∗#

Glucose level (mmol/L) after second administration
0min 8.7 ± 0.3 8.8 ± 0.4 9.8 ± 0.3 10.8 ± 0.2∗# 10.2 ± 0.4∗#

15min 10.4 ± 0.4 16.5 ± 0.5∗ 15.2 ± 0.8∗ 11.0 ± 0.4#† 18.1 ± 0.8∗†¶

30min 11.3 ± 0.5 12.5 ± 0.6 12.7 ± 0.6 12.2 ± 0.4 14.4 ± 0.9∗

60min 10.0 ± 0.4 10.9 ± 0.5 11.0 ± 0.5 10.8 ± 0.6 11.8 ± 0.5
120min 9.2 ± 0.4 9.1 ± 0.3 9.5 ± 0.3 10.2 ± 0.3 10.6 ± 0.3∗#

Data are mean ± SEM. ∗𝑃 < 0.05 versus control, #𝑃 < 0.05 versus glucose, †𝑃 < 0.05 versus ipragliflozin, and ¶
𝑃 < 0.05 versus insulin.

Mice were provided with water (control group, insulin group) or glucose (glucose group, glucose + ipragliflozin group, and glucose + insulin group) by oral
gavage twice a day (9:00AM: first administration and 4:00 PM: second administration).



International Journal of Endocrinology 5

0

10

20

30
O

il 
re

d 
O

 st
ai

ni
ng

 p
os

iti
ve

 ar
ea

 (%
)

C G G + Ipra I G + Ins

C group G group G + Ipra group I group G + Ins group

(a)

0

5

10

15

20

O
il 

re
d 

O
 st

ai
ni

ng
 p

os
iti

ve
 ar

ea
 (%

)

C G G + Ipra I G + Ins

C group G group G + Ipra group I group G + Ins group

∗

(b)

Figure 3: Atherosclerotic lesions in each treatment group. (a) Representative histological sections of aortic sinus stained with oil red O at 15
weeks after treatment. The area of oil red O-positive lesions in the aortic wall was evaluated. (b) Representative histological sections of the
entire aorta stained with oil red O at 15 weeks after treatment.The area of oil red O-positive lesions in the entire aorta was evaluated. Data are
mean ± SEM. ∗𝑃 < 0.05 versus the glucose group by Student’s 𝑡-test. C group: control group (𝑛 = 21), G group: glucose group (𝑛 = 20-21),
G + Ipra group: glucose plus ipragliflozin group (𝑛 = 22), I group: insulin group (𝑛 = 16-17), and G + Ins group: glucose plus insulin group
(𝑛 = 19-20).
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Table 3: Daily plasma insulin profile of each group.

Control
group

Glucose
group

Glucose +
ipragliflozin group

Insulin
group

Glucose +
insulin group

Day 18 (𝑛 = 11) (𝑛 = 11) (𝑛 = 11) (𝑛 = 10) (𝑛 = 11)

Insulin level (pmol/L) after first administration
0min 167.1 ± 22.4 143.0 ± 19.0 105.1 ± 8.6 136.1 ± 12.1 93.0 ± 6.9∗¶

15min 93.0 ± 10.3 291.2 ± 60.3∗ 182.6 ± 20.7∗ 65.5 ± 1.7#† 211.9 ± 19.0∗¶

30min 87.9 ± 10.3 146.5 ± 36.2 103.4 ± 5.2 74.1 ± 8.6#† 105.1 ± 6.9¶

60min 105.1 ± 12.1 91.3 ± 17.2 65.5 ± 5.2∗ 77.5 ± 6.9 68.9 ± 5.2
120min 117.2 ± 8.6 94.8 ± 17.2 74.1 ± 6.9∗ 82.7 ± 8.6 87.9 ± 8.6

Insulin level (pmol/L) after second administration
0min 120.6 ± 17.2 108.5 ± 24.1 74.1 ± 5.2∗ 89.6 ± 8.6 94.8 ± 8.6
15min 89.6 ± 8.6 261.9 ± 34.5∗ 215.4 ± 25.8∗ 65.5 ± 6.9#† 256.7 ± 29.3∗¶

30min 77.5 ± 6.9 113.7 ± 22.4 72.4 ± 3.4 75.8 ± 10.3 87.9 ± 10.3
60min 77.5 ± 6.9 67.2 ± 10.3 46.5 ± 6.9∗ 63.8 ± 6.9 58.6 ± 5.2
120min 89.6 ± 12.1 60.3 ± 6.9 60.3 ± 8.6 65.5 ± 5.2 75.8 ± 8.6

Day 102 (𝑛 = 11) (𝑛 = 11) (𝑛 = 11) (𝑛 = 8) (𝑛 = 10)

Insulin level (pmol/L) after first administration
0min 163.7 ± 24.1 144.7 ± 15.5 144.7 ± 19.0 110.3 ± 15.5 96.5 ± 6.9
15min 98.2 ± 10.3 291.2 ± 37.9∗ 253.3 ± 24.1∗ 81.0 ± 6.9#† 241.2 ± 19.0∗¶

30min 86.2 ± 6.9 124.1 ± 12.1 117.2 ± 12.1 82.7 ± 6.9 112.0 ± 6.9
60min 86.2 ± 8.6 103.4 ± 6.9 74.1 ± 5.2 87.9 ± 10.3 84.4 ± 6.9
120min 99.9 ± 20.7 101.7 ± 6.9 82.7 ± 10.3 94.8 ± 10.3 84.4 ± 8.6

Insulin level (pmol/L) after second administration
0min 117.2 ± 19.0 124.1 ± 12.1 98.2 ± 10.3 130.9 ± 24.1 122.3 ± 15.5
15min 99.9 ± 8.6 398.0 ± 24.1∗ 274.0 ± 24.1∗# 84.4 ± 10.3#† 286.0 ± 29.3∗¶

30min 103.4 ± 12.1 141.3 ± 19.0 106.8 ± 6.9 101.7 ± 10.3 134.4 ± 20.7
60min 74.1 ± 6.9 101.7 ± 10.3 81.0 ± 8.6 84.4 ± 10.3 93.0 ± 8.6
120min 79.3 ± 10.3 87.9 ± 8.6 77.5 ± 8.6 101.7 ± 10.3 91.3 ± 12.1

Data are mean ± SEM. ∗𝑃 < 0.05 versus control, #𝑃 < 0.05 versus glucose, †𝑃 < 0.05 versus ipragliflozin, and ¶
𝑃 < 0.05 versus insulin. Mice were provided

with water (control group, insulin group) or glucose (glucose group, glucose + ipragliflozin group, and glucose + insulin group) by oral gavage twice a day
(9:00AM: first administration and 4:00 PM: second administration).

ipragliflozin groupwere significantly smaller than the glucose
group (Figure 3(b)).

4. Discussion

In this study, repetitive hyperglycaemia, repetitive hypo-
glycaemia, and a combination of both did not enhance
atherosclerosis in apo E-deficient mice, although repetitive
hypoglycaemia increased the death rate. Coincidently, in our
model, ipragliflozin suppressed atherosclerosis throughout
the aorta of apo E-deficient mice with repetitive hypergly-
caemia.

We reported previously that repeated increases in blood
glucose induced by 5-week administration of maltose
enhanced atherosclerosis in apo E-deficient mice [4], with
peak levels of temporal hyperglycaemia that were similar
to those recorded in the present study. However, long-term
repeated increases in blood glucose levels had only a minor
impact on atherosclerosis. It is possible that the glucose
spike-induced atherosclerotic changes in our model might

be eventually overwhelmed by concomitant high levels of
cholesterol, although the underlying reasons for this effect
remain unknown.

To our surprise in the present study, the atherosclerotic
areas of the entire aorta were significantly smaller in the
glucose plus ipragliflozin group compared with the glucose
group. However, because the expression of SGLT2 in rodents
is kidney-specific [23], any direct beneficial effects of SGLT2
inhibitors on the vasculature could not be anticipated, raising
the possibility of other indirect effects of ipragliflozin on
atherosclerosis. First, the inhibitory effects of ipragliflozin
on atherosclerosis might simply reflect the glucose-lowering
effect of this agent even though the dosage of ipragliflozin
used in this study induced only a modest and almost
nonsignificant reduction in glucose. Second, ipragliflozin
tends to reduce glucose-induced temporal rises in insulin lev-
els, because pharmacological inhibition of SGLT2 enhances
urinary glucose excretion and thus reduces blood glucose
levels independent of insulin actions [24]. Therefore, it is
possible that improvement in temporal hyperinsulinaemia
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Table 4: Plasma glucose levels after intraperitoneal injection of saline or insulin in each group.

Control
group

Glucose
group

Glucose +
ipragliflozin group

Insulin
group

Glucose +
insulin group

Day 22 (𝑛 = 11) (𝑛 = 10) (𝑛 = 11) (𝑛 = 11) (𝑛 = 11)

Glucose level (mmol/L) after administration
0min 9.4 ± 0.2 9.5 ± 0.2 10.2 ± 0.3 9.7 ± 0.2 10.0 ± 0.3
15min 9.4 ± 0.4 17.2 ± 0.7∗ 15.2 ± 0.5∗ 5.5 ± 0.2∗#† 7.0 ± 0.2∗#†¶

30min 11.6 ± 0.4 14.8 ± 1.0∗ 14.6 ± 0.4∗ 5.0 ± 0.2∗#† 5.1 ± 0.2∗#†

45min 12.6 ± 0.6 13.0 ± 0.7 13.3 ± 0.4 4.8 ± 0.2∗#† 5.0 ± 0.2∗#†

60min 12.5 ± 0.4 12.8 ± 0.8 13.0 ± 0.3 4.3 ± 0.3∗#† 4.4 ± 0.2∗#†

90min 11.5 ± 0.3 11.9 ± 0.6 10.8 ± 0.3 3.5 ± 0.5∗#† 3.1 ± 0.2∗#†

Day 92 (𝑛 = 11) (𝑛 = 10) (𝑛 = 11) (𝑛 = 9) (𝑛 = 10)

Glucose level (mmol/L) after administration
0min 8.8 ± 0.1 9.1 ± 0.2 8.6 ± 0.3 8.9 ± 0.2 9.0 ± 0.2
15min 10.2 ± 0.4 16.9 ± 0.9∗ 14.2 ± 0.8∗ 5.2 ± 0.2∗#† 8.7 ± 1.1#†¶

30min 11.4 ± 0.4 14.7 ± 0.7∗ 12.5 ± 0.8 4.7 ± 0.2∗#† 6.0 ± 0.7∗#†

45min 12.6 ± 0.3 13.5 ± 0.7 12.0 ± 0.7 4.4 ± 0.2∗#† 5.9 ± 1.1∗#†

60min 12.9 ± 0.6 14.2 ± 0.8 12.1 ± 0.7 3.8 ± 0.2∗#† 5.8 ± 1.3#†

90min 11.6 ± 0.5 12.4 ± 0.6 10.2 ± 0.7 3.2 ± 0.6∗#† 4.5 ± 1.1∗#†

Data are mean ± SEM. ∗𝑃 < 0.05 versus control, #𝑃 < 0.05 versus glucose, †𝑃 < 0.05 versus ipragliflozin, and ¶
𝑃 < 0.05 versus insulin.

Mice received intraperitoneal injections of 10mL/kg saline (control group, glucose group, and glucose + ipragliflozin group) or injections of 8 IU/kg insulin
(insulin group and glucose + insulin group).

was associatedwith reductions in atherogenesis in ourmodel.
Although we demonstrated previously that temporal hyper-
glycaemia, but not temporal hyperinsulinaemia, induced
monocyte adhesion to endothelial cells in rats [3, 25], tem-
poral hyperinsulinaemia could probably indirectly promote
atherosclerosis through unknownmechanism. Finally, SGLT-
2 inhibitors also act as osmotic diuretics, resulting in lower
blood pressure alongside the glucose-lowering effect [26].
These effects potentially contributed to the prevention of
atherosclerosis observed herein.

On the other hand, random plasma glucose levels mod-
estly but significantly increased from baseline on days 12 and
102, but not days 22 and 92, in the glucose plus ipragliflozin
group. These factors may attenuate the favourable effect
of ipragliflozin on the progression of atherosclerosis. Since
the exact reasons for these unexpected results are largely
unknown, evaluation of the possible metabolism-related fac-
tors, such as hepatic glucose production and plasma glucose
levels, should be addressed in future studies.

Recent studies showed that hypoglycaemia is associated
with increased mortality from CVD and other causes [11,
27, 28]. The Action to Control Cardiovascular Risk in Dia-
betes (ACCORD) study demonstrated a small but significant
inverse relationship between the number of hypoglycaemic
events and the risk of death in the intensive treatment
group [27]. In the same study, higher HbA1c levels in the
intensive treatment groupwere also associatedwith increased
mortality [29]. On the other hand, the Action in Diabetes
and Vascular Disease: Preterax and Diamicron Modified
Release Controlled Evaluation (ADVANCE) showed that
severe hypoglycaemia was also shown to be associated with
increased mortality [28]. However, in the same study, the

mortality rates were lower among subjects who experienced
severe hypoglycaemia in the intensive treatment group than
those in the standard group in that study, while severe
hypoglycaemia was more frequent in the intensive treatment
group [30]. Taking these results into consideration, it may be
important to achieve appropriate glycaemic control without
increased hypoglycaemic events in order to reduce mortality
in the management of diabetes. In the present study, mice of
the insulin grouphad the highest death rate, followed by those
of the glucose plus insulin group. Because hypoglycaemia
became milder at the end of our study in the glucose plus
insulin group compared to the insulin group, the death rate
was seemingly largely dependent on the severity of hypogly-
caemia. However, the atherosclerotic lesions in the insulin
group were not expanded, suggesting that hypoglycaemia-
related death was not associated with events caused by
advanced atherosclerosis, at least under the context of this
experiment. On the other hand, we demonstrated previously
that repetitive hypoglycaemia promoted the initial stage of
atherosclerosis [18] and neointima formation after vascular
injury in GK rats [19]. The exact reason for such discrepancy
is not clear at present, but it could reflect differences in the
stage of atherosclerosis, species, and the levels of cholesterol
in diabetic and nondiabetic models.

What are the factors associated with death during hypo-
glycaemia? One possibility was raised by results showing
that hypoglycaemia was associated with electrocardiographic
changes, wherein severe hypoglycaemic events were signif-
icantly associated with prolonged corrected QT in patients
with type 1 diabetes, reflecting abnormalities in ventricular
myocardial repolarisation [31].Notably, such arrhythmogenic
effects that were induced, at least in part, by hypoglycaemia
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through the lowering of serum potassium or augmentation
of sympathetic nerve activity could be life threatening. In
addition, hypoglycaemia is known to induce platelet aggre-
gation and inflammation [28], changes that could potentially
increase plaque vulnerability without the associated progres-
sion of atherosclerosis. These findings emphasize the need
for further experiments to address this issue, especially using
mice models of plaque rapture [32].

The present study has certain limitations. First, we used
higher dosage of insulin than those for the treatment of the
patients with T2DM.Themain reason was that those dosages
were required in order to induce hypoglycaemia. Second,
we did not measure serum and urinary levels of counter
regulatory hormones during hypoglycaemia. Third, in this
study, we evaluated only a few inflammatory cytokines.Thus,
measurement of other cytokines is probably needed in the
future studies. Forth, we could not evaluate the effect of
insulin injection on proliferative potential [33].

In conclusion, our data suggested that long-term glucose
fluctuations, including repetitive postprandial glucose spikes,
repetitive hypoglycaemia, and combinations thereof, have
little effect on atherogenesis. In addition, the low survival rate
with repetitive hypoglycaemia is not necessarily associated
with increased atherosclerotic plaques.
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