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Background: Prenatal phthalate exposure has been linked with altered neurodevelopment, 

including externalizing behaviors and attention-deficit hyperactivity disorder (ADHD). However, 

the implicated metabolite, neurobehavioral endpoint, and child sex have not always been 

consistent across studies, possibly due to heterogeneity in neurodevelopmental instruments. The 

complex set of findings may be synthesized using executive function (EF), a construct of complex 

cognitive processes that facilitate ongoing goal-directed behaviors. Impaired EF can be presented 

with various phenotypes of poor neurodevelopment, differently across structured conditions, 

home/community, or preschool/school. We evaluated the relationship between prenatal phthalate 

exposure and comprehensive assessment of preschool EF.

Methods: Our study comprised 262 children with clinically significant/subthreshold ADHD 

symptoms and 78 typically developing children who were born between 2003 and 2008 and 

participated in the Preschool ADHD Substudy, which is nested within a population-based 

prospective cohort study, the Norwegian Mother, Father, and Child Cohort (MoBa). Twelve 

phthalate metabolites were measured from urine samples that their mothers had provided during 

pregnancy, at 17 weeks’ gestation. All children, at approximately 3.5-years, took part in a detailed 

clinical assessment that included parent-and teacher-rated inventories and administered tests. We 

used instruments that measured constructs related to EF, which include a parent-and teacher-

reported Behavior Rating Inventory of Executive Function-Preschool (BRIEF-P) and three 

performance-based tests: A Developmental NEuroPSYchological Assessment (NEPSY), Stanford-

Binet intelligence test V (SB5), and the cookie delay task (CDT). The standard deviation change 

in test score per interquartile range (IQR) increase in phthalate metabolite was estimated with 

multivariable linear regression. We applied weighting in all models to account for the 

oversampling of children with clinically significant or subthreshold symptoms of ADHD. 

Additionally, we assessed modification by child sex and potential co-pollutant confounding.

Results: Elevated exposure to mono-benzyl phthalate (MBzP) during pregnancy was associated 

with poorer EF, across all domains and instruments, in both sex. For example, an IQR increase in 

MBzP was associated with poorer working memory rated by parent (1.23 [95% CI: 0.20, 2.26]) 

and teacher (1.13 [0.14, 2.13]) using BRIEF-P, and administered tests such as SB5 (no-verbal: 

0.19 [0.09, 0.28]; verbal: 0.13 [0.01, 0.25]). Adverse associations were also observed for mono-n-

butyl phthalate (MnBP) and mono-iso-butyl phthalate (MiBP), although results varied by 

instruments. EF domains reported by parents using BRIEF-P were most apparently implicated, 

with stronger associations among boys (e.g., MnBP and inhibition: 2.74 [1.77, 3.72]; MiBP and 

inhibition: 1.88 [0.84, 2.92]) than among girls (e.g., MnBP and inhibition: −0.63 [−2.08, 0.83], 

interaction p-value: 0.04; MiBP and inhibition: −0.15 [−1.04, 0.74], interaction p-value: 0.3). 

Differences by sex, however, were not found for the teacher-rated BRIEF-P or administered tests 

including NEPSY, SB5, and CDT.

Conclusion and relevance: Elevated mid-pregnancy MBzP, MiBP, and MnBP were associated 

with more adverse profiles of EF among preschool-aged children across a range of instruments 

and raters, with some associations found only among boys. Given our findings and accumulating 

evidence of the prenatal period as a critical window for phthalate exposure, there is a timely need 

to expand the current phthalate regulations focused on baby products to include pregnancy 

exposures.

Choi et al. Page 2

Environ Int. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Executive function; Phthalates; Neurodevelopment; MoBa; Butyl-phthalates; Benzyl-phthalates

1. Introduction

Over the past decade, prenatal exposure to endocrine disrupting chemicals (EDCs) has 

emerged as a possible threat to brain development (Bennett et al., 2016). Among the 

potentially neurotoxic EDCs, phthalates are one of the most universally detected in light of 

their popular use in cosmetics, personal care, consumer, and medical products (EPA, 2012). 

Since phthalates are used as plasticizers or fixatives that are not covalently bound to the 

original materials, they can easily leach into surrounding media, resulting in human 

exposures (EPA, 2012; Miodovnik 2011).

Phthalate exposure during pregnancy has been demonstrated to impact neurodevelopment in 

offspring (Radke et al. 2020), however, not all studies report adverse associations (Factor-

Litvak et al. 2014; Gascon et al. 2015; Kim et al. 2017) and the specific phthalate 

metabolite(s) implicated is largely heterogeneous across previous studies. The existence of 

sex-specific associations is also controversial, although studies that observed sex-interaction 

frequently found associations among boys (Engel et al. 2010; Lien et al. 2015; Philippat et 

al., 2017; Whyatt et al. 2012). Evidence synthesis is complicated by substantial variability in 

the age at assessment and a lack of overlap in the neurobehavioral assessments, along with 

variability in the rater (e.g., parent-reported, teacher-reported, and performance-based). 

Nonetheless, multiple studies have linked prenatal phthalates exposure with small increases 

in the symptoms of hyperactivity (Engel et al. 2010; Kobrosly et al. 2014), inattention 

(Engel et al. 2010; Kobrosly et al. 2014; Lien et al. 2015), emotional control (Engel et al. 

2010; Gascon et al. 2015; Kobrosly et al. 2014; Lien et al. 2015; Philippat et al., 2017; 

Whyatt et al. 2012), aggressive behaviors (Engel et al. 2010; Kobrosly et al. 2014; Lien et al. 

2015; Singer et al. 2017), and more generally, problematic externalizing behaviors (Engel et 

al. 2010; Kobrosly et al. 2014; Lien et al. 2015). Externalizing behaviors are outwardly 

focused behaviors, typically including aggressive and hyperactive behaviors (Liu 2004), 

which are often found in children with ADHD (Willcutt et al. 2005).

The complex set of findings across previous studies could be synthesized using executive 

function (EF), a construct of complex cognitive processes that facilitate ongoing goal-

directed behaviors. Key features of EF include emotional regulation, impulse control, 

working memory, and attentional flexibility, and their deficits can underlie ADHD (Clark et 

al. 2000) and problematic externalizing behaviors. EFs begin to develop early in life (Garon 

et al. 2008), with individual differences remaining relatively stable throughout the 

developmental trajectory (Miyake and Friedman 2012). EFs can be presented differently 

across multiple settings such as optimal under structured conditions, typical in-home/

community, or preschool/school, depending on the raters: direct assessment, parent-rated, or 

teacher-rated measurements. However, no studies of phthalates and preschool 

neurodevelopment have accounted for differences in presentation across multiple settings/

raters.
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We sought to conduct a comprehensive investigation of the associations between prenatal 

phthalate exposure and EF during the preschool period, leveraging a standardized clinical 

assessment of preschool ADHD that included validated parent- and teacher- inventories as 

well as performance-based assessments of EF. By incorporating data from multiple raters, 

including parent, teacher, and performance-based, we can assess the consistency of 

associations across the child’s EF measured in different environments.

2. Materials and methods

2.1. Study population

The Norwegian Mother, Father and Child Cohort Study (MoBa) is a population-based 

pregnancy cohort study conducted by the Norwegian Institute of Public Health. Pregnant 

women across Norway were recruited from 1999 to 2008 (Schreuder and Alsaker 2014). An 

invitation was sent to women prior to their routine prenatal ultrasound, which up to 98% of 

pregnant women in Norway have before their 20th gestational week (Backe 1997). During 

the ultrasound visit, pregnant women consented to participation (41% of the pregnancies) 

and now includes 114,500 children, 95,200 mothers, and 75,200 fathers. Study participants 

completed questionnaires and provided biosamples during pregnancy (Paltiel et al. 2014). 

The current study is based on version 9 of the quality-assured data files released for research 

on preschool ADHD.

Our study population is nested within the MoBa Preschool ADHD Substudy (Øvergaard, 

2018). Eligibility criteria for the Preschool ADHD Substudy included births after April 1, 

2004, living within a direct flight to Oslo. Among the eligible population, children 

exhibiting possible ADHD symptoms were oversampled based on items in the 36-month 

questionnaire describing ADHD-like symptoms (approximately 62% of the MoBa 

participants completed the questionnaire (Magnus 2007)). From the 36-month questionnaire, 

these 11 items describing ADHD-like symptoms were summed into a quantitative index and 

included six items from the Child Behavior Checklist/1.5–5 (Achenbach, 2010) and five 

items from the DSM-IV-TR criteria for ADHD (Association 2000). All children with 

summed scores ≥90th percentile were invited to participate in the Preschool ADHD 

Substudy (n = 2798), along with a random sample of the remainder of children (n = 654). Of 

those invited, 1195 children took part in a one-day clinical assessment when they were aged 

between 3 and 4 years (Skogan et al. 2015). We further restricted the Preschool ADHD 

Substudy participants to 870 children whose mothers had provided urine samples during 

pregnancy (870 out of 1195; Supplementary Figure 1).

Our analytic sample includes 262 children with clinically significant or subthreshold 

symptoms of ADHD based on DSM-IV-TR criteria, hereafter referred to as the preschool 

ADHD group; and 78 typically developing children, who were clinically confirmed as 

neurotypical following the on-site assessment. Because this population deliberately 

oversamples children who were symptomatic for ADHD using the 36-month questionnaire, 

such a sampling structure must be considered in analysis (Richardson et al. 2007). We, 

therefore, estimated the sampling fraction and conducted weighted analyses as described in 

the statistical analysis section below.
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2.2. Measurement of phthalate metabolites

Methods (Engel et al. 2018) and quality control procedures (Ye et al. 2009) associated with 

phthalate metabolite measurement have been previously described. Briefly, phthalate 

metabolites were measured from maternal urine samples collected at approximately 17 

weeks gestation. The urine samples were assayed in randomized batches at the Norwegian 

Institute of Public Health, using on-line column switching liquid chromatography coupled 

with tandem mass spectrometry (Sabaredzovic et al. 2015). These include: monoethyl 

phthalate (MEP), a metabolite of diethyl phthalate; mono-iso-butyl phthalate (MiBP), a 

metabolite of di-iso-butyl phthalate; mono-n-butyl phthalate (MnBP), a metabolite of di-n-

butyl phthalate; monobenzyl phthalate (MBzP), a metabolite of BBzP; mono-2-ethylhexyl 

phthalate (MEHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-

oxoyhexyl phthalate (MEOHP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP), and 

mono-2-methylcarboxyhexyl phthalate (MMCHP), metabolites of DEHP; and, mono-4-

methyl-7-hydroxyoctyl phthalate (OHMiNP), mono-4-methyl-7oxooctyl phthalate (oxo-

MiNP), and mono-4-methyl-7-carboxyheptyl phthalate (cx-MiNP), metabolites of di-iso-

nonyl phthalate (DiNP). Specific gravity was measured with a pocket refractometer 

(PAL-10S) from Atago, to account for urine dilution.

2.3. Measurement of executive function

We selected the instruments in the clinical assessment that measured constructs related to EF 

(Supplementary Table 1). This includes a parent-and teacher-rated inventory, Behavior 

Rating Inventory of Executive Function-Preschool [BRIEF-P], and three performance-based 

assessments, Stanford Binet IV short version [SB5]; A Developmental NEuroPSYchological 

Assessment [NEPSY]; and cookie delay task [CDT].

Parents and teachers were requested to fill in BRIEF-P, four weeks prior to the one-day 

clinical exam, and return it by the clinical exam (Skogan et al. 2015). The BRIEF-P was 

originally developed to rate EF of children aged 2–5 within the context of everyday 

environments, at home and preschool (Gioia et al. 1996). The instrument consists of 63 

behavioral descriptors that characterize five EF domains: emotional control, inhibition, 

working memory, planning/organization, and shift. Parents and teachers rated whether the 63 

behavioral descriptors have been a problem for the child during the past 6 months, by 

checking never (1), sometimes (2), or often (3). For the current study, we restricted the EF 

domains to emotional control, inhibition, and working memory, excluding planning/

organization and shift. At this early point in development, the ability to shift and plan/

organize has yet to reach a stable functional level. Consequently, these domains and their 

relations with other aspects of behavioral or cognitive functions may not be meaningfully 

interpreted (Skogan et al. 2015). Domain-specific raw scores rated by parents and teachers 

were standardized by age and sex to calculate T-scores.

At the one-day clinical exam, performance-based assessments were carried out by a 

psychologist while one parent was present, described in detail previously (Rohrer-

Baumgartner et al. 2014). The range and interpretation of the test scores varied by the 

instrument; therefore the test scores from all performance-based assessments were 
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standardized to have a mean of 0, a standard deviation of 1, with higher scores indicating a 

worse EF, in order to facilitate comparison across instruments.

SB5 is an intellectual battery that can be used to measure nonverbal and verbal cognitive 

factors: fluid reasoning, knowledge, quantitative reasoning, visual-spatial processing, and 

working memory (Roid and Pomplun 2012). We obtained measures of working memory 

from SB5, and an earlier version of SB5 has been validated in 30-months-old toddlers 

(Robinson et al. 1990). Verbal working memory was measured by asking each child to 

repeat sentences of increasing length. Nonverbal working memory was measured using the 

subtasks “delayed response” and “block span”. In “delayed response”, children were asked 

to find a toy that was hidden under one of three cups after a few seconds delay, or after 

switching the arrangement of the cups. In “block span”, children were asked to tap blocks in 

the same order as demonstrated.

NEPSY was originally developed to evaluate attention/EF, language, sensorimotor, 

visuospatial, and memory/learning in children from 3 to 12 years (Kemp and Korkman 

2010). We obtained a measure of inhibition from NEPSY. The subtask “statue” in the 

NEPSY characterizes motor persistence and inhibition (3–6 years), by asking the child to 

stand still with their eyes closed and inhibit the impulse to talk, move, or open their eyes in 

response to distracting sounds.

CDT was originally designed to evaluate children’s ability to delay in response to verbal 

direction by an adult (Golden et al. 1977). We obtained a measure of self-control from CDT. 

Children were asked to choose between an immediate but smaller reward (one cookie) or a 

delayed but larger reward (two cookies). This task is similar to the marshmallow test, which 

measures self-control.

2.4. Measurement of covariates

Covariates that could influence exposure and/or outcome were selected after conducting a 

literature review. Maternal characteristics prior to and during pregnancy were obtained from 

the MoBa questionnaires that mothers completed at baseline (17 weeks gestation): ADHD 

symptoms, parity, marital status, education, pre-pregnancy BMI, self-reported depression 

before or during pregnancy, smoking, and alcohol intake during pregnancy. Maternal ADHD 

symptoms were assessed with the ADHD Symptom Checklist, which is an instrument 

consisting of the eighteen DSM-IV-TR criteria (Adler et al. 2003). Maternal lifestyle 

characteristics during pregnancy were obtained from a questionnaire at the 22nd gestational 

week: fish intake and folate use. Birth characteristics such as maternal age at birth, childbirth 

year, and child sex were obtained via data linkage with the medical birth registry of Norway, 

and information on child age at clinical exam was obtained from the Preschool ADHD 

Substudy.

2.5. Approach

Phthalate metabolite concentrations were standardized for specific gravity and potential 

batch effects as previously described (Engel et al. 2018). For the secondary metabolites of 

DEHP and DiNP, we calculated and used molar sum as opposed to using the individual 

secondary metabolites. Sampling fractions (Hernán et al. 2004) were calculated separately in 
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two groups, children with ADHD symptoms summed scores ≥90th and <90th percentile, and 

represent the probability of being selected into the study sample from the ADHD Substudy 

eligible population. Distributions of phthalate metabolites, covariates, and EF performances 

were examined in the study population weighted by the inverse of the sampling fraction.

As we did not identify non-linear relations between phthalates and EF using loess curves, we 

used weighted multiple linear regression to estimate the difference in EF scores per 

interquartile range (IQR) increase in phthalate metabolite concentrations. All models were 

adjusted for covariates identified through a directed acyclic graph (DAG). Following 

covariates were considered in the construction of the DAG (Supplementary Figure 2): 

maternal ADHD symptoms, parity, marital status, education, pre-pregnancy BMI, self-

reported depression before or during pregnancy, smoking during pregnancy, alcohol intake 

during pregnancy, fish intake during pregnancy, folate use during pregnancy, maternal age at 

birth, childbirth year, child sex, and child age at the clinical exam. Since missing data was 

present, we considered omitting some potential confounders from the minimally sufficient 

adjustment set in order to improve variance and selection bias. The final adjustment 

variables included maternal age at delivery (linear), maternal ADHD symptoms (linear), pre-

pregnancy BMI (–24;25–29;30–), parity (no previous delivery; 1 or more previous delivery), 

childbirth year (2004; 2005; and 2006–2007), and child sex (female; male). Model fit was 

examined with visual inspections of residual plots and Cook’s distance.

We explored various approaches to address weighting and examined the robustness and 

plausibility of findings. In the main text, we present the results using the approach that best 

reflected the sampling procedure: inverse probability weighting based on children’s ADHD 

symptoms summed scores. Results from alternative approaches are presented as a 

supplementary figure, and include a simple adjustment for the preschool ADHD group/

typically developing child status, stratifying by preschool ADHD group/typically developing 

child status, applying an alternative weight based on population prevalence of preschool 

ADHD, stratifying by ADHD symptoms summed scores, and no adjustment or weighting. 

The plausible range of bias observed between estimates from the weighted approaches and 

no adjustment were further investigated with simulations under different selection scenarios. 

Details of the simulation are provided in the supplementary document.

Lastly, effect measure modification (EMM) by child sex was assessed by including an 

interaction term between sex and a phthalate metabolite. We considered EMM significant at 

an alpha level of 0.10. Amongst the implicated phthalate metabolites in our analysis of 

single-pollutant models, we additionally considered potential co-pollutant confounding by 

including one additional implicated phthalate metabolite into the model. We used this simple 

approach to adjust for potential co-pollutant confounding since the correlations across 

phthalate species were low to moderate, ranging from −0.07 to 0.64 (Villanger et al. 2020).

All analyses were conducted using SAS 9.4 and R statistical software version 4.0.0. This 

study was approved by Regional Committee for Medical Research Ethics in Norway and 

was reviewed and determined to be exempt from further review by the Office of Human 

Research Ethics at the University of North Carolina at Chapel Hill.
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3. Results

The median child age at clinical assessment was 3.5 years, with boys accounting for 55.7% 

of preschool children with elevated ADHD symptoms and 53.8% of the typically developing 

children (Table 1). The median maternal age at delivery was 30 years, with a higher 

percentage of mothers scoring high on ADHD symptoms (12.4% versus 6.5%) or having 

less than college complete education (35.2% versus 24.4%) among the preschool ADHD 

group as compared to the typically developing group (Table 1). The summary statistics for 

all EF measures are provided in Supplementary Table 1.

Phthalate metabolites were detected in all maternal urine samples collected at 17 weeks’ 

gestation (Table 2). The highest geometric mean was observed for MEP (129.71 ± 3.56 

ng/ml) and the lowest for a secondary metabolite of DiNP, OH-MiNP (0.92 ± 1.79 ng/ml; 

Table 2).

Elevated MBzP during pregnancy was associated with poorer offspring EF during preschool 

age, consistently across domains and raters (Table 3). Specifically, an IQR increase in MBzP 

was associated with poorer working memory rated by teacher (β : 1.13 [95% confidence 

intervals: 0.14, 2.13]), parent (1.23 [0.20, 2.26]), and performance-based (verbal: 0.13 [0.01, 

0.25]; nonverbal 0.19 [0.09, 0. 28]). We also observed worse inhibition as reported by 

parents (1.00 [0.03, 1.98]) and performance-based (0.18 [0.08, 0.28]); and reporter-based 

emotional control (teacher: 1.23 [0.31, 2.15]; parent: 1.67 [0.89, 2.45]). Parent-reported 

emotional control scores were worse among boys with elevated prenatal MBzP (interaction 

p-value: 0.02; Table 4).

Elevated MiBP and MnBP during pregnancy were also associated with poorer EF in 

offspring during preschool years, although we observed variability in associations by raters. 

Parents consistently reported worse EF across all domains (Table 3), particularly among 

boys (MiBP: 2.16 [1.32, 2.99], interaction p-value < 0.001; MnBP 2.04 [1.23, 2.84], 

interaction p-value: 0.03; Table 4). Teacher-rated inventories and performance-based 

assessments generated substantially fewer statistically significant sex-interactions than 

parents (Table 4), however, both teacher-and parent-reported measures of inhibition were 

modification by child sex. Specifically, poorer inhibition was reported by teachers and 

parents among boys (teacher: 0.51 [−0.58, 1.60]; parent: 2.74 [1.77, 3.72]); while fewer 

inhibition symptoms were rated among girls (teacher: −1.57 [−3.19, 0.05], interaction p-

value: 0.04; parent: −0.63 [−2.08, 0.83], interaction p-value < 0.01).

For MEP, we observed potential sex-specific interactions, however, the most implicated sex 

was not always consistent across EF domains. We did not observe notable associations with 

DEHP or DiNP and EF.

In sensitivity analyses, we did not observe strong evidence of confounding by phthalate co-

exposures (Fig. 1). We observed stronger associations in the primary analysis that used 

inverse probability of selection weighting, which accounted for the oversampling of children 

in the high ADHD symptoms group, although the confidence intervals of the alternative 

approaches overlapped in most instances (Supplementary Figure 3). Such deviation between 

the weighted and unweighted approaches shows the potential bias that can be introduced by 
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not considering the over-sampling of the ADHD group. The observed bias appeared within a 

plausible range from our simulation study, where not accounting for selection into the study 

resulted in bias as large as 3 times the true association (Supplementary materials regarding 

simulation; Supplementary Table 2; Supplementary Figure 4).

4. Discussion

In this investigation of prenatal phthalate exposure and neurodevelopment, we leveraged a 

comprehensive assessment of EF that included both rater-based inventories and 

performance-based assessments, in order to evaluate the consistency in associations of 

phthalates and EF across multiple environments. We found that higher exposure to benzyl-

butyl phthalate during pregnancy was consistently associated with poorer EF in all domains 

across most instruments. Sex-specific associations were observed for di-butyl phthalate 

metabolites, with adverse associations mostly found among boys. However, these 

associations varied somewhat by rater. We did not find strong evidence of confounding by 

phthalate co-exposures.

The poor EF in 3-year-olds associated with elevated MBzP is noteworthy given that the 

point estimates are consistent in the direction across domains (i.e., emotional control, 

inhibition, and working memory) and instruments (parent/teacher-rated and performance-

based). We observed the strongest associations for parent-reported measures, particularly 

emotional control, which is consistent with previous studies of children under the age of 5. 

For children with elevated prenatal MBzP, parents reported more symptoms of emotional 

problems (Philippat et al., 2017; Whyatt et al. 2012), impulsive symptoms (Gascon et al. 

2015), internalizing behaviors (Philippat et al., 2017), social fear (Singer et al. 2017), and 

peer relationship problems (Philippat et al., 2017), although some estimates were imprecise 

(Gascon et al. 2015; Philippat et al., 2017). Interestingly, in a study that examined behavioral 

problems at age 3 and 5, weaker and more imprecise associations were observed among 

older children (Philippat et al., 2017). Similarly across studies of older children, mixed 

findings have been reported (Kobrosly et al. 2014; Lien et al. 2015).

We also observed that prenatal MiBP and MnBP exposures were associated with poorer EF 

across parent-rated BRIEF-P. Particularly, the association between MnBP and working 

memory observed in our study is in line with the findings from the only other study that 

utilized BRIEF (Engel et al. 2010), despite the differences in gestational weeks at urine 

sample collection (current: 17; previous: 25–40) and age at outcome assessment (4–9; 3.5 

years). In our study, MnBP mostly affected working memory among boys, along with worse 

emotional control and inhibition. Similarly, more emotional problems (Engel et al. 2010; 

Lien et al. 2015; Philippat et al., 2017; Whyatt et al. 2012), internalizing behaviour (Lien et 

al. 2015; Philippat et al., 2017; Whyatt et al. 2012), conduct problems (Philippat et al., 

2017), and externalizing behavior (Engel et al. 2010; Lien et al. 2015) have been reported by 

parents, often among boys (Engel et al. 2010; Kobrosly et al. 2014; Philippat et al., 2017). 

Although we observed similar associations for MiBP, findings are more inconsistent across 

literature with only one study reporting notable associations with more externalizing 

behavior, aggression, rule-breaking behavior, and attention problems at age 8, mostly among 

boys (Kobrosly et al. 2014). The geometric mean of MiBP in Kobrosly’s population (2.34 
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ng/ml) is much lower compared to our study (19.64 ng/ml) or other studies (9–40 ng/ml; 

(Radke et al. 2020)), however, both our study and Kobrosly measured MiBP during 2nd 

trimester as compared to other studies, which estimated exposure during the 3rd trimester. 

Such differences in exposure window may have contributed to heterogeneous results, since 

MiBP has been reported with intraclass correlation coefficients slightly lower than that of 

MnBP (Casas et al. 2018; Sakhi et al. 2017).

In contrast with our prior research documenting associations of prenatal DEHP exposure 

with diagnosed ADHD in childhood (Engel et al. 2018), we did not observed deficits in 

preschool EF in relation to DEHP exposure. Associations with DEHP are mixed with a 

number of near-null findings in studies using performance-based (Factor-Litvak et al. 2014) 

or parent-rated (Engel et al. 2010; Gascon et al. 2015; Kim et al. 2017; Kim et al. 2018; 

Kobrosly et al. 2014; Lien et al. 2015; Philippat et al., 2017; Whyatt et al. 2012) instruments, 

however, some have found adverse associations (Engel et al. 2018; Lien et al. 2015). 

Discrepancies in DEHP associations with neurodevelopment across studies may in part be 

related to the notable temporal decline in population DEHP exposures that have been 

observed worldwide (Jensen et al. 2012; Shu et al. 2018; Zota et al. 2014). Given the 

temporal changes in DEHP exposure, births in more recent years would have had lower 

cumulative exposure to DEHP compared to those in earlier years. For example, our previous 

investigation had an earlier mean year at birth (Engel et al. 2018). In general, studies 

consisting of heterogeneous birth years due to longer enrollment periods are more likely to 

report null findings as compared to studies that enrolled pregnant women over a shorter 

period of time spanning earlier years. Another explanation may involve low intraclass 

correlation coefficients reported for DEHP (Braun et al. 2012; Casas et al. 2018).

The current study adds to a growing literature documenting substantial adverse 

neurodevelopmental impacts of prenatal phthalate exposure (Braun et al. 2017; Braun et al. 

2014; Doherty et al. 2017; Engel et al. 2010; Engel et al. 2018; Engel et al. 2009; Factor-

Litvak et al. 2014; Gascon et al. 2015; Huang et al. 2015; Huang et al., 2017; Ipapo et al. 

2017; Kim et al. 2017; Kim et al. 2018; Kim et al. 2011; Kobrosly et al. 2014; Larsson et al. 

2009; Lien et al. 2015; Messerlian et al. 2017; Miodovnik et al. 2011; Nakiwala et al., 2018; 

Olesen et al. 2018; Percy et al. 2016; Philippat et al. 2015; Philippat et al., 2017; Polanska et 

al. 2014; Qian et al. 2019; Singer et al. 2017; Tellez-Rojo et al. 2013; Whyatt et al. 2012; 

Yolton et al. 2011), and provides evidence that deficits in EF may be a unifying neurological 

mechanism tying together behavioral and cognitive endpoint. To our knowledge, no other 

study to date has incorporated both parent-and teacher- completed inventories along with 

performance-based assessments during the preschool period. It has long been known that 

parents and teachers report differently about child behavior (Achenbach et al. 1987), which 

has also been found in the ADHD Substudy with correlation up to 0.3 (Overgaard et al. 

2019). Rater-based and performance-based instruments of EF are known to be poorly 

correlated (Toplak et al. 2013), in part because they assess different aspects of executive 

function. Performance-based assessments instantaneously evaluate a child’s optimal 

executive function under highly standardized conditions, whereas rater-based inventories are 

aggregated measures of the child’s functioning in typical everyday situations over a longer 

period of time, either at school or in the home/community setting. By incorporating all of 

these instruments, our reported association of MBzP with poorer EF can be said to be robust 
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to the environment, rater, and condition. On the contrary, the impact of MiBP and MnBP on 

EF varied by raters, with more pronounced associations reported among parents but not as 

much with teacher-reported or performance-based measures of EF. Such phenotypical 

differences in implicated executive function may imply that the underlying neurological 

mechanism of MiBP and MnBP are different from that of MBzP and calls for further 

mechanistic research.

Our study leveraged an existing, comprehensive assessment of EF that enabled us to 

investigate our hypotheses at a level of detail not previously attempted. We also had access 

to important covariates unavailable in prior studies, including maternal ADHD symptoms, 

which allowed us to account for heritable aspects of executive function. Although some 

previous studies adjusted for maternal IQ (Braun et al. 2014; Factor-Litvak et al. 2014; Kim 

et al. 2017; Lien et al. 2015; Whyatt et al. 2012) or psychological difficulties during 

pregnancy (Philippat et al., 2017), these covariates may not accurately capture genetical 

drivers of executive function. We additionally assessed potential confounding by phthalate 

co-exposures and found no evidence; although it is possible that there may be potential 

confounding by non-phthalate co-exposures.

Our study also had several limitations. MoBa only collected one urine sample during 

pregnancy, and we were therefore limited to single spot urine to characterize phthalate 

exposure in our population (Adibi et al. 2008). Although phthalate metabolites have short 

half-lives, individuals’ exposure patterns to phthalates may be stable in the short-term, given 

that phthalates are included in consumer products that humans use on a daily basis. In 

general, the phthalates we found to be most strongly associated with EF have been 

previously reported with moderate to high intraclass correlation coefficients (Adibi et al. 

2008; Braun et al. 2012; Casas et al. 2018), and there are very few studies in the literature 

that have utilized more than one urine during pregnancy to assess exposure (Braun et al. 

2014; Gascon et al. 2015; Percy et al. 2016; Qian et al. 2019; Yolton et al. 2011). Another 

limitation is in the relatively small sample size and over-sampling of children with 

symptoms of ADHD. We accounted for this over-selection of children with ADHD 

symptoms by down-weighting the contribution of children with ADHD symptoms, and up-

weighting the contribution of the children without ADHD symptoms, to reflect their 

selection probability in the eligible population. Although the point estimates from the 

weighted analysis were oftentimes overlapping with an alternative unweighted approach, in 

some cases unweighted estimates attenuated to the null. Finally, we were only able to 

account for selection due to the over-sampling of ADHD-like symptoms and not other 

factors that may influence attrition of study participants. For example, the ADHD Substudy 

participants’ mothers were older and had slightly higher education and fewer children than 

the general MoBa population.

Although experimental evidence showing toxicities of phthalates on neurogenesis exist (Lee 

et al. 2015), their underlying mechanism is not well-established. Multiple underlying 

pathways have been proposed, including alterations in sex steroid or thyroid hormone 

signaling (Miodovnik et al. 2014). Phthalates such as benzylbutyl and dibutyl phthalate have 

been reported to interact with genes regulating androgen/estrogen synthesis (Ghisari and 

Bonefeld-Jorgensen 2009; Singh and Li 2011), which are critical to neuronal maturation and 
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growth (Gore et al. 2014; Matsumoto 1991; McEwen 2002). Additionally, benzylbutyl 

phthalate and dibutyl phthalate may interfere with the thyroid hormone signaling pathway 

(Ghisari and Bonefeld-Jorgensen 2009; Singh and Li 2011), which plays a key role in 

central nervous system development (Parent et al. 2011). Phthalates may also cross the 

placental barrier (Latini et al. 2003) and directly influence neurogenesis (Lee et al. 2015) 

through these or other pathways.

The phthalate metabolites implicated in our study continues to be highly prevalent in 

contemporary populations (CDC, 2019; Wu et al. 2020). Further, butyl-benzyl and di-butyl 

phthalates are considered substances of very high concern by the European Union and are 

regulated in toys and childcare products due to their endocrine disruption properties 

(Regulation 1999). These policies should be modified to target exposures in the general 

population, given the increasing scientific evidence that links prenatal phthalate exposures to 

neurobehavioral development as well as for other developmental endpoints (Lovekamp-

Swan and Davis 2003).

5. Conclusion

We found that higher urinary concentrations of MBzP, MiBP, and MnBP during pregnancy 

were associated with poorer executive function in offspring. In some cases, associations 

were primarily found among boys. Exposures to pregnant women should be considered in 

policy regulations aimed at reducing exposures during critical windows of child 

development.
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Fig. 1. 
Changes in executive function scoresa (β  and 95% confidence intervals, CI) per interquartile 

range increase in urinary phthalate metabolite concentrationb during pregnancy, from 

weighted linear regression modelsc with single phthalate (Models 1–3) or two phthalate 

metabolites (Models 4–6). aAll scores were modified to have a mean of 0, a standard 

deviation of 1, and higher scores to indicate worse executive function. b Specific gravity and 

batch effect adjusted. cAll models weighted for study selection and additionally adjusted for 

maternal ADHD, BMI, age at delivery, parity, child birth year, and child sex. Abbreviations: 

NEPSY: A Developmental NEuroPSYchological Assessment; SB5: Stanford-Binet IV; 

CDT: Cookie Delay Task; MnBP: Mono-n-butyl phthalate; MiBP: Monoisobutyl phthalate; 

MBzP: Monobenzyl phthalate.
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Table 1

Socio-demographic characteristics of preschool attention-deficit hyperactivity disorder (ADHD) cases and the 

typically developing children in the Norwegian Mother, Father and Child Cohort (MoBa), 2003–2008.

Variable Weighted population (N = 
310)

Preschool ADHD group (N = 
262)

Typically developing 
children (N = 78)

N % N % N %

Birth year

 2004 68 22 26 9.9 20 25.6

 2005 111 36 63 24.0 30 38.5

 2006 103 33.3 90 34.4 23 29.5

 2007 27 8.7 83 31.7 5 6.4

Child sex

 Male 176 56.9 146 55.7 42 53.8

 Female 134 43.1 116 44.3 36 46.2

Child age at clinical assessment

 38–41 months 208 68 157 60.4 50 64.9

 42–45 months 98 32 103 39.6 27 35.1

 Missing 3 2 1

Maternal age at delivery

 <=20 years 3 1.1 2 0.8 1 1.3

 21–30 years 163 53.3 141 53.8 40 51.9

 31–40 years 134 43.6 118 45.0 35 45.5

 >40 years 6 2.1 1 0.4 1 1.3

 Missing 3 0 1

Maternal education

 Less than college completed 78 25.2 92 35.2 19 24.4

 College completed 146 47 110 42.1 34 43.6

 More than college completed 76 24.6 56 21.5 22 28.2

 Other education 10 3.1 3 1.1 3 3.8

 Missing 0 1 0

Marital status

 Single/other 10 3.4 15 5.7 3 3.8

 Cohabiting 141 45.4 132 50.6 33 42.3

 Married 159 51.3 114 43.7 42 53.8

 Missing 0 1 0

Maternal body mass index (kg/m2)

 <25 (under to normal weight) 191 62.9 169 66.5 52 67.5

 25-<30 (overweight) 89 29.3 25 9.8 6 7.8

 ≥30 (obese) 24 7.8 60 23.6 19 24.7

 Missing 7 8 1

Parity

 Nulliparous 174 56.7 157 59.9 43 55.8

 Multiparous 133 43.3 105 40.1 34 44.2
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Variable Weighted population (N = 
310)

Preschool ADHD group (N = 
262)

Typically developing 
children (N = 78)

N % N % N %

 Missing 3 0 1

Maternal ADHD score

 Not indicative of ADHD 289 94.1 226 87.3 72 93.5

 Indicative of ADHD 18 5.9 33 12.7 5 6.5

 Missing 3 3 1

Maternal smoking at baseline (17 weeks)

 No 230 75.1 200 76.6 61 79.2

 Yes 76 24.9 61 23.4 16 20.8

 Missing 3 1 1

Environ Int. Author manuscript; available in PMC 2021 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choi et al. Page 21

Ta
b

le
 2

G
eo

m
et

ri
c 

m
ea

ns
 (

st
an

da
rd

 d
ev

ia
tio

n)
 o

f 
ph

th
al

at
e 

m
et

ab
ol

ite
 c

on
ce

nt
ra

tio
ns

 in
 th

e 
st

ud
y 

po
pu

la
tio

n,
 m

ea
su

re
d 

fr
om

 u
ri

ne
 s

am
pl

es
 p

ro
vi

de
d 

by
 m

ot
he

rs
 

du
ri

ng
 m

id
-p

re
gn

an
cy

 (
sp

ec
if

ic
 g

ra
vi

ty
 a

dj
us

te
d)

.

P
ht

ha
la

te
P

ht
ha

la
te

 m
et

ab
ol

it
es

W
ei

gh
te

d 
po

pu
la

ti
on

 (
N

 =
 3

10
)

P
re

sc
ho

ol
 A

D
H

D
 g

ro
up

 (
N

 =
 

26
2)

T
yp

ic
al

ly
 d

ev
el

op
in

g 
ch

ild
re

n 
(N

 =
 7

8)

B
en

zy
lb

ut
yl

 p
ht

ha
la

te
M

on
ob

en
zy

l p
ht

ha
la

te
 (

ng
/m

l)
M

B
zP

5.
45

 (
2.

36
)

5.
38

 (
2.

48
)

5.
35

 (
2.

40
)

D
i-

is
o-

bu
ty

l p
ht

ha
la

te
M

on
oi

so
bu

ty
l p

ht
ha

la
te

 (
ng

/m
l)

M
iB

P
19

.6
4 

(2
.2

3)
19

.8
6 

(2
.1

1)
18

.9
5 

(2
.3

1)

D
i-

n-
bu

ty
l

M
on

o-
n-

bu
ty

l p
ht

ha
la

te
 (

ng
/m

l)
M

nB
P

21
.7

0 
(2

.1
1)

20
.0

3 
(2

.2
3)

20
.9

0 
(2

.0
7)

D
i-

et
hy

l p
ht

ha
la

te
M

on
oe

th
yl

 p
ht

ha
la

te
 (

ng
/m

l)
M

E
P

12
9.

71
 (

3.
65

)
11

3.
36

 (
4.

33
)

12
6.

49
 (

3.
89

)

D
i (

2-
et

hy
lh

ex
yl

) 
ph

th
al

at
e

M
on

o 
(2

-e
th

yl
he

xy
l)

 p
ht

ha
la

te
M

E
H

P
13

.0
6 

(1
.7

7)
12

.0
2 

(2
.1

2)
13

.5
1 

(1
.8

0)

M
on

o 
(2

-e
th

yl
-5

-h
yd

ro
xy

he
xy

l)
 p

ht
ha

la
te

M
E

H
H

P
16

.1
1 

(2
.2

0)
15

.5
7 

(2
.5

3)
16

.1
1 

(2
.2

8)

M
on

o 
(2

-e
th

yl
-5

-o
xo

he
xy

l)
 p

ht
ha

la
te

M
E

O
H

P
22

.5
3 

(1
.8

8)
23

.0
3 

(2
.1

1)
22

.2
2 

(1
.9

1)

M
on

o 
(2

-e
th

yl
-5

-c
ar

bo
xy

pe
nt

yl
) 

ph
th

al
at

e
M

E
C

PP
11

.0
3 

(2
.2

2)
10

.5
6 

(2
.5

4)
10

.9
8 

(2
.3

2)

M
on

o-
2-

m
et

hy
lc

ar
bo

xy
he

xy
l p

ht
ha

la
te

M
C

H
P

23
.2

1 
(1

.8
4)

22
.5

9 
(2

.0
2)

23
.3

7 
(1

.9
2)

Σ 
D

i (
2-

et
hy

lh
ex

yl
) 

ph
th

al
at

e 
m

et
ab

ol
ite

s 
(μ

m
ol

/L
)

Σ 
D

E
H

P
0.

30
 (

1.
85

)
0.

29
 (

2.
12

)
0.

30
 (

1.
89

)

D
iis

on
on

yl
 p

ht
ha

la
te

M
on

o-
4-

m
et

hy
l-

7-
hy

dr
ox

yo
ct

yl
 p

ht
ha

la
te

O
H

-M
iN

P
0.

92
 (

1.
79

)
1.

11
 (

2.
22

)
0.

91
 (

1.
86

)

M
on

o-
4-

m
et

hy
l-

7o
xo

oc
ty

l p
ht

ha
la

te
ox

o-
M

iN
P

1.
01

 (
1.

93
)

1.
30

 (
2.

58
)

0.
99

 (
1.

99
)

M
on

o-
4-

m
et

hy
l-

7-
ca

rb
ox

yh
ep

ty
l p

ht
ha

la
te

ox
o-

M
iN

P
3.

14
 (

1.
55

)
3.

78
 (

1.
83

)
3.

12
 (

1.
58

)

Σ 
D

iis
on

on
yl

 p
ht

ha
la

te
 m

et
ab

ol
ite

s 
(μ

m
ol

/L
)

Σ 
D

iN
P

0.
02

 (
1.

60
)

0.
02

 (
2.

04
)

0.
02

 (
1.

65
)

* A
ll 

ur
in

e 
sa

m
pl

es
 h

ad
 d

et
ec

ta
bl

e 
co

nc
en

tr
at

io
ns

 o
f 

al
l p

ht
ha

la
te

 m
et

ab
ol

ite
s.

Environ Int. Author manuscript; available in PMC 2021 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choi et al. Page 22

Ta
b

le
 3

C
ha

ng
e 

in
 e

xe
cu

tiv
e 

fu
nc

tio
n 

sc
or

es
a  w

ith
 a

n 
in

te
rq

ua
rt

ile
 r

an
ge

 (
IQ

R
) 

in
cr

ea
se

 in
 u

ri
na

ry
 p

ht
ha

la
te

 m
et

ab
ol

ite
 c

on
ce

nt
ra

tio
nb  d

ur
in

g 
pr

eg
na

nc
y,

 f
ro

m
 

fu
lly

 a
dj

us
te

d 
lin

ea
r 

re
gr

es
si

on
 m

od
el

s 
w

ith
 in

ve
rs

e 
pr

ob
ab

ili
ty

 w
ei

gh
ts

c  (
N

 =
 3

10
).

P
ht

ha
la

te
 m

et
ab

ol
it

e
B

eh
av

io
r 

R
at

in
g 

In
ve

nt
or

y 
of

 E
xe

cu
ti

ve
 F

un
ct

io
n-

P
re

sc
ho

ol
 (

B
R

IE
F

-P
)

Te
ac

he
r 

re
po

rt
P

ar
en

t 
re

po
rt

E
m

ot
io

na
l C

on
tr

ol
In

hi
bi

ti
on

W
or

ki
ng

 M
em

or
y

E
m

ot
io

na
l C

on
tr

ol
In

hi
bi

ti
on

W
or

ki
ng

 M
em

or
y

N
am

e
IQ

R
β(

95
%

 C
I)

β(
95

%
 C

I)
β(

95
%

 C
I)

β(
95

%
 C

I)
β(

95
%

 C
I)

β(
95

%
 C

I)

M
B

zP
7.

17
 (

ng
/m

l)
1.

23
 (

0.
31

, 2
.1

5)
0.

52
 (

−
0.

54
, 1

.5
7)

1.
13

 (
0.

14
, 2

.1
3)

1.
67

 (
0.

89
, 2

.4
5)

1.
00

 (
0.

03
, 1

.9
8)

1.
23

 (
0.

20
, 2

.2
6)

M
iB

P
19

.3
9 

(n
g/

m
l)

0.
07

 (
−

0.
58

, 0
.7

2)
−

0.
32

 (
−

1.
06

, 0
.4

2)
−

0.
16

 (
−

0.
86

, 0
.5

4)
0.

89
 (

0.
34

, 1
.4

4)
0.

71
 (

0.
03

, 1
.3

9)
0.

23
 (

−
0.

49
, 0

.9
6)

M
nB

P
22

.9
3 

(n
g/

m
l)

0.
37

 (
−

0.
43

, 1
.1

7)
−

0.
14

 (
−

1.
05

, 0
.7

8)
−

0.
05

 (
−

0.
91

, 0
.8

1)
1.

56
 (

0.
88

, 2
.2

3)
1.

70
 (

0.
88

, 2
.5

3)
1.

49
 (

0.
60

, 2
.3

7)

M
E

P
21

3.
15

 (
ng

/m
l)

0.
11

 (
−

0.
32

, 0
.5

4)
−

0.
13

 (
−

0.
62

, 0
.3

6)
−

0.
13

 (
−

0.
60

, 0
.3

4)
0.

26
 (

−
0.

11
, 0

.6
3)

−
0.

25
 (

−
0.

70
, 0

.2
1)

−
0.

21
 (

−
0.

70
, 0

.2
7)

Σ 
D

E
H

P
0.

26
 (

μm
ol

/L
)

0.
03

 (
−

0.
52

, 0
.5

7)
−

0.
60

 (
−

1.
22

, 0
.0

1)
−

0.
79

 (
−

1.
37

, −
0.

21
)

0.
30

 (
−

0.
17

, 0
.7

7)
−

0.
18

 (
−

0.
76

, 0
.4

0)
−

0.
52

 (
−

1.
13

, 0
.0

9)

Σ 
D

iN
P

0.
01

 (
μm

ol
/L

)
−

0.
28

 (
−

0.
63

, 0
.0

6)
−

0.
00

4 
(−

0.
40

, 0
.3

9)
−

0.
11

 (
−

0.
49

, 0
.2

6)
0.

13
 (

−
0.

17
, 0

.4
3)

0.
35

 (
−

0.
02

, 0
.7

2)
0.

02
 (

−
0.

38
, 0

.4
1)

P
ht

ha
la

te
 m

et
ab

ol
it

e
St

an
fo

rd
-B

in
et

 I
V

C
oo

ki
e 

D
el

ay
 T

as
k

A
 D

ev
el

op
m

en
ta

l N
E

ur
oP

SY
ch

ol
og

ic
al

 A
ss

es
sm

en
t 

- 
St

at
ue

 T
as

k

C
hi

ld
 a

ss
es

sm
en

t
C

hi
ld

 a
ss

es
sm

en
t

C
hi

ld
 a

ss
es

sm
en

t

N
on

-v
er

ba
l W

M
V

er
ba

l W
M

Se
lf

-c
on

tr
ol

In
hi

bi
ti

on

N
am

e
IQ

R
β(

95
%

 C
I)

β(
95

%
 C

I)
β(

95
%

 C
I)

β(
95

%
 C

I)

M
B

zP
7.

17
 (

ng
/m

l)
0.

19
 (

0.
09

, 0
.2

8)
0.

13
 (

0.
01

, 0
.2

5)
0.

07
 (

−
0.

03
, 0

.1
7)

0.
18

 (
0.

08
, 0

.2
8)

M
iB

P
19

.3
9 

(n
g/

m
l)

0.
04

 (
−

0.
03

, 0
.1

1)
0.

05
 (

−
0.

03
, 0

.1
3)

−
0.

00
4 

(−
0.

07
, 0

.0
7)

−
0.

04
 (

−
0.

12
, 0

.0
4)

M
nB

P
22

.9
3 

(n
g/

m
l)

0.
06

 (
−

0.
02

, 0
.1

5)
0.

07
 (

−
0.

02
, 0

.1
5)

0.
20

 (
0.

12
, 0

.2
8)

0.
13

 (
0.

05
, 0

.2
2)

M
E

P
21

3.
15

 (
ng

/m
l)

0.
00

4 
(−

0.
04

, 0
.0

5)
−

0.
07

 (
−

0.
12

, −
0.

02
)

−
0.

01
 (

−
0.

05
, 0

.0
4)

0.
05

 (
0.

01
, 0

.1
0)

Σ 
D

E
H

P
0.

26
 (

μm
ol

/L
)

−
0.

01
 (

−
0.

07
, 0

.0
4)

−
0.

03
 (

−
0.

09
, 0

.0
3)

−
0.

04
 (

−
0.

10
, 0

.0
2)

−
0.

03
 (

−
0.

09
, 0

.0
3)

Σ 
D

iN
P

0.
01

 (
μm

ol
/L

)
−

0.
02

 (
−

0.
06

, 0
.0

2)
−

0.
01

 (
−

0.
05

, 0
.0

3)
−

0.
02

 (
−

0.
06

, 0
.0

1)
−

0.
02

 (
−

0.
06

, 0
.0

1)

a A
ll 

sc
or

es
 o

f 
SB

5,
 C

D
T,

 a
nd

 N
E

PS
Y

 S
ta

tu
e 

Te
st

 w
er

e 
m

od
if

ie
d 

to
 h

av
e 

a 
m

ea
n 

of
 0

, a
 s

ta
nd

ar
d 

de
vi

at
io

n 
of

 1
, a

nd
 h

ig
he

r 
sc

or
es

 to
 in

di
ca

te
 w

or
se

 e
xe

cu
tiv

e 
fu

nc
tio

n.

b Sp
ec

if
ic

 g
ra

vi
ty

 a
nd

 b
at

ch
 e

ff
ec

t a
dj

us
te

d.

c A
ll 

m
od

el
s 

ad
ju

st
ed

 f
or

 m
at

er
na

l A
D

H
D

, B
M

I,
 a

ge
 a

t d
el

iv
er

y,
 p

ar
ity

, c
hi

ld
bi

rt
h 

ye
ar

, a
nd

 c
hi

ld
 s

ex
.

A
bb

re
vi

at
io

ns
: M

E
P:

 M
on

oe
th

yl
 p

ht
ha

la
te

; M
nB

P:
 M

on
o-

n-
bu

ty
l p

ht
ha

la
te

; M
iB

P:
 M

on
oi

so
bu

ty
l p

ht
ha

la
te

; M
B

zP
: M

on
ob

en
zy

l p
ht

ha
la

te
; D

E
H

P:
 D

i (
2-

et
hy

lh
ex

yl
) 

ph
th

al
at

e;
 D

iN
P:

 D
iis

on
on

yl
 p

ht
ha

la
te

.

∑
D

E
H

P:
 m

ol
ar

 s
um

 o
f 

m
on

o 
(2

-e
th

yl
he

xy
l)

 p
ht

ha
la

te
, m

on
o 

(2
-e

th
yl

-5
-h

yd
ro

xy
he

xy
l)

 p
ht

ha
la

te
, m

on
o 

(2
-e

th
yl

-5
-o

xo
he

xy
l)

 p
ht

ha
la

te
, m

on
o 

(2
-e

th
yl

-5
-c

ar
bo

xy
pe

nt
yl

) 
ph

th
al

at
e,

 a
nd

 m
on

o-
2-

m
et

hy
lc

ar
bo

xy
he

xy
l p

ht
ha

la
te

; ∑
D

iN
P:

 m
ol

ar
 s

um
 o

f 
m

on
o-

4-
m

et
hy

l-
7-

hy
dr

ox
yo

ct
yl

 p
ht

ha
la

te
, m

on
o-

4-
m

et
hy

l-
7o

xo
oc

ty
l p

ht
ha

la
te

, m
on

o-
4-

m
et

hy
l-

7-
ca

rb
ox

yh
ep

ty
l p

ht
ha

la
te

, o
xo

-D
iN

P,
 a

nd
 c

h-
D

iN
P.

Environ Int. Author manuscript; available in PMC 2021 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choi et al. Page 23
A

bb
re

vi
at

io
ns

: W
M

: W
or

ki
ng

 M
em

or
y;

 M
E

P:
 M

on
oe

th
yl

 p
ht

ha
la

te
; M

nB
P:

 M
on

o-
n-

bu
ty

l p
ht

ha
la

te
; M

iB
P:

 M
on

oi
so

bu
ty

l p
ht

ha
la

te
; M

B
zP

: M
on

ob
en

zy
l p

ht
ha

la
te

; D
E

H
P:

 D
i (

2-
et

hy
lh

ex
yl

) 
ph

th
al

at
e;

 
D

iN
P:

 D
iis

on
on

yl
 p

ht
ha

la
te

; ∑
D

E
H

P:
 m

ol
ar

 s
um

 o
f 

m
on

o 
(2

-e
th

yl
he

xy
l)

 p
ht

ha
la

te
, m

on
o 

(2
-e

th
yl

-5
-h

yd
ro

xy
he

xy
l)

 p
ht

ha
la

te
, m

on
o 

(2
-e

th
yl

-5
-o

xo
he

xy
l)

 p
ht

ha
la

te
, m

on
o 

(2
-e

th
yl

-5
-c

ar
bo

xy
pe

nt
yl

) 
ph

th
al

at
e,

 a
nd

 m
on

o-
2-

m
et

hy
lc

ar
bo

xy
he

xy
l p

ht
ha

la
te

; ∑
D

iN
P:

 m
ol

ar
 s

um
 o

f 
m

on
o-

4-
m

et
hy

l-
7-

hy
dr

ox
yo

ct
yl

 p
ht

ha
la

te
, m

on
o-

4-
m

et
hy

l-
7o

xo
oc

ty
l p

ht
ha

la
te

, m
on

o-
4-

m
et

hy
l-

7-
ca

rb
ox

yh
ep

ty
l p

ht
ha

la
te

, o
xo

-
D

iN
P,

 a
nd

 c
h-

D
iN

P.

Environ Int. Author manuscript; available in PMC 2021 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choi et al. Page 24

Ta
b

le
 4

Se
x-

sp
ec

if
ic

 c
ha

ng
es

 in
 e

xe
cu

tiv
e 

fu
nc

tio
n 

sc
or

es
a  p

er
 w

ith
 a

n 
in

te
rq

ua
rt

ile
 r

an
ge

 in
cr

ea
se

 (
IQ

R
) 

in
cr

ea
se

 in
 p

ht
ha

la
te

 m
et

ab
ol

ite
sb  a

nd
 th

e 
in

te
ra

ct
io

n 
te

rm
 p

-v
al

ue
s 

fr
om

 f
ul

ly
 a

dj
us

te
d 

lin
ea

r 
re

gr
es

si
on

 

m
od

el
s 

w
ith

 in
ve

rs
e 

pr
ob

ab
ili

ty
 w

ei
gh

ts
c  (

N
 =

 3
10

).

M
B

zP
 (

IQ
R

: 
7.

17
 n

g/
m

l)
M

iB
P

 (
IQ

R
: 

19
.3

9 
ng

/m
l)

M
nB

P
 (

IQ
R

: 
22

.9
3)

B
oy

s
G

ir
ls

p
B

oy
s

G
ir

ls
p

B
oy

s
G

ir
ls

p

B
eh

av
io

r 
R

at
in

g 
In

ve
nt

or
y 

of
 E

xe
cu

ti
ve

 F
un

ct
io

n 
P

re
sc

ho
ol

 (
te

ac
he

r)

E
m

ot
io

na
l c

on
tr

ol
1.

50
 (

0.
27

, 2
.7

3)
0.

90
 (

−
0.

47
, 2

.2
6)

0.
52

−
0.

11
 (

−
1.

12
, 0

.9
0)

0.
20

 (
−

0.
65

, 1
.0

6)
0.

64
0.

10
 (

−
0.

87
, 1

.0
6)

0.
98

 (
−

0.
44

, 2
.4

1)
0.

31

In
hi

bi
tio

n
1.

39
 (

−
0.

02
, 2

.7
9)

−
0.

55
 (

−
2.

12
, 1

.0
1)

0.
07

0.
14

 (
−

1.
00

, 1
.2

8)
−

0.
65

 (
−

1.
62

, 0
.3

1)
0.

30
0.

51
 (

−
0.

58
, 1

.6
0)

−
1.

57
 (

−
3.

19
, 0

.0
5)

0.
04

W
or

ki
ng

 m
em

or
y

0.
92

 (
−

0.
41

, 2
.2

5)
1.

4 
(−

0.
08

, 2
.8

7)
0.

64
−

1.
33

 (
−

2.
40

, −
0.

26
)

0.
69

 (
−

0.
22

, 1
.5

9)
<

0.
01

−
0.

52
 (

−
1.

56
, 0

.5
1)

1.
00

 (
−

0.
54

, 2
.5

4)
0.

11

B
eh

av
io

r 
R

at
in

g 
In

ve
nt

or
y 

of
 E

xe
cu

ti
ve

 F
un

ct
io

n 
P

re
sc

ho
ol

 (
pa

re
nt

)

E
m

ot
io

na
l c

on
tr

ol
2.

51
 (

1.
47

, 3
.5

5)
0.

67
 (

−
0.

46
, 1

.8
1)

0.
02

2.
16

 (
1.

32
, 2

.9
9)

−
0.

03
 (

−
0.

74
, 0

.6
8)

<
0.

01
2.

04
 (

1.
23

, 2
.8

4)
0.

48
 (

−
0.

72
, 1

.6
7)

0.
03

In
hi

bi
tio

n
1.

50
 (

0.
20

, 2
.8

1)
0.

41
 (

−
1.

02
, 1

.8
3)

0.
26

1.
88

 (
0.

84
, 2

.9
2)

−
0.

15
 (

−
1.

04
, 0

.7
4)

<
0.

01
2.

74
 (

1.
77

, 3
.7

2)
−

0.
63

 (
−

2.
08

, 0
.8

3)
<0

.0
1

W
or

ki
ng

 m
em

or
y

1.
52

 (
0.

14
, 2

.9
0)

0.
88

 (
−

0.
62

, 2
.3

9)
0.

53
0.

95
 (

−
0.

17
, 2

.0
6)

−
0.

29
 (

−
1.

24
, 0

.6
6)

0.
10

2.
91

 (
1.

89
, 3

.9
4)

−
1.

72
 (

−
3.

25
, −

0.
19

)
<0

.0
1

St
an

fo
rd

-B
in

et
 I

V
 (

ch
ild

)

N
on

-v
er

ba
l w

or
ki

ng
 m

em
or

y
0.

14
 (

0.
01

, 0
.2

7)
0.

24
 (

0.
09

, 0
.3

8)
0.

32
0.

17
 (

0.
06

, 0
.2

8)
−

0.
05

 (
−

0.
15

, 0
.0

4)
<0

.0
1

0.
16

 (
0.

06
, 0

.2
7)

−
0.

16
 (

−
0.

31
, −

0.
01

)
<0

.0
1

V
er

ba
l w

or
ki

ng
 m

em
or

y
0.

17
 (

0.
03

, 0
.3

1)
0.

03
 (

−
0.

18
, 0

.2
5)

0.
28

0.
06

 (
−

0.
05

, 0
.1

7)
0.

05
 (

−
0.

07
, 0

.1
6)

0.
87

0.
04

 (
−

0.
07

, 0
.1

4)
0.

13
 (

−
0.

03
, 0

.2
9)

0.
37

C
oo

ki
e 

D
el

ay
 T

as
k 

(c
hi

ld
)

Se
lf

-c
on

tr
ol

0.
03

 (
−

0.
10

, 0
.1

7)
0.

11
 (

−
0.

03
, 0

.2
6)

0.
42

0.
02

 (
−

0.
08

, 0
.1

3)
−

0.
02

 (
−

0.
11

, 0
.0

7)
0.

51
0.

29
 (

0.
19

, 0
.3

9)
−

0.
00

3 
(−

0.
15

, 0
.1

5)
<0

.0
1

A
 D

ev
el

op
m

en
ta

l N
E

ur
oP

SY
ch

ol
og

ic
al

 A
ss

es
sm

en
t 

- 
St

at
ue

 T
as

k 
(c

hi
ld

)

In
hi

bi
tio

n
0.

09
 (

−
0.

04
, 0

.2
3)

0.
27

 (
0.

13
, 0

.4
2)

0.
07

−
0.

18
 (

−
0.

29
, −

0.
08

)
0.

12
 (

0.
01

, 0
.2

4)
<0

.0
1

0.
14

 (
0.

04
, 0

.2
4)

0.
11

 (
−

0.
06

, 0
.2

7)
0.

71

M
E

P
 (

IQ
R

: 
21

3.
15

)
Σ 

D
E

H
P

 m
et

ab
ol

it
es

 (
IQ

R
: 

0.
26

 m
ol

/L
)

Σ 
D

iN
P

 m
et

ab
ol

it
es

 (
IQ

R
: 

0.
01

 m
ol

/L
)

B
oy

s
G

ir
ls

p
B

oy
s

G
ir

ls
p

B
oy

s
G

ir
ls

p

B
eh

av
io

r 
R

at
in

g 
In

ve
nt

or
y 

of
 E

xe
cu

ti
ve

 F
un

ct
io

n 
P

re
sc

ho
ol

 (
pa

re
nt

)

E
m

ot
io

na
l c

on
tr

ol
−

0.
01

 (
−

0.
48

, 0
.4

5)
0.

71
 (

0.
12

, 1
.2

9)
0.

05
0.

3 
(−

0.
2,

 0
.7

9)
0.

29
 (

−
1.

21
, 1

.7
9)

0.
99

0.
2 

(−
0.

24
, 0

.6
3)

0.
07

 (
−

0.
34

, 0
.4

9)
0.

70

In
hi

bi
tio

n
−

0.
52

 (
−

1.
09

, 0
.0

5)
0.

2 
(−

0.
52

, 0
.9

2)
0.

11
−

0.
13

 (
−

0.
74

, 0
.4

8)
−

0.
62

 (
−

2.
47

, 1
.2

2)
0.

62
0.

18
 (

−
0.

36
, 0

.7
1)

0.
51

 (
0,

 1
.0

1)
0.

38

W
or

ki
ng

 m
em

or
y

−
0.

66
 (

−
1.

26
, −

0.
07

)
0.

52
 (

−
0.

23
, 1

.2
8)

0.
01

−
0.

31
 (

−
0.

94
, 0

.3
3)

−
2.

46
 (

−
4.

39
, −

0.
53

)
0.

04
0.

18
 (

−
0.

39
, 0

.7
5)

−
0.

13
 (

−
0.

67
, 0

.4
1)

0.
44

B
eh

av
io

r 
R

at
in

g 
In

ve
nt

or
y 

of
 E

xe
cu

ti
ve

 F
un

ct
io

n 
P

re
sc

ho
ol

 (
te

ac
he

r)

E
m

ot
io

na
l c

on
tr

ol
−

0.
23

 (
−

0.
77

, 0
.3

)
0.

67
 (

−
0.

01
, 1

.3
4)

0.
03

0.
16

 (
−

0.
41

, 0
.7

3)
−

1.
21

 (
−

2.
94

, 0
.5

2)
0.

14
−

0.
04

 (
−

0.
54

, 0
.4

6)
−

0.
5 

(−
0.

98
, −

0.
03

)
0.

19

In
hi

bi
tio

n
0.

05
 (

−
0.

56
, 0

.6
6)

−
0.

42
 (

−
1.

19
, 0

.3
5)

0.
33

−
0.

55
 (

−
1.

2,
 0

.0
9)

−
1.

04
 (

−
2.

99
, 0

.9
2)

0.
65

0.
02

 (
−

0.
55

, 0
.5

9)
−

0.
03

 (
−

0.
57

, 0
.5

2)
0.

90

W
or

ki
ng

 m
em

or
y

0.
04

 (
−

0.
54

, 0
.6

1)
−

0.
4 

(−
1.

13
, 0

.3
3)

0.
35

−
0.

77
 (

−
1.

38
, −

0.
16

)
−

0.
89

 (
−

2.
74

, 0
.9

5)
0.

90
0.

06
 (

−
0.

48
, 0

.6
)

−
0.

27
 (

−
0.

79
, 0

.2
4)

0.
38

St
an

fo
rd

-B
in

et
 I

V
 (

ch
ild

)

Environ Int. Author manuscript; available in PMC 2021 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choi et al. Page 25

N
on

-v
er

ba
l w

or
ki

ng
 m

em
or

y
0.

04
 (

−
0.

02
, 0

.1
)

−
0.

05
 (

−
0.

13
, 0

.0
2)

0.
05

−
0.

02
 (

−
0.

09
, 0

.0
4)

0.
06

 (
−

0.
13

, 0
.2

5)
0.

39
−

0.
04

 (
−

0.
09

, 0
.0

2)
−

0.
01

 (
−

0.
06

, 0
.0

4)
0.

50

V
er

ba
l w

or
ki

ng
 m

em
or

y
−

0.
09

 (
−

0.
16

, −
0.

03
)

−
0.

04
 (

−
0.

12
, 0

.0
4)

0.
25

−
0.

02
 (

−
0.

09
, 0

.0
4)

−
0.

05
 (

−
0.

26
, 0

.1
6)

0.
81

−
0.

02
 (

−
0.

07
, 0

.0
4)

−
0.

00
1 

(−
0.

05
, 0

.0
5)

0.
67

C
oo

ki
e 

D
el

ay
 T

as
k 

(c
hi

ld
)

Se
lf

-c
on

tr
ol

−
0.

01
 (

−
0.

07
, 0

.0
4)

0.
00

2 
(−

0.
07

, 0
.0

7)
0.

74
−

0.
06

 (
−

0.
12

, −
0.

00
4)

0.
17

 (
−

0.
02

, 0
.3

5)
0.

02
−

0.
01

 (
−

0.
06

, 0
.0

5)
−

0.
04

 (
−

0.
09

, 0
.0

1)
0.

40

A
 D

ev
el

op
m

en
ta

l N
E

ur
oP

SY
ch

ol
og

ic
al

 A
ss

es
sm

en
t 

- 
St

at
ue

 T
as

k 
(c

hi
ld

)

In
hi

bi
tio

n
0.

1 
(0

.0
4,

 0
.1

5)
−

0.
02

 (
−

0.
09

, 0
.0

5)
0.

00
7

−
0.

04
 (

−
0.

1,
 0

.0
2)

0.
08

 (
−

0.
12

, 0
.2

8)
0.

24
−

0.
02

 (
−

0.
08

, 0
.0

3)
−

0.
03

 (
−

0.
08

, 0
.0

3)
0.

94

a A
ll 

sc
or

es
 o

f 
ch

ild
 a

ss
es

sm
en

t m
od

if
ie

d 
to

 h
av

e 
a 

m
ea

n 
of

 0
, s

ta
nd

ar
d 

de
vi

at
io

n 
of

 1
, a

nd
 h

ig
he

r 
sc

or
es

 to
 in

di
ca

te
 w

or
se

 e
xe

cu
tiv

e 
fu

nc
tio

n.

b Sp
ec

if
ic

 g
ra

vi
ty

 a
nd

 b
at

ch
 e

ff
ec

t a
dj

us
te

d.

c A
ll 

m
od

el
s 

ad
ju

st
ed

 f
or

 m
at

er
na

l A
tte

nt
io

n-
de

fi
ci

t h
yp

er
ac

tiv
ity

 d
is

or
de

r, 
B

M
I,

 a
ge

 a
t d

el
iv

er
y,

 p
ar

ity
, c

hi
ld

 b
ir

th
 y

ea
r, 

an
d 

ch
ild

 s
ex

.

A
bb

re
vi

at
io

ns
: M

B
zP

: M
on

ob
en

zy
l p

ht
ha

la
te

; M
nB

P:
 M

on
o-

n-
bu

ty
l p

ht
ha

la
te

; M
iB

P:
 M

on
oi

so
bu

ty
l p

ht
ha

la
te

.

A
bb

re
vi

at
io

ns
: M

E
P:

 M
on

oe
th

yl
 p

ht
ha

la
te

; D
E

H
P:

 D
i (

2-
et

hy
lh

ex
yl

) 
ph

th
al

at
e;

 D
iN

P:
 D

iis
on

on
yl

 p
ht

ha
la

te
; ∑

D
E

H
P:

 m
ol

ar
 s

um
 o

f 
m

on
o 

(2
-e

th
yl

he
xy

l)
 p

ht
ha

la
te

, m
on

o 
(2

-e
th

yl
-5

-h
yd

ro
xy

he
xy

l)
 p

ht
ha

la
te

, m
on

o 
(2

-e
th

yl
-5

-o
xo

he
xy

l)
 p

ht
ha

la
te

, m
on

o 
(2

-e
th

yl
-5

-c
ar

bo
xy

pe
nt

yl
) 

ph
th

al
at

e,
 a

nd
 m

on
o-

2-
m

et
hy

lc
ar

bo
xy

he
xy

l p
ht

ha
la

te
; ∑

D
iN

P:
 m

ol
ar

 s
um

 o
f 

m
on

o-
4-

m
et

hy
l-

7-
hy

dr
ox

yo
ct

yl
 p

ht
ha

la
te

, m
on

o-
4-

m
et

hy
l-

7o
xo

oc
ty

l p
ht

ha
la

te
, m

on
o-

4-
m

et
hy

l-
7-

ca
rb

ox
yh

ep
ty

l p
ht

ha
la

te
, o

xo
-D

iN
P,

 a
nd

 c
h-

D
iN

P.

Environ Int. Author manuscript; available in PMC 2021 April 01.


	Abstract
	Introduction
	Materials and methods
	Study population
	Measurement of phthalate metabolites
	Measurement of executive function
	Measurement of covariates
	Approach

	Results
	Discussion
	Conclusion
	References
	Fig. 1.
	Table 1
	Table 2
	Table 3
	Table 4

