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Abstract
The demonstrated presence in adult tissues of cells with sustained tissue
regenerative potential has given rise to the concept of tissue stem cells. Assays
to detect and measure such cells indicate that they have enormous proliferative
potential and usually an ability to produce all or many of the mature cell types
that define the specialized functionality of the tissue. In the hematopoietic
system, one or only a few cells can restore lifelong hematopoiesis of the whole
organism. To what extent is the maintenance of hematopoietic stem cells
required during normal hematopoiesis? How does the constant maintenance of
hematopoiesis occur and what is the behavior of the hematopoietic stem cells
in the normal organism? How many of the hematopoietic stem cells are created
during the development of the organism? How many hematopoietic stem cells
are generating more mature progeny at any given moment? What happens to
the population of hematopoietic stem cells in aging? This review will attempt to
describe the results of recent research which contradict some of the ideas
established over the past 30 years about how hematopoiesis is regulated.
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A piece of history
Nature and Nature’s laws lay hid in night:
God said, “Let Newton be!” and all was light.
Alexander Pope (1688–1744)

It did not last; the devil howling
“Ho! Let Einstein be!” restored the status quo.
Sir John Collings Squire (1884–1958)

Hematopoietic cells arise from mesodermal precursors in the devel-
oping vertebrate embryo in multiple waves in different anatomic 
sites: allantois, yolk sac, and the aorta-gonad-mesonephros1–9. Cells 
able to maintain lifelong hematopoiesis emerge first from ven-
tral aortic hemogenic endothelial cells and immediately enter the 
circulation10–13. These hematopoietic stem cells (HSCs) home to and 
expand within the fetal liver, spleen, thymus and eventually seed 
the bone marrow—the major blood-forming organ in the adult3,7. 
The precise number of HSCs at all stages of development remains 
poorly defined.

The modern era of HSC characterization started with the work of 
Till and McCulloch14. They described spleen colony-forming units 
(CFU-S). For many years thereafter, these cells were believed to 
have the properties of HSCs. Then it was discovered that most 
CFU-S can repopulate the hematopoietic system for only a short 
time and that they are descendants of phenotypically distinct cells 
that are able to repopulate the hematopoietic system for a long 
time15–18. The latter are usually detected by their ability to perpetu-
ally regenerate all blood cell types in a myeloablated recipient19 
and, in the adult, these HSCs are quiescent most of the time20. Two 
general models have been put forth for how HSCs are recruited 
into proliferation and subsequent differentiation under normal 
physiological conditions. The “clonal succession model” proposes 
that small numbers of HSCs are sequentially recruited to leave the 
compartment and enter the cell cycle, and thereafter initiate an 
irreversible lineage commitment process16,21–23. The “clonal stabil-
ity model” suggests that randomly selected self-maintaining HSCs 
continuously replenish the supply of mature blood cells throughout 
an organism’s lifetime24–26.

Methods of marking individual HSCs
In order to understand how normal hematopoiesis is maintained, 
we require methods that can trace the separate long-term outputs 
of individual cells. One approach has been to permanently and 
uniquely mark individual HSCs. Radiation-induced chromosomal 
markers were used by Till and co-authors to show that all cells 
in each spleen colony derive from a single cell27,28. However, the 
small number of chromosomally marked cells obtained using this 
approach made it inadequate to resolve the HSC clones operative in 
long-term transplant experiments.

The genetic marking of mouse HSCs via the retroviral-mediated 
transfer of a foreign gene provided evidence that one cell is capa-
ble of differentiating into all major types of hematopoietic cells29,30 
and allowed the composition of lifelong clones derived from adult 
mouse bone marrow and fetal liver HSCs to be examined22,31. It 
was also shown that the hematopoiesis in the lethally irradiated 
mice transplanted with the marked cells was polyclonal and was 

supported initially by a large number of short-lived, successively 
active clones22,32. Moreover, it was found that the formation of 
blood is polyclonal, not only at the level of early pluripotent pro-
genitor, CFUs, but also at the level of terminally differentiated 
mature cells33.

Retroviral marking is, however, limited to cells that are actively 
cycling. This method thus fails to label any HSCs that are not divid-
ing at the time of retroviral exposure. Early studies that used this 
method thus had low resolution, leading to an underestimation of 
HSC numbers34. Moreover, the site where the retrovirus inserts into 
the host genome can have a major effect on the clonal output of 
the initially transduced HSC, ranging from a slight change to overt 
dominance and even leukemia35–38. These effects are reduced sub-
stantially if vectors are derived from lentiviruses, such as the human 
AIDS virus HIV39, and the use of lentiviruses to track the prog-
eny regenerated from initially quiescent mouse HSCs has revealed 
many more clones than found earlier using retroviral marking40.

A breakthrough in the study of the repopulating potential of mouse 
HSCs occurred when the use of large libraries of lentiviruses 
encoding short, randomly varied DNA marker sequences (called 
barcodes) was introduced41,42. Upon integration, each such vector 
introduces a unique, identifiable, and heritable mark into the host 
cell genome, allowing the clonal progeny of each initially transduced 
cell to be tracked over time. By coupling the barcoding method to 
a high-throughput sequencing-based detection system, it became 
possible to identify even smaller clones42,43. The use of this sensi-
tive methodology showed that many clones (about 70 per mouse) 
produced in mice transplanted with such marked cells can contribute 
to hematopoiesis over long periods of time, although their content 
of granulocytes, T cells, and B cells could be substantially different. 
Moreover, the contributions of individual clones to mature blood 
cells could change dynamically, with most clones either expanding 
or declining over time44, and not necessarily in a fashion concordant 
with their activity in the bone marrow. Nevertheless, many clones 
were observed for more than 12 weeks. Thus, the regeneration of 
the hematopoietic system from transplanted cells can involve a con-
tribution from a large number of input HSCs and progenitor cells, 
including self-renewing HSCs, as well as more differentiated and 
lineage committed progenitor cells.

The stromal microenvironment niches for HSCs also play an impor-
tant role in hematopoiesis. It is known that the niches for the HSC 
differ in different places of hematopoiesis. It has been reported that 
there are fewer niches in the long bones than in trabecular bones, 
and the properties of the HSCs in the niches in these different sites 
are different45–49.

Clonal composition of HSCs
Studies of the clonal composition of HSCs in primates have shown 
results that are generally similar to those obtained in mice, albeit 
with some substantial differences. Tracking of thousands of HSCs 
and progenitor cells in rhesus macaques for up to 12 years revealed 
that approximately half of the analyzed clones contributed to long-
term repopulation (over 3–10 years), arising in sequential groups 
and likely representing self-renewing HSCs50. Most of the remain-
ing clones were observed only during the first year. A large number 
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(43–71%) of clones were detected at an extremely low average 
frequency of <0.0002, contributing to <7% of total blood repopu-
lation over the entire course of observation. The 5% of the most 
frequently detected clones contributed to an average of 49–72% of 
all regenerated blood cells, depending on the animal and cell type. 
About 330 clones per animal were detected. The sequential expan-
sion of different groups of clones (over several months for the earli-
est clones and over several years for those clones appearing later 
after repopulation) was revealed. Approximately equal numbers of 
long-term and short-term clones were detected. Although the assay 
endpoint given to each animal to distinguish long-term and short-
term clones ranged from 3–10 years, this variation in endpoints did 
not significantly affect the findings regarding the relative frequen-
cies of these two populations in so far as the clonal kinetics in all 
animals became more stable after 1–2 years50.

In humans, HSC kinetic data derived from the clonal tracking of 
their activity in vivo have been obtained from gene therapy clini-
cal trials for adenosine deaminase (ADA) deficient-SCID and 
Wiskott-Aldrich syndrome (WAS). These trials involved the infu-
sion of genetically engineered HSCs whose progeny could then be 
followed over time by tracking the unique barcode integration sites 
(ISs) of the therapeutic vectors incorporated into the transplanted 
cells. Authors analyzed the timing of short, intermediate, and long-
term HSC output showing that CD34+ clones active at 3–6 months 
after transplantation were not detectable at later times51. In the later 
steady-state, about 200 clones per person was the figure estimated 
by mark-recapture of transduced HSC clones that were stably 
contributing to the progenitor’s repertoire for up to 3 years after 
infusion of gene-corrected CD34+ cells. To evaluate the long-term 
preservation of activity by the transplanted HSCs, the authors 
exploited data derived from the IS-based tracking of 4,845 clones in 
ADA-SCID patients performed for up to 6 years after gene therapy. 
This analysis showed that identical ISs were consistently detected 
in multiple lineages at stable levels even several years after trans-
plantation. Strikingly, semi-quantitative PCR used to measure spe-
cific vector-genome junctions revealed a fluctuating, but consistent, 
output of marked clones over a period of 5 years without evidence 
of transient inactivity. Additionally, since the gamma-retroviral 
vector used in ADA-SCID HSC-GT trial is able to transduce only 
actively replicating cells, these results provided the first evidence 
that in vitro activated human HSCs can still display long-term activ-
ity in vivo51,52. Thus, in humans and primates, hundreds of individual 
clones could be shown to contribute to different cell lineages with 
clonal stability established after an initial phase of instability during 
the first year after transplantation.

In all previously described transplantation studies, the progeny of 
individual HSCs were tracked using an ex vivo viral transduction of 
the cells prior to transplantation into myelosuppressed hosts. This 
approach is not effective for labeling HSCs in situ. To reduce the 
drawback of studying the behavior of cells stimulated to repopulate 
myeloablated recipients, mice were sublethally irradiated without 
hematopoietic cell transplantation. Day 10 CFU-S assays of bone 
marrow cells subsequently sampled throughout a 12– to 20–month 
period revealed chromosomally marked clones that remained active 
for at least 1.5 years of the life of the mice53,54. These long-lived 
clones produced 10% of all identified CFU-S. Interestingly, studies 

of immunophenotypically defined HSCs showed that only 10% of 
those that divided were able to return to a resting state55. In sum-
mary, some HSCs are able to maintain hematopoiesis for long peri-
ods and can return to a quiescent state after transient proliferative 
activity.

Recent approaches used to track cells using a transposon system 
cloned into mice56 have now provided an opportunity to study 
the control of endogenous hematopoiesis without the use of 
transplantation57. The transposon is activated by a hyperactive 
“sleeping beauty” transposase whose expression is controlled by 
doxycycline. During the short time period when doxycycline is 
applied to a mouse, the transposon can randomly mobilize to a 
different genomic location. This transposition creates an inherit-
able genomic DNA insertion that is unique to individual cells and 
their progeny. Cells originating from a common ancestor can thus 
be identified by their shared unique transposon IS. The transposon 
system has produced strikingly different results than those from pre-
vious studies. At each of their measured time points, dramatically dif-
ferent clones appear to supply the blood. The authors estimated that 
thousands of clones contribute to blood formation at any time point. 
Thus, their data suggest that long-term hematopoiesis is sustained 
by the successive recruitment of a large number of clones. While 
their observed clonal dynamics are consistent with the “clonal suc-
cession model”, their estimated clonal complexity is much greater 
than could possibly be supported by the relatively small number 
of HSCs traditionally identified using transplantation methods. The 
clonal composition of hematopoietic cells derived from clonally 
marked donor mice when compared with that of transplanted recip-
ients revealed that donors and recipients possessed different clonal 
repertoires. The authors also compared the clonal composition of 
the HSC compartment with that of the intermediate progenitors, and 
the mature blood cells present in individual mice. They found that 
fewer than 5% of HSC clones are subsequently represented in mature 
cell populations, whereas the clonal composition of the multipo-
tent progenitor and myeloid progenitor populations did mirror 
the mature cell populations. Based on these two experiments, the 
authors conclude that the cells that supply blood under homeostatic 
conditions are not transplantable and are not found in the conven-
tionally defined HSC pool. Moreover, they suggest that the large 
number of progenitor cells, including previously defined multipo-
tent progenitors and myeloid progenitors, may be the major source 
of ongoing hematopoiesis. These data imply a need to change our 
idea of the regulation of steady-state hematopoiesis. However, 
it should be noted that these data do not exclude the possibility 
that HSCs participate in steady-state blood production but, if they 
do, they must be quickly depleted from the HSCs pool once they 
committed to differentiate.

What happens during aging
The dynamics of hematopoiesis depend on the phase of ontogenesis 
from the cradle to the grave. What happens to the pool of HSCs 
during aging? The number of transplantable HSCs increases in the 
bone marrow of old mice58–60, although clonal analysis of their prog-
eny has revealed many functional defects61. For example, the clonal 
outputs of HSCs from young mice are, on average, larger than those 
produced by HSCs from old mice44. These data appear to contradict 
the recent results of whole-exome sequencing of DNA in peripheral 
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blood cells from aging humans62,63, where the development of oligo-
clonal hematopoiesis was found to be a relatively common condition 
and one associated with an increased risk of hematologic cancer. 
Based on deep whole-genome sequencing, it was estimated that 
approximately 450 somatic mutations had accumulated in the non-
repetitive portions of the genome present in healthy blood cells in a 
115-year-old woman. The distribution of variant allele frequencies 
of these mutations suggests that the majority of the peripheral white 
blood cells were the offspring of two related HSC clones. Moreo-
ver, the telomere lengths of the white blood cells were significantly 
shorter than the telomere lengths from other tissues. Together, this 
suggests that the finite lifespan of HSCs, rather than somatic muta-
tion effects, may lead to hematopoietic clonal evolution at extreme 
ages64. Exhaustion of the HSC pool leading to a reduced number of 

functioning clones might explain how such an oligoclonal picture of 
hematopoiesis develops in humans. It is thus becoming increasingly 
clear that what we know about the structure and functioning of the 
hematopoietic system is still just the tip of the iceberg, with much 
more to understand that is still under water.
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