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Abstract: In this paper, we propose an Si3N4/SiO2 horizontal-slot-waveguide-based polarization
beam splitter (PBS) with low nonlinearity for on-chip high-power systems. The coupling length ratio
between the quasi-TE and quasi-TM modes (LTE/LTM) was optimized to 2 for an efficient polarization
splitting. For the single-slot design, the coupling length of the PBS was 281.5 µm, while the extinction
ratios (ER) of the quasi-TM and quasi-TE modes were 23.9 dB and 20.8 dB, respectively. Compared to
PBS based on the Si3N4 strip waveguide, the coupling length became 22.6% shorter. The proposed
PBSs also had a relatively good fabrication tolerance for an ER of >20 dB. For the multi-slot design,
the coupling length of the PBS was 290.3 µm, while the corresponding ER of the two polarizations
were 24.0 dB and 21.0 dB, respectively. Furthermore, we investigated the tradeoff between the ER and
coupling length for the optimized PBSs with single slot or multiple slots.

Keywords: optical waveguide; silicon photonics; silicon nitride; optical polarization

1. Introduction

Photonic integrated circuit (PIC) has attracted much interest recently due to its fundamental
advantages in terms of low power consumption, compact size, and low cost [1,2]. Specifically, silicon
nitride (Si3N4) is considered to be a promising platform for PIC, due to its CMOS compatibility [3,4].
Compared to the silicon (Si) waveguide, Si3N4 has the advantages of a smaller roughness-induced
scattering loss due to the lower refractive index, larger fabrication tolerance due to the weaker
light confinement [5–8], and lower nonlinear loss induced by two-photon absorption (TPA) in the
telecommunication band [9–13]. Thus, the Si3N4 waveguide has been widely considered for the
high-power applications, such as nonlinear optics (optical frequency comb generation [14], chip optical
parametric oscillators, supercontinuum generation [10]), material processing, laser medicine [15], etc.

Polarization beam splitter (PBS) is widely used to mitigate the polarization randomness problem
in photonics systems by controlling the polarization state, thus, ensuring proper functioning [16–20].
PBS has been extensively used in sensor applications, such as polarization navigation sensor [21],
photoacoustic remote sensing microscopy [22], distributed vibration sensor [23], magnetic field
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sensor [24], and fiber-optic gyroscope [25]. Furthermore, integrated PBS is an indispensable component
of the transceiver in coherent optical communication system. The function of PBS is to separate
the transverse electric (TE) and transverse magnetic (TM) polarization beams into different paths,
due to their different propagation constants. Previously, various PBSs with different structures
have been demonstrated, such as directional couplers, photonic crystals, multimode interferometers
(MMIs), Mach-Zehnder interferometers (MZIs), and subwavelength gratings [16,26–28]. Recently,
slot waveguide has been implemented into directional couplers for improved polarization-splitting
performance [17,18,29–35]. In the slot waveguide, a low refractive index layer is sandwiched by two high
refractive index layers. Due to the discontinuity of the electric field at the high-refractive-index-contrast
interfaces, the mode with a polarization normal to the interfaces is significantly enhanced within
the slot region. Either vertical-slot or horizontal-slot waveguides have been used for on-chip PBSs.
The fabrication process of the vertical-slot-waveguide-based PBS usually introduces large roughness in
the vertical interfaces [36]. A horizontal-slot-waveguide-based PBS has smoother interfaces, as it only
needs to deposit layers with different materials and then etch the waveguide vertically.

In this study, we investigated the integrated PBS using Si3N4-based, coupled, horizontal slot
waveguides that could be used for kW-level peak power on-chip systems. The designed Si3N4-based
PBS could have negligible linear and nonlinear loss, and its Kerr nonlinear coefficient was approximately
two orders of magnitude less than that of PBS using silicon waveguides. By manipulating the coupling
length ratio of the quasi-TE and quasi-TM modes (LTE/LTM) to be around 2, efficient polarization
splitting can be realized. First, we proposed and designed the Si3N4-based single-slot waveguide PBS,
which had a 281.5-µm coupling length. The corresponding extinction ratios (ER) were 23.9 dB and
20.8 dB at 1550 nm for the quasi-TM and quasi-TE modes, respectively. Compared with the PBS based
on Si3N4 strip waveguide, the coupling length becomes 22.6% shorter. Our simulation also showed
good fabrication tolerance, the ER maintained >20 dB for the quasi-TM mode with a waveguide
width variation of ±20 nm. Additionally, we designed a Si3N4-based multi-slot waveguide PBS with
a 290.3-µm coupling length. Its ERs of the quasi-TM and quasi-TE modes were 24.0 dB and 21.0 dB
at 1550 nm, respectively. Moreover, the tradeoff between the ER and coupling length for both the
single-slot and multi-slot waveguides was also investigated at the end.

2. Concept

Figure 1a shows two basic polarization splitting mechanisms. Type I illustrates that the coupling
length of two orthogonal polarizations has a large difference, such as the coupling length ratio (LTE/LTM),
which was up to 21 [18]. In this condition, most of the quasi-TE mode remained in the bar port, while
a fraction of the quasi-TE mode was still coupled to the cross port. The quasi-TM mode was fully
coupled to the cross port. The coupling length of the quasi-TE mode was designed to reach to the
integer multiple of the one for the quasi-TM mode in Type II. In such a case, the quasi-TM mode
was coupled out and then back to the bar port, while the quasi-TE mode was completely coupled
to the cross port. As a result, an efficient polarization splitting was achieved. The schematic of
the Si3N4 horizontal-single-slot-waveguide-based PBS is depicted in Figure 1b, which was based on
Type II. The quasi-TE and quasi-TM modes had different coupling lengths when propagating along
a waveguide. The blue and red lines represented the power transformation of the quasi-TE and
quasi-TM mode, respectively.

The cross-section of the proposed Si3N4 horizontal-slot-waveguide-based PBS is also illustrated
in Figure 1b. High index material Si3N4 was used for the top and bottom regions, while a low index
silicon dioxide (SiO2) was chosen for the middle slot region. The material refractive indices of SiO2 and
Si3N4 were obtained according to the Sellmeier equations in our model [37,38]. Hs is the slot thickness,
Hu is the upper Si3N4 thickness, Hl is the lower Si3N4 thickness, and d is the spacing between the two
slot waveguides. We keep the total height H and the width W of the slot waveguide to 800 nm and
1050 nm, respectively.
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Figure 1. Schematic of two basic polarization splitting mechanisms (a) and the Si3N4 
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respectively. We calculated the effective indices of the supermodes for the coupled-waveguide 
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no,TE) and quasi-TM (ne,TM and no,TM) modes at the wavelength of 1550 nm are shown in Figure 2a–d. 

 
Figure 2. The electric field distributions of (a) the even quasi-transverse electric (TE) mode, (b) the 
odd quasi-TE mode, (c) the even quasi-TM mode, and (d) the odd quasi-TM mode. 
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We obtained the normalized power of the silicon slot waveguide [39] with different input peak 
power based on Equation (3) 

dI/dz = -αI-βTPA I2, (3) 

where I is the input peak power, z is the propagation distance, α is the linear loss, and βTPA is the TPA 
coefficient. As per the literature results, 6.3 dB/cm [36] and 0.01 dB/cm [40,41] were chosen for the linear 
losses of the Si and Si3N4 slot waveguides, the TPA coefficient βTPA of Si was set to 9.95 × 10−12 m/W [41]. 
In Figure 3, the normalized power of the silicon slot waveguide decreased rapidly as the increase of 

Figure 1. Schematic of two basic polarization splitting mechanisms (a) and the Si3N4

horizontal-single-slot-waveguide-based polarization beam splitter (PBS) (b).

Based on the mode-coupling theory, the propagating behavior in the designed PBS could be
viewed as the summation of the even and odd modes along the device. The coupling length of two
orthogonal polarizations can be expressed as [18]:

LTE = λ/[2*(ne,TE − no,TE)], (1)

LTM = λ/[2*(ne,TM − no,TM)], (2)

where LTE and LTM are the coupling lengths of the quasi-TE and quasi-TM modes, ne,TE, no,TE, ne,TM,
and no,TM are the effective refractive indices of the even and odd supermodes of the x and y polarizations,
respectively. We calculated the effective indices of the supermodes for the coupled-waveguide structure,
using a finite-element mode solver. The electric field distributions of the quasi-TE (ne,TE and no,TE) and
quasi-TM (ne,TM and no,TM) modes at the wavelength of 1550 nm are shown in Figure 2a–d.
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Figure 2. The electric field distributions of (a) the even quasi-transverse electric (TE) mode, (b) the odd
quasi-TE mode, (c) the even quasi-TM mode, and (d) the odd quasi-TM mode.

3. Resultant Design of the Polarization Beam Splitter

3.1. Material Characteristics

We obtained the normalized power of the silicon slot waveguide [39] with different input peak
power based on Equation (3)

dI/dz = −αI − βTPA I2, (3)

where I is the input peak power, z is the propagation distance, α is the linear loss, and βTPA is the TPA
coefficient. As per the literature results, 6.3 dB/cm [36] and 0.01 dB/cm [40,41] were chosen for the linear
losses of the Si and Si3N4 slot waveguides, the TPA coefficient βTPA of Si was set to 9.95 × 10−12 m/W [41].
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In Figure 3, the normalized power of the silicon slot waveguide decreased rapidly as the increase of
the input power to the waveguide due to nonlinear loss process. For high power on-chip applications,
kW-level power was used in some experiments [42]. The normalized power only remained 27.8% after
0.1-mm propagation, when the input peak power was up to 1 kW. The dashed black line represented
the power evolution in the Si3N4-based slot waveguide. In contrast, the normalized power after
the 1-mm Si3N4-based slot waveguide still approached 99.98%. Consequently, compared to silicon
horizontal slot waveguide splitter [18], it was more suitable for high power integrated systems.
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We used a full-vector model [43] to guarantee an accurate result, which considered the modal
distribution of different materials to the overall nonlinear coefficient. Equation (4) was used to
characterize the nonlinear coefficient:

γ = 2πn2/λAe f f , (4)

where Aeff is the effective mode area, n2 is the nonlinear refractive index averaged over
an inhomogeneous cross-section weighted with respect to field distribution. At 1550 nm, the nonlinear
refractive indices of Si, Si3N4, and SiO2 were 4.5 × 10−18 m2/W, 2.4 × 10−19 m2/W, and 2.6 × 10−20 m2/W,
respectively [3,44,45]. The Kerr nonlinear coefficient γ of the silicon horizontal slot waveguide
splitter [18] is shown in Figure 4a. The nonlinear coefficients of the quasi-TE modes were >68 /W/m,
which were bigger than that of the quasi-TM modes. This was because the quasi-TE modes remained
mainly in the silicon part, while a large portion of the optical power for the quasi-TM modes resided
within the SiO2 slot part. Figure 4b shows the nonlinear coefficient of the modes in the proposed Si3N4

slot-waveguide-based PBS. The corresponding geometric parameters were H = 800 nm, W = 1050 nm,
Hs = 50 nm, Hu = 250 nm, and d = 500 nm. We can see that the nonlinear coefficients of the quasi-TE
modes were near 0.8 /W/m, the ones of the quasi-TM modes were near 0.6 /W/m. The Kerr nonlinear
coefficients γ of the proposed PBS was approximately one percent of the one of the silicon horizontal
slot waveguide splitter for the quasi-TE modes. For the quasi-TM modes, γ of the proposed PBS was
near 5% of the one for the silicon horizontal slot waveguide splitter. Compared to the silicon horizontal
slot waveguide splitter, the proposed Si3N4 slot-waveguide-based PBS had negligible nonlinearity
under certain power level, and thus could efficiently separate the polarizations.
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3.2. Single-Slot Waveguide Polarization Beam Splitter

We first investigated the coupling length of the quasi-TM mode (LTM) and the coupling length ratio
of quasi-TE and TM mode (LTE/LTM) by varying the slot thickness in the single-slot-waveguide-based
PBS, as shown in Figure 5a. We found that the coupling length of the quasi-TM mode decreased with
the increasing of slot thickness, and the coupling length ratio (LTE/LTM) increased. Here, the waveguide
spacing d was 500 nm, and the slot thickness Hs was 50 nm. In this condition, the coupling length of
the TM mode was 140.5 µm, and the coupling length ratio of the two polarizations approached to 2,
thus, the two orthogonal polarizations could be effectively separated at 1550 nm. Figure 5b depicts the
effects of varying the waveguide spacing d. For a PBS with 50-nm slot thickness, LTM increases when d
increases from 100 to 900 nm. The coupling becomes weaker for larger waveguide spacing, and thus
the coupling length increases. The waveguide spacing d = 500 nm was chosen for the following study.
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slot thickness Hs (d = 500 nm); and (b) the waveguide spacing d (Hs = 50 nm).

As shown in Figure 6, the normalized power of the quasi-TE and quasi-TM modes in the bar port
was a function of propagation distance. When the propagation distance was 281.5 µm, the quasi-TE
mode was almost completely coupled to the cross port, the residual output in the bar port was only
~0.4%. Furthermore, when the quasi-TM mode was coupled out and brought back to the bar port,
the output remained at 99.22%. The device length L = LTE = 2LTM = 281.5 µm was chosen. Finally,
an efficient PBS could be achieved by incorporating the coupled horizontal single-slot waveguides with
the parameters of H = 800 nm, W = 1050 nm, Hs = 50 nm, Hu = 250 nm, d = 500 nm, and L = 281.5 µm.
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Equations (5) and (6) are the general expression of the ERs:

ERbar = 10*Log10[cos2(πz/2LTE)/cos2(πz/2LTM)], (5)

ERcross = 10*Log10[sin2(πz/2LTM)/sin2(πz/2LTE)], (6)

where ERbar and ERcross are the extinction ratios of the bar port and the cross port of the PBS,
respectively. These formulas are suitable for both the Type I and Type II polarization splitting
mechanisms. Considering L = LTE = 2LTM in our Type II based design, the ERs in Equations (5) and (6)
could be further expressed as:

ERTM = 10*Log10[cos2(πz/L)/cos2(πz/2L)], (7)

ERTE = 10*Log10[sin2(πz/2L)/sin2(πz/L)], (8)

where L is the coupling length and z is the propagation distance. In the critical scenario, i.e., the beam
propagation distance z = L = LTE = 2LTM, the theoretical values of both ERTM and ERTE from the
Equations (7) and (8) equaled to infinite. In practice, the fabrication imperfections from the design
target, such as the length ratio of the two waveguides, the spacing between the two waveguides,
and the width of the waveguides, resulted in incomplete power transfer and the degradation of the
ERTM and ERTE. We defined the bar port as the TM mode port, and the cross port as the quasi-TE mode
port. Figure 7a shows the ERs of the proposed Si3N4 horizontal slot waveguide PBS for the quasi-TE
and quasi-TM modes, which had a strong wavelength dependence. At the optimized wavelength
of 1550 nm, the ERs of the quasi-TM and quasi-TE mode were 23.9 dB and 20.8 dB, respectively.
The extinction ratio of the designed Si3N4/SiO2 horizontal-slot-waveguide-based PBS could almost
satisfy the practical demand of optical communication systems within the total C-band [46]. The ER of
the quasi-TM mode was larger than the one of the quasi-TE mode, as the electric field of the quasi-TE
mode was discontinuous at vertical interfaces, the overlap between two waveguides was stronger,
and the crosstalk was higher.

Furthermore, we investigated the corresponding Si3N4 strip-waveguide-based PBS and simulated
its properties. Based on the same mechanism, efficient polarization splitting could be realized using
the coupled Si3N4 strip-waveguide-based PBS. The Kerr nonlinear coefficients γ of the modes in
the Si3N4/SiO2 slot waveguide was smaller than the ones in the Si3N4 strip waveguide for both
polarizations. The optimized geometric parameters of the Si3N4 strip waveguide was H = 800 nm,
W = 1070 nm, and the coupling length L = LTE equaled 363.4 µm, when the corresponding ERs could
achieve the values of the proposed PBS, i.e., 25.2 dB for the quasi-TM mode and 22.5 dB for the
quasi-TE mode, respectively. Thus, the proposed Si3N4/SiO2 slot-waveguide-based PBS was improved
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on the properties for both coupling length and nonlinearity. As shown in Figure 7b, the ERs for the
Si3N4-strip-waveguide-based PBS basically equaled to the ERs for the slot one in the wavelength
range of 1500–1600 nm, which also had a relatively strong wavelength dependence. In comparison,
the coupling length of the proposed Si3N4/SiO2 horizontal-slot-waveguide-based PBS was 22.6%
shorter. Consequently, the Si3N4/SiO2 horizontal slot waveguide structure could effectively reduce the
length of the elements.
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We used the finite-difference time-domain method to simulate the modal evolution along the
propagation of the proposed PBS. Figure 8 shows the power evolution along the propagation distance
for the quasi-TE and quasi-TM modes at 1550 nm. We could observe that the optical power almost
transferred from the bar port to the cross port at the coupling length (i.e., LTE) for the quasi-TE mode.
Meanwhile, the quasi-TM mode was first transferred to the cross port when the propagation distance
equaled to LTM and then came back to the bar port. We could also observe that the coupling length of
the quasi-TE polarization was twice as long as the one of the quasi-TM polarization.
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We simulated the fabrication tolerance of the proposed Si3N4 horizontal slot-waveguide-based
PBS. Taking into account the practical fabrication, the thickness of the slot and the strip thickness
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of the horizontal waveguide were defined by low-pressure chemical vapor deposition (LPCVD) or
plasma-enhanced chemical vapor deposition (PECVD) [40]. These processes could be well controlled.
The fabrication error was mainly from the etching process, i.e., the waveguide width was mainly the
influence factor of the fabrication tolerance. Here, we defined the ∆w as the width deviation changing
from −20 nm to +20 nm. When the waveguide width had an increase of ∆w, the waveguide spacing
would decrease by a value of ∆w. As shown in Figure 9a, the ER maintained above 20 dB when ∆w
varied from −20 to +20 nm for the quasi-TM mode at 1550 nm. For the quasi-TE mode, the fabrication
tolerance was relatively low, and the ER dependence of the width deviation was more sensitive.
The quasi-TE mode distribution was x-polarized, so the ER was more sensitive to the geometric
parameters along the x-axis, such as the width of the waveguide W. In Figure 9b, we also simulated
the maximum ER in the wavelength range of 1500–1600 nm, when the width deviation ∆w changed.
The ER mainly fluctuated around the optimized value mentioned above, i.e., 23.9 dB for quasi-TM
and 20.8 dB for quasi-TE. The center wavelength of the maximum ER drifted towards the shorter
wavelength when the waveguide width increased by ∆w. Conversely, the center wavelength moved to
a longer one as the waveguide width was smaller than the design target. Accordingly, we could adjust
the waveguide width slightly to realize that the applications of the other central wavelengths in the
C-band, without changing any other geometric parameter.
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Figure 9. (a) Extinction ratio at 1550 nm of the quasi-TM and quasi-TE mode as a function of the
waveguide width deviation ∆w; and (b) the maximum extinction ratio in the wavelength range of
1500–1600 nm of the quasi-TM and quasi-TE mode as a function of the waveguide width deviation ∆w.

3.3. Multi-Slot Waveguide Polarization Beam Splitter

We also investigated coupled multiple-slotted waveguides for the polarization beam splitting.
The schematic of the proposed multi-slot-waveguide-based PBS is shown in Figure 10a. Based on
the optimized results of the single-slot waveguide, the multi-slot waveguide maintained the same
parameters H = 800 nm, W = 1050 nm, Hu = 250 nm, and d = 500 nm. The slot structure was composed
of two SiO2 layers with equal thicknesses, and the middle Si3N4 layer was embedded in between.
Here, Hm was the thickness of the middle Si3N4 layer. The electric field distributions of the quasi-TE
and quasi-TM modes of the multi-slot Si3N4-based waveguide PBS at the wavelength of 1550 nm are
shown in Figure 10b–e.
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Figure 10. Schematic cross section (a) and the electric field distributions (b–e) of the multi-slot
Si3N4-based waveguide PBS.

In such a multi-slot waveguide, the thickness of the SiO2 and the inserted Si3N4 layers could
determine the electromagnetic field distribution. The thicknesses of the two SiO2 slot layers were
chosen as Hs = 20 nm, and the thickness of the middle Si3N4 layer was adjusted with a step of 15 nm.
With the increase in the middle Si3N4 layer thickness, the power concentration was slightly decreased.
The coupling between the two waveguides was, thus, increased. Consequently, the coupling length
could be reduced as shown in Figure 11a. The middle Si3N4 layer thickness Hm was chosen to be
25 nm to keep the coupling length ratio of the quasi-TE and quasi-TM modes (LTE/LTM) close to 2.
The corresponding coupling length L = LTE equaled to 290.3 µm. Figure 11b shows the ERs of the
quasi-TE and quasi-TM modes for the multi-slot-waveguide-based PBS from 1500 to 1600 nm. The ERs
of the quasi-TM and quasi-TE modes were 24.0 dB and 21.0 dB at 1550 nm, respectively. We also
investigated the fabrication tolerance of the multi-slot-waveguide-based PBS, the ERs were closed to the
one based on the single-slot-waveguide for both modes at 1550 nm, as the width deviation ∆w changed
from−20 nm to +20 nm. The wavelength dependence of the multi-slot PBS had a similar trend as the one
of the single-slot PBS. From the previous research work, multiple slot waveguide could realize a higher
confinement factor and power concentration [36,47], and further shorten the coupling length [48].
Compared with the single-slot-waveguide-based PBS, the properties of multi-slot-waveguide-based
PBS did not show much improvement through our simulation, under the same overall size of the
waveguides, materials, and simulation conditions, except for the number of slot layers.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 13 

 

  

Figure 10. Schematic cross section (a) and the electric field distributions (b–e) of the multi-slot 
Si3N4-based waveguide PBS. 

In such a multi-slot waveguide, the thickness of the SiO2 and the inserted Si3N4 layers could 
determine the electromagnetic field distribution. The thicknesses of the two SiO2 slot layers were 
chosen as Hs = 20 nm, and the thickness of the middle Si3N4 layer was adjusted with a step of 15 nm. 
With the increase in the middle Si3N4 layer thickness, the power concentration was slightly 
decreased. The coupling between the two waveguides was, thus, increased. Consequently, the 
coupling length could be reduced as shown in Figure 11a. The middle Si3N4 layer thickness Hm was 
chosen to be 25 nm to keep the coupling length ratio of the quasi-TE and quasi-TM modes (LTE/LTM) 
close to 2. The corresponding coupling length L = LTE equaled to 290.3 μm. Figure 11b shows the 
ERs of the quasi-TE and quasi-TM modes for the multi-slot-waveguide-based PBS from 1500 to 1600 
nm. The ERs of the quasi-TM and quasi-TE modes were 24.0 dB and 21.0 dB at 1550 nm, 
respectively. We also investigated the fabrication tolerance of the multi-slot-waveguide-based PBS, 
the ERs were closed to the one based on the single-slot-waveguide for both modes at 1550 nm, as 
the width deviation ∆w changed from −20 nm to +20 nm. The wavelength dependence of the 
multi-slot PBS had a similar trend as the one of the single-slot PBS. From the previous research 
work, multiple slot waveguide could realize a higher confinement factor and power concentration 
[36,47], and further shorten the coupling length [48]. Compared with the 
single-slot-waveguide-based PBS, the properties of multi-slot-waveguide-based PBS did not show 
much improvement through our simulation, under the same overall size of the waveguides, 
materials, and simulation conditions, except for the number of slot layers. 

 
(a) 

 
(b) 

Figure 11. (a) Coupling length of the quasi-TM mode and the coupling length ratio as a function of 
the middle Si3N4 layer thickness Hm between the two SiO2 slots; and (b) the extinction ratio of the 
quasi-TM mode at the bar port and the quasi-TE mode at the cross port for the 
multi-slot-waveguide-based PBS. 

  

Figure 11. (a) Coupling length of the quasi-TM mode and the coupling length ratio as a function of the
middle Si3N4 layer thickness Hm between the two SiO2 slots; and (b) the extinction ratio of the quasi-TM
mode at the bar port and the quasi-TE mode at the cross port for the multi-slot-waveguide-based PBS.
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3.4. Tradeoff between the ER and Coupling Length

Figure 12 shows the relationship between the ER and coupling length for the designed PBSs
based on the Si3N4 single- and multi-slot waveguide. The square and triangle symbols represent
single- and multi-slot-waveguide-based PBSs, respectively. In Table 1, single-slot-waveguide-based
PBS with different parameters were used to investigate the polarization splitting effect. The table shows
the relatively lower ER in the cross port (quasi-TE mode) at the wavelength of 1550 nm. The PBSs
with the structure parameters in the table provide ~2 coupling length ratio (LTE/LTM), and the offset
was within 0.5%. In Table 2, we list the different parameters of the multi-slot-waveguide-based PBS,
based on similar conditions. One can see that both the single- and multiple-waveguide-based PBS
showed a similar trend, such that although a shorter coupling length can be achieved by using smaller
waveguide space or adjusting other parameters, the corresponding ER would be worse. In sum,
we could obtain a shorter coupling length at the sacrifice of the ERs for both types of PBSs.
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Figure 12. The tradeoff between the extinction ratios (ER) and coupling length of
single-slot-waveguide-based PBS (square) and multi-slot-waveguide-based PBS (triangle).

Table 1. Optimized Parameters of the Single-Slot Waveguide-Based PBS.

H
(nm)

W
(nm)

Hs
(nm)

Hu
(nm)

d
(nm) LTE/LTM

LTE
(µm)

ER
(dB)

620 1200 100 260 200 2.0015 54.20 9.38
780 1150 100 410 200 2.0022 59.74 10.12
800 1150 90 410 200 1.9985 61.69 10.29

1200 1200 300 260 200 2.0040 79.48 11.54
840 1100 90 300 300 1.9995 99.75 13.68
950 1100 150 300 350 2.0001 130.14 15.53

1000 1100 150 340 350 1.9991 134.13 15.72
950 1050 150 410 400 1.9974 138.59 16.12
950 1050 120 440 400 1.9995 150.57 16.78
720 1000 90 250 500 1.9963 172.86 18.62
800 1000 90 390 500 2.0001 196.96 18.63
830 1050 90 250 500 2.0027 256.65 20.19
800 1050 50 250 500 2.0035 281.46 20.82
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Table 2. Optimized Parameters of the Multi-Slot Waveguide-Based PBS.

H
(nm)

W
(nm)

Hs
(nm)

Hu
(nm)

Hm
(nm)

d
(nm) LTE/LTM

LTE
(µm)

ER
(dB)

840 1050 100 150 150 500 1.9990 179.29 17.58
840 1050 90 150 150 500 2.0041 193.41 18.12
800 1050 70 50 100 500 1.9966 248.44 19.93
830 1050 25 250 120 500 2.0017 286.89 20.95

4. Conclusions

In summary, we presented Si3N4 single- and multi-slot-waveguide-based PBSs. Compared with
Si PBS, Si3N4-based devices were more suitable for high-power integrated photonic applications due to
its much lower Kerr nonlinearity and negligible nonlinear loss. Furthermore, we analyzed the effect of
the geometric parameters and propagation length on the coupling length and ER. The coupling length
of the proposed Si3N4/SiO2 horizontal-slot-waveguide-based PBS became 22.6% shorter than the one
of coupled Si3N4 strip-waveguide-based PBS. The proposed structure could effectively reduce the
length of the elements. The wavelength dependence of the quasi-TM and quasi-TE modes for these two
designs were also investigated. The ERs for the quasi-TM and quasi-TE modes could both be >20 dB at
1550 nm for both the single-slot and multi-slot designs. The two designs showed good fabrication
tolerance for up to ±20 nm width deviations. Finally, we studied the relationship between the ER
and coupling length, and found that one needed to consider the tradeoff when optimizing the device
performance or its size. To better serve the needs for different applications in on-chip high-power
systems, one might introduce new design to further expand the operating bandwidth of the proposed
PBS in the future.
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