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Abstract

the further proteomics studies.

Background: Mass spectra are usually acquired from the Liquid Chromatography-Mass Spectrometry (LC-MS)
analysis for isotope labeled proteomics experiments. In such experiments, the mass profiles of labeled (heavy) and
unlabeled (light) peptide pairs are represented by isotope clusters (2D or 3D) that provide valuable information about
the studied biological samples in different conditions. The core task of quality control in quantitative LC-MS
experiment is to filter out low-quality peptides with questionable profiles. The commonly used methods for this
problem are the classification approaches. However, the data imbalance problems in previous control methods are
often ignored or mishandled. In this study, we introduced a quality control framework based on the extreme gradient
boosting machine (XGBoost), and carefully addressed the imbalanced data problem in this framework.

Results: In the XGBoost based framework, we suggest the application of the Synthetic minority over-sampling
technigue (SMOTE) to re-balance data and use the balanced data to train the boosted trees as the classifier. Then the
classifier is applied to other data for the peptide quality assessment. Experimental results show that our proposed
framework increases the reliability of peptide heavy-light ratio estimation significantly.

Conclusions: Our results indicate that this framework is a powerful method for the peptide quality assessment. For
the feature extraction part, the extracted ion chromatogram (XIC) based features contribute to the peptide quality

assessment. To solve the imbalanced data problem, SMOTE brings a much better classification performance. Finally,
the XGBoost is capable for the peptide quality control. Overall, our proposed framework provides reliable results for
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Background
Computational methods in proteomics are mainly
designed to improve the analysis performance of MS.
There are many well designed methods, like the molec-
ular formulas predicting [1], the linear regression for
overlapped 80/10 ratio estimation [2], the statistical
methods for corresponding feature identification [3], the
self-boosted percolator for peptide prophet enhancing
[4, 5] and the peptide identification for mixture spectra
[6] to name a few.

In the Stable Isotope Labeling with Amino Acids in
Cell Culture (SILAC) based proteomics experiments, the
amino acids with light and heavy labels are metabolized
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into peptides [7]. Then the identified peptides show only
a fixed shift in mass in different conditions of the spec-
tra. However, the pairs of heavy-light peptide and some
other features in SILAC data are often influenced by some
biological, experimental or chemical errors. Since these
errors may affect the later quantitative analysis, and the
errors are hard to handle manually, there is a great need to
have some computational methods to assess the spectral
quality [8].

Some software or platforms have been provided to han-
dle the whole peptide analysis workflow, such as OpenMS
[9], MaxQuant [10] and Trans-Proteomic Pipeline (TPP)
[11-13]. These software can be used to convert the raw
data into the readable files with analysis results. The whole
peptide analysis workflow is defined as follows: “raw data
converting — sequence database identification — vali-
dation — quantification" [14]. Currently, researchers pay
more attention to the validation or quality control of
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quantification part in the workflow, and many methods
have been proposed to this end. For example, the signal-
to-noise ratio is proven to be an essential factor in ratio
estimations for the isotope labeling based experiments
[15, 16]. In addition, the preceding peak is demonstrated
to be useful when compared with the target peak in the
same scan of the peptide [17]. These signal-to-noise ratios
and preceding peak ratios are some mass profiles, and
many studies have demonstrated the importance of con-
trolling the quality of mass profiles [16] in quantification
analysis.

Many methods have been conducted to control the
spectral quality for better quantification results. These
methods can be mainly divided into naive methods [18],
classification methods [19, 20] and statistical methods
[21], while the classification approach is the most widely
used ones [19]. For details, some features are extracted
from few LC-MS raw data, and then the correspond-
ing quality tags are generated manually. The features and
associated tags are formed together into a data set. We
then divide the data set into a training set and a vali-
dation set, where the training set is used for classifier
training and the validation set is used to ensure the clas-
sifier’s performance. Finally, we can evaluate the quality
of other spectra by extracting the same features from
related spectra and then passing through the trained
classifier. The mass profiles classified as the high qual-
ity ones are retained for further analysis. The general
diagram for the design of quality control is illustrated
in Fig. 1.

There are pairs of heavy and light peptide peak clusters
in LC-MS|[2]. Most spectral feature extracting methods
focus on related clusters in one scan. However, based
on the extracted ion chromatogram (XIC), the informa-
tion in the nearby scans also helps to quantitation [22].
This motivates us to derive four new features from the
corresponding neighbor scans to construct the classifier.
Combining nine features extracted from single scan, we
totally release thirteen features as the inputs of classifiers.

To comprehensively consider all the features related to
the quality of quantification, machine learning methods
can be used for quality assessment of spectra, includ-
ing the support vector machine (SVM) based models
[19, 20] and the tree-structured models [23—25]. Note that
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proteomics also has some models based on deep neural
network (DNN) [26-28] , but DNN is time-consuming
and requires a lot of training data to deal with the over-
fitting problem, which is not suitable for quantification. So
in this paper, we do not discuss deep models.

When training a classification model, by default most
machine learning algorithms treat the training set as
the balanced one. However, because learning system has
difficulty in deriving concepts from the minority class,
imbalanced data has become one of the major chal-
lenges affecting the performance of machine learning
algorithms [29, 30]. The re-sampling method is one of
the most important methods for dealing with data imbal-
ance problem. In the field of re-sampling, there are two
well-known approaches: the under-sampling one and the
over-sampling one. But the under-sampling method may
discard potentially relevant information, while the over-
sampling method may increase the likelihood of over-
fitting and the complexity of the model training [31].
Therefore, we need decent ways to deal with unbalanced
data problems. SMOTE is one of the mature methods
[29]. This method re-samples new data point by combin-
ing random factors from zero to one with its k nearest
neighbors.

Considering the fact that there are only a few prob-
lematic spectra in LC-MS analysis, we carefully addressed
the important problem of classifying imbalanced spectral
dataset in this paper. We suggest using the SMOTE to
handle the unbalanced data, and employing the famous
XGBoost[32] as the classifier, which achieves outstanding
performance without having high overhead in computa-
tion time. XGBoost is a kind of tree-structured model.
The basic idea of the tree-structured model is to design
an ensemble approach for several rule-based binary trees
[33, 34]. In the past decades the Gradient Boosting [35]
is the most famous tree ensemble method, and this tech-
nique led to the renowned Gradient Boosting Decision
Tree (GBDT). XGBoost is a variant of GBDT, and it has
gained the popularity by winning many machine learning
competitions since its availability.

We evaluate the classifiers by the data with differ-
ent heavy-light ratios. The SMOTE technique shows its
capability in improving the performance of classifiers by
re-balancing the data, and the SMOTE XGBoost shows
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Fig. 1 The design of quality controller. The spectra after peptide quality control can be used for further studies, such as quantification
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its reliability in assessing the quality of mass profiles in
LC-MS data.

Results and discussion

In SILAC technique, two populations of cells are culti-
vated in cell culture at first. Then the growth medium
with normal amino acids is fed to one population. On the
contrary, the growth medium containing labeled heavy
isotopes amino acids is fed to another one. The labeled
amino acids are usually the lysine (K, +8.014199) and
arginine (R, +10.008269). This population of cells would
replace the heavy-labeled-isotopes into their proteins, so
that the combined normal (light)-heavy cell populations
can be analyzed together by LC-MS. The produced mass
spectra can reflect the abundance ratios for the peptides
and proteins in concern. In this study, the raw data is the
combination of SILAC labeled yeast (S. cerevisiae) and
unlabeled ones that mixed at various light/heavy ratios
(1:2, 1:1, 1.5:1 and 2:1), and we analyzed these data by TPP
in a web-based distributed system. The PeptideProphet
[5] and the ASAPratio [36] are the TPP built-in validation
and quantitation methods, respectively. We also called the
TPP derived peptide ratios as the ASAPRatios, which will
be used to tag the training data and evaluate the quality
controller.

Feature extraction and training data preparation
Considering the strong correlations between the spectral
features and the quality of the spectra, we extract thirteen
features to design the quality classifiers. These features are
mass deviation (MassDev), signal to noise ratio (S/N), pre-
ceding peak ratio (PPR), six isotope deviations (IsoDevs)
and four scan isotope pattern deviations (SIDs). These
features are discussed in “Methods” section. The final pro-
cessed data is formed by these features with the size of
n x13 for one sample, where n denotes the number of
spectra.

To train a classifier, the data and corresponding training
labels are required. The training label is intended to indi-
cate the relationship between the target and the class. But
in this study, there are two types of labels, one for train-
ing labels and the other for isotope labeling. Therefore, to
avoid confusion, we adopt tags to represent the training
labels.

During the whole procedure of LC-MS based pro-
teomics experiments, the errors or mistakes are unavoid-
able, so it is desirable for us to filter out the low quality
spectra (or corresponding peptides). If we have some his-
torical spectral data with low or high quality tags, then
we can use them directly to train the classifiers for quality
control. However, we usually only have some LC-MS data
with fixed mix ratios, and the samples in the data do not
have quality tags like good (positive) or bad (negative). To
prepare the quality tags, we assume that we can have some
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data with prefixed quantitative ratios, and we followed the
work of [16, 20] to manually labeled the data for the train-
ing of classifiers via peptide quantitative ratios and mass
accuracy (deviation). It should be clarified that the classi-
fiers trained by the manually tagged data only accept the
13 features designed in this paper and they will not use the
quantitative ratio as the input feature.

In details, we use ASAPRatio to denote the estimated
quantitative ratio, and the high quality peptides should
have ASAPRatios be close to the ground truth. Figure 2
shows the details about the distribution of ASAPRatio in
this 1:1 sample data. Figure 2a is the MA plot for the
sample. The rest of the sub-figures (b, c and d) are gener-
ated by the binary logarithmic sample data (log,(Sample)),
which are used for the probability density function (PDF)
and cumulative distribution function (CDF). The MA plot
for other samples are also included [see Additional file 1].
The histogram and the corresponding Gaussian kernel
density estimation (KDE) in Fig. 2b represent the PDF
of the sample. The empirical CDF and the Chebyshev’s
Inequality[37] are shown in Fig. 2c. Known by Cheby-
shev’s Inequality, the data located in the range [u—30, u+
30] would keep at least 8/9 of the whole data. The empir-
ical CDF illustrates that our sample has almost the same
cumulative probability just in the locations that refer to
30 when compared to the N~(0.22, 1) one. Figure 2d
shows the CDF details with the interval [u — 30, u + 30]
in our data distribution. Hence, three-sigma of Cheby-
shev’s Inequality is applied to group the logarithm trans-
formed ASAPRatios manually, and its result is marked as
ratio-tag.

The ratio-tag based on ASAPRatio narrows down the
scope of high quality data, but it is not accurate enough
because the distorted low quality spectrum may also pro-
duce a correct ratio. However, there is an intuition that the
identified high quality peak should adopt the mass value
close to the theoretical one. Thus, the mass deviation can
be used to group the data further by this intuition. Figure 3
shows the distribution of standardized ((x — ©)/0) mass
deviation and the corresponding histogram and density
map as well. It follows from the histogram and den-
sity map in Fig. 3b that the standardized mass deviation
value has a global maximum of about —0.13, which is the
systematic bias of mass measurement. So a spectrum is
tagged as positive if the standardized mass deviation value
fell in the interval [ —0.13 — threshold, —0.13 + threshold].
According to the distribution of mass deviations, here the
threshold is set to 0.5 to exclude all the outliers. The cor-
responding threshold is also plotted as a short red vertical
line in the density map. This tag result based on mass
deviation is marked as mass-tag.

For the final tags of the 1:1 sample, the spectra with
both positive ratio-tag and positive mass-tag are marked
as positive, while the others are regarded as negative ones.
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Now we have a training data set for the optimization of in the data collection, the final data would have some
the classifier. Since the quantitative ratios are not used as  errors or unreliable parts. More importantly, these con-
input feature, the trained classifiers will not be in favor of ~ taminants or errors are rare and unpredictable. But for the
them. For the feature of mass deviation, the bias to it may = whole data, there is only few spectra influenced by these
be a problem. But according to the experimental results, unreliable parts, theoretically. So the quantity of the high
such a biasing does not happen. The features other than  quality peptides (Positive) has an imbalance ratio with the
mass deviation used in this paper play important roles in  low quality ones (Negative). By checking the tags of the
the classifiers (See Table 2 for details), and this makes the  training set (75% of total training data), we find that the
trained models much better than simple mass deviation  pumber of positive tags is six times larger than that of the
based quality controller (Please refer Fig. 3a). negative ones. The domination of positive tags highlights
Over-sampling for the imbalanced data the data imbalance problem, which may lead to result the
Since there would be some inevitable contaminants in  classifier does not learn enough from the minority class
the process of culturing amino acids or errors occurred  when training.
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We apply the SMOTE to re-balance the training set.
Table 1 shows the details of the quantity changes in this
training sample.

We also adopt the “gain” as the indicator of feature
importance for the trained XGBoost models in Table 2.
The gain is the most relevant attribute to interpret the rel-
ative importance of each feature in XGBoost. It implies
the relative contribution of the corresponding feature to
the model and is calculated by taking each feature’s con-
tribution for each tree in the model. Higher gain means
this feature contributes more for prediction, and the gain
with very small value usually means that the contribution
of this feature is not significant.

Generally, a classifier can be considered appropriate if
all meaningful training features contribute to the classi-
fier. In this study, all the features in the training set were
extracted based on the nature of the peptide, which is
valuable for the peptide quantification. However, it follows
from the Table 2 that the model generated from original
data has many very small feature gains, so we think that
the model may not be learned sufficiently because there
are some features that contribute only little to it.

Classifier training and validation

There are many parameter tuning methods, and random-
ized search or grid search may be the most basic auto-
matic methods for the models without deep architecture.
However, these methods are really time-consuming and
limited by the predefined set of parameter grids. In this
paper, we employ a Bayesian optimization tool[38] to tune
the XGBoost model, and the XGBoost model is imple-
mented by the xgboost python package[39]. In details, we
randomly divide the total training data into one training
set (75%) and one testing set (25%), and then apply the
training set to the optimization tool with XGBoost model
for training. The optimization aims to find out the param-
eters that have the maximum mean value of the 10-fold
cross validation evaluation scores under different param-
eters. We set the “roc_auc” value as the evaluation score of
the cross validation. The bounds of the parameters in the
optimization tool are set as follows:

e “learning_rate™ (0.01, 0.3),
® “n_estimators": (10, 2000),

Table 1 Quantity changes with or without resample methods for
the training set

Positive Negative Total Number
Number Number (for training)
Original Data 1585 529 2114
After Split (75%) 1367 218 1585
SMOTE 1367 1367 2734

The bold ones are the ones changed by the resample methods
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Table 2 Gain as the feature importance for the XGBoost model
with or without SMOTE

Gains without SMOTE

Feature Name Gains with SMOTE

MassDev 11.54877 141.50188
PPR 052670 3.73862
S/N 0.39289 749105
IsoDev_Light1 1.30760 30.78152
IsoDev_Light2 251584 6.70143
IsoDev_Light3 3.52582 230519
IsoDev_Heavy1 0.64070 4.80937
IsoDev_Heavy?2 0.49069 4.60379
IsoDev_Heavy3 0.69931 7.06721
SIDsum 0.25840 3.94553
SIDo 0.60187 5.18034
SIDy 0.62181 5.15330
SID; 0.54873 4.74491

“max_depth": (3, 10),
“gamma": (0, 0.05),
“colsample_bytree™ (0.7, 1),
“subsample”: (0.7, 1).

The first three parameters denote the structure of the
model, and the last three parameters solve the over-fitting
problem by controlling the complexity and robustness of
the model. Note that the values in “n_estimators" and
“max_depth" are set as integer values.

After 30 iterations of the Bayesian optimization, we have
got the following parameters:

“learning_rate™: 0.197,
“n_estimators": 11,
“max_depth": 10,
“gamma": 0.04,
“colsample_bytree": 0.97,
“subsample”: 0.96.

The trained classifiers can be applied to other samples
without manual tagging. If the ground truth peptide ratio
is provided, then the favorable classifiers should find high
quality spectra that possess estimated heavy-light peptide
ratios compactly close to the ground truth ones. There-
fore, estimated peptide ratios are used to validate and
evaluate classifiers.

To validate the performance of the classifier, the receiver
operating characteristics (ROC) curve is employed.
Specifically, since we applied the over-sampling in train-
ing, the 10-fold cross validation in parameter tuning is
slightly different. The traditional cross validation method
divides the training data evenly into k folds, and then
enumerates k times as follows: each time we select one
fold as the testing fold, and the other k — 1 folds are
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used as the training folds. Then the classifier is trained
by the training folds, and we evaluate the classifier using
the testing fold. For this special cross validation, we
added the over-sampling for the k — 1 training folds
in the enumeration, and then the classifier is trained
by the over-sampled training folds. Note that the test-
ing fold is not over-sampled. By this manner, we val-
idated the classifier by 10-fold cross validation with
ROC curve and area under ROC curve (AUC) values
in Fig. 4.

Quality control results

The XGBoost classifier is trained by the SMOTE re-
balanced data with the parameters tuned above. For
comparison approach, we added the SVM based qual-
ity control framework[20] as the baseline method.
The features and the parameters in this SVM based
framework are the same as the ones mentioned in
[20]. Specially, a class weight parameter is declared
in SVM for the imbalanced problem, and the imbal-
ance ratio in their case is 2.2. For our situation, the
imbalance ratio is about 6. Hence, we changed the
default weight parameter 2.2 to 6. The SVM baseline
method is implemented by the svm package in python
scikit-learn[40].

We evaluated our classifiers on four SILAC yeast sam-
ples (1:2, 1:1, 1.5:1 and 2:1) [see Additional file 2]. Note
that only a part of the 1:1 sample was used for train-
ing, and here the entire 1:1 one was used for evalu-
ation. Furthermore, we adopted the mean, the mode
and the coefficient of variation (CV) as the evalua-
tion criteria. The criteria are calculated by the binary
logarithmic peptide ratios. Typically, CV is defined as
cv o/pn. But for the logarithmic data, the way
to calculate CV should be changed to make sense
[41, 42], that is
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= \/exp ([In(base)]?2c2) — 1

= \/base[ln (base)lo® _ 1. (1)

While in our study, since the base of the logarithm is 2, we

use this to calculate CV: CV = y/2(n2)0? _ 1,

Figure 5 illustrates the overall performance of our
XGBoost models and SVM baseline model using CV as
the indicator. It is clear that the quality of the peptide con-
trolled by XGBoost model is quite concentrated compared
to the SVM baseline approach, and this concentration is
very useful for the quantitative analysis. Moreover, the
classifier trained by the re-balanced data set provides bet-
ter performance. It also can be seen from Figure 5 that
it is more concentrated when the spectra are filtered out
by about 30%. So we display the statistical details for the
spectra that are filtered out by 30% in Table 3.

It should be noted that the evaluation of control results
just based on mean or mode is not reliable because the
ASAPRatio is only the estimated peptide ratio and there
is an unknown systematic bias in such kind of estimation.
For example, one classifier A results in many ratios close
to 1.1, and the other classifier B results in most ratios close
to 1.2. Even we know the ground truth ratio is 1, we can-
not conclude that the classifier A is better because the
unknown systematic bias may be 0.2 which makes the esti-
mated ratio more accurate when it is close to 1.2. So we
mainly evaluate the control results based on the variance.

In another point of view, what we needed in quantitation
is a more accurate quantitative result. For a set of quanti-
fied peptide ratios, we believe that the results are accurate
if the ratios are well concentrated and distributed around
a certain value. So the means and the modes in Table 3
refer the “certain value", while the CVs imply the concen-
tration, and the CV value close to zero indicates more
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concentration. The means and the modes in the table are
all close to the ground truth, and the CVs with XGBoost
model are closer to zero than others. This means that the
spectra quality controlled by XGBoost are more reliable.
This method also provides reliable results for higher ratio
samples [see Additional file 3].

Quality control for protein level quantification

Furthermore, the protein level quantification can bene-
fit from the quality control of spectra. There is a basic
idea that one protein should contain many peptides, the
ratios in protein may vary with or without peptide qual-
ity assessment. The protein ratio should be compactly
close to the ground truth when only using high quality
spectra.

We conduct a simple experiment on this basic idea and
show the ratio changes of four proteins in two samples in
Table 4. Figure 6 shows the box plot of ratios for the four
proteins. The results show that the quality control method
makes the estimated protein ratios close to the ground
truth with smaller variances.

Conclusion

For better quantitative analysis in LC-MS based pro-
teomics experiments, this paper introduces some new
approaches to construct a reliable quality assessor of spec-
tra for isotopic labeled samples. There are mainly four
types of variation have been associated with ratio estima-
tion [43], and this work mainly focuses on reducing the
artificial variation.

Table 3 Number of spectra, means, modes, and coefficients of variation for peptide ASAPRatios derived from four yeast samples
(before filtering, after filtering by SVM base method, and after filtering by XGBoost model)

Before filtering/After filtering by SYM baseline method/After filtering by XGBoost model

Peptide ratio (log;(ratio)) Number of spectra Mean Mode Coefficient of Variation
1:2(-1) 2062/1444/1444 -0.77/-0.77/-0.80 -0.86/-0.89/-0.84 0.58/0.57/0.47
1:1(0) 2114/1480/1480 0.22/0.22/0.21 0.19/0.19/0.19 0.53/0.51/0.39
1.5:1 (0.58) 2441/1709/1709 0.72/0.72/0.74 0.82/0.82/0.82 0.61/0.64/0.56
2:1(1) 2110/1477/1477 1.09/1.07/1.12 1.30/1.29/1.30 0.64/0.65/0.59
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Table 4 Comparison of protein ratio estimations with or without peptide quality control

Protein YCRO12W 1:1 Sample YPLO6TW 1:1 Sample YBR118W 1.5:1 Sample YPL240C 1.5:1 Sample

Assessor Pep.Num.  Pep. Ratio Pep.Num.  Pep. Ratio Pep.Num.  Pep. Ratio Pep.Num.  Pep.Ratio

Without assessor 153 1.71094£3.6754 27 0.9459+0.3516 68 2.6947+7.4300 33 1.6364£1.0504

XGBoost assessor 131 11922403274 25 0.9484+£0.3636 28 1.70544+0.3479 4 1.4675£0.5568
We find that the peptide quantification may be influ-  following Eq. 2.

enced by the XIC, so we introduce new features based on M, — M, .

nearby LC scans for better classification. We also notice MassDev = ————— x 10, 2)

that the unbalanced data may affect the results of the
assessment. For this problem, we re-sample the unbal-
anced spectral features using SMOTE technique and train
the classifiers using the SMOTE set. The trained classifiers
are tested on SILAC labeled samples. The results show
that SMOTE XGBoost classifier is the state-of-the-art and
capable of the quality assessment for mass spectra.

The recently proposed new re-sample methods [44] can
be considered in future work. Furthermore, the feature
extraction functions and the pre-trained classifiers of this
method can be easily embedded into the LC-MS based
quantitative proteomics analysis pipeline.

Methods
Spectral features
Mass deviation
Theoretically, the mass of one peptide is a definite value
by the components of its amino acid. We marked this def-
inite value as the neutral peptide mass (M;). However,
the experimental mass value would be different from the
theoretical one due to the isotope. Meanwhile, we also
marked the experimental peptide mass as M,, and typi-
cally this M, is the precursor neutral mass (monoisotopic
mass).

The mass deviation (MassDev) is defined as the devi-
ation level of the mass value, which is shown by the

t

where 10° is the unit parts per million (PPM), and smaller
MassDev value refers better quality of the peptide.

Preceding peak ratio

The preceding peak of current peak has been explained to
be an essential factor in evaluating the profile of a peptide
in [17]. In details, the estimation of the ratio is unreli-
able when the preceding peak (M,),) is comparable to the
mono-isotopic peak (M,,,) in peak intensity. Hence, the
reliability can be represented by the rate of M, and M, ,,
and this is the preceding peak ratio (PPR). PPR is defined
in Eq. 3.

M
PPR = — 22, (3)
mp
Note that the values would be set to zero if there are rare
preceding peaks that cannot be identified, and the close to
one PPR is a signal of unreliable spectra.

Signal to noise ratio

In signal processing, what we expected is the pure true
peak signal. But noise is unavoidable now. In this way,
the signal with less noise should be better, and one sim-
ple way to denote this is signal-to-noise ratio (S/N). The
S/N is known as an important factor for evaluating the
estimation ratio accuracy [15, 16], because the peptide

Proteins in 1:1 Sample
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Fig. 6 Box plot for ratio estimations of four proteins with or without quality assessor
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with better quality usually has lower noise. Generally, the
median value of peak intensities is set to the noise level,
and the mono-isotopic peak intensity value indicates the
signal level [45].

Isotope deviations
Isotope is the key to the labeling technique. The theoret-
ical isotopic pattern is a set of values associated with the
relative abundance of the isotopes, but the experimental
one may deviate from it. So the isotope deviation (IsoDev)
is another critical feature for the SILAC spectra and can
be obtained by both light and heavy labeled peptides.
Suppose that TP represents the theoretical isotopic pat-
tern and EP stands for the experimental one, then the
definition of the isotope deviation is given by the following
Eq. 4 [20],

TP; EP;

_ , 4
TP, EP, @)

IsoDev; =

where i = 1,2,3 are the different deviations in each
pattern. Note that the TPy and EPy represent the abun-
dance of theoretical peak and mono-isotopic abundance
in experiment, respectively.

Scan isotope pattern deviations

As far as we know, the accuracy of the estimated ratios is
also influenced by the nature of corresponding peptides.
While in a mass spectrometer the target peptide is identi-
fied at one corresponding LC scan, due to the continuity
of LC and XIC, the neighboring scans of the target scan
would also have valuable information, which is shown in
Fig. 7.

The isotope patterns in neighboring scans are of great
importance because they should be similar to the theo-
retical pattern of identified peptide. By considering the
ratio between the first and the second peaks in the iso-
tope clusters for the heavy and light peptides, we define
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a group of features named Scan Isotope Pattern Devi-
ations (SIDs) to show the deviation between the mono
first-second peak ratio of the target scan (Mp) and the
integration of the experimental first-second peak ratios of
neighboring scans by (5),

E; — My

SID; = -~~~ 5
i Mo (5)

where
L2+ HY
o L1; + Hi1; ’

i

Here i = 0,1,2 refer the target and neighboring scans:
scan0, scanl and scan2. The L1; and L2; stand for the cor-
responding scan’s first and second light peak intensities
(blue and orange peaks in Figure 7), respectively. Similarly,
H1; and H2; are the heavy ones (green and purple peaks
in Fig. 7), respectively.

In addition, the SIDgyy, is designed to show the ratio
between the summarized first and second peaks in the
isotopic cluster from neighboring scans in (6),

SIDsum = EsumT_ON[O’ (6)
here
2
> (L2; + H2)
Esum = i;O .
EO(LL‘ +H1;)

Due to the similarity among the isotope patterns in
neighboring scans, the SIDs designed above should be
close to each other and close to zero in high quality spec-
tra. Similar to the PPR, there will be some unidentified
peaks,in which case the SIDs would be set to -1. Therefore,
the four SIDs are inserted into the feature set for training
the classifiers.
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II \
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Fig. 7 Example for the target scan and its corresponding neighboring scans. The blue lines indicate the first light peak intensities (Light1), the
orange lines stand for the second light peak intensities (Light2), the green lines are the first heavy peak intensities (Heavy1) and the purple ones
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Synthetic minority over-sampling technique

SMOTE is designed as a kind of over-sampling technique.
Traditional over-sampling methods randomly repeat the
minority samples as the newly-generated ones. But
SMOTE calculates the nearest k' neighbors by some dis-
tance methods at first, and then adds new sample between
a data and it neighbors. More specifically, SMOTE adds a
new data point by Eq. 7,

Xpew = % + rand(0, 1) x ||5€_x||’ (7)

where x denotes the minority class sample, ||.|| is the
distance function and X represents the neighbors of x.
Figure 8 illustrates the sampling procedure of SMOTE.
We use the SMOTE in python environment by package
imbalanced-learn[46].

Extreme gradient boosting machine

In the field of supervised learning, gradient boosting[35]
has been empirically verified to be effective. XGBoost is
a kind of gradient boosting method with tree ensemble
approach. This method has become very famous in Kag-
gle since 2014 and is known for its high performance
and excellent results. In this algorithm, the following
Eq. 8 gives the definition of K additive function ensemble
model (K trees),

K
ji= Y fix), fi € F, ®)

k=1

where x; stands for the i sample, F is the space that con-
taining all regression trees and f; refers the K function in
the functional space F.

To train the ensemble model, the objective in (9) needs
to be minimized,

n K
L(@) =) loss(yi 30 + Y Q(fo)- )
i=1 k=1

Here loss is a loss function that measures the difference
between target y; and prediction ¥;. The Q2 penalizes the
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complexity and is defined in [32] in (10).

T
1
Q) =yT+ 2 Iwli* (10)

j=1

The number of leaves in tree is defined as T, y stands
for minimum loss reduction, A is the weight of regulariza-
tion, ||w|| represents the corresponding leaves’ score (L2
norm), and the Eq. 11 can be used here to define the tree

f®),

fi®) = Wy, weRT, q: R*>1,2,...,T, (11)

here w denotes the score function, and ¢ is the function
that assigns each data point to the corresponding leaf (tree
structure).

The objective in (9) is optimized by training the tree
ensemble model in an additive (boosting) manner. Sup-
pose that 5/1@ is the prediction of the i instance at %
training round, in additive manner a new f; should be

added to minimize the following objective,

LO =" loss (J/i,JA’,(t_l) +ft(xi)> +Q¢). (12)

i=1

Taylor expansion is applied to (12) to quickly optimize
the objective in general setting [47], obtaining Eq. 13 here,

i A 1
LO ~ ,=Zl [loss (y,«,yﬁt D) + gift (xi) + Zhiftz(xi)]
+Q(f), (13)

where g; = -1 loss (vis 5/“_1)) denotes the statistics

of first order gradient on the loss function and #; =
8;(,_1) loss (yi,jl(t_l)) is the second order ones.
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Fig. 8 Example for SMOTE. The circles are the majority class samples and the hexagrams are the minority ones. The rectangle is the new sample
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The constant can be removed for simplifying the objec-
tive function at step ¢, and we get

- id 1
LO=%" [géft(xi) + ZthZ(xi)] +yT

i=1

T

1 2

+ 32 '§1||W|| . (14)
]:

Let [; = {ilg(x;) = j} be the instance set of leaf j, then
the Eq. 14 can be expanded to obtain

T
N 1
203 | (S|t 5 (S )
j=1 | \ie} iel;
+yT. (15)

Suppose that g(x) is a fixed structure, then the best
weight w} of leaf j is calculated as follows,

" Gj
wWi=———, (16)
! Hj+
where G; = Zie[jg,- and H; = Zielj h;, and the corre-
sponding optimal value can be calculated by

. 1L sz
=177

The quality of the tree structure can be evaluated by
the score function (17), but it is impossible to enumerate
all structures. So a greedy approach[35] is employed here.
More specifically, we grow the tree from a single leaf and
try to optimize (17) by splitting one leaf into two itera-
tively. For one split, the instance set is partitioned into left
nodes(/L) and right nodes(IR) with InstanceSet = IL U IR.
So the gain G after this split is given by Eq. 18.

G, — 1 G G _ (G + Gr)?
split 2| Hp+A Hpr+A Hp+Hgp+Ax
—y. (18)

The splitting procedure will continue until the split gain G
no longer positive.
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