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Abstract In this report, the parameters identification of a

proportional–integral–derivative (PID) algorithm imple-

mented in a programmable logic controller (PLC) using

support vector regression (SVR) is presented. This report

focuses on a black box model of the PID with additional

functions and modifications provided by the manufacturers

and without information on the exact structure. The process

of feature selection and its impact on the training and

testing abilities are emphasized. The method was tested on

a real PLC (Siemens and General Electric) with the

implemented PID. The results show that the SVR maps the

function of the PID algorithms and the modifications

introduced by the manufacturer of the PLC with high

accuracy. With this approach, the simulation results can be

directly used to tune the PID algorithms in the PLC. The

method is sufficiently universal in that it can be applied to

any PI or PID algorithm implemented in the PLC with

additional functions and modifications that were previously

considered to be trade secrets. This method can also be an

alternative for engineers who need to tune the PID and do

not have any such information on the structure and cannot

use the default settings for the known structures.

Keywords Support vector regression � Programmable

logic controller � PID

1 Introduction

Proportional–integral–derivative (PID) algorithms are

widely used for the control of industrial process loops. Due to

their simplicity and ease of on-line re-tuning, approximately

90 % of control loops use the PID algorithm. Among the

control loops that use the PID algorithm, 64 % are single

loop and 36 % are multi-loop [1]. Approximately 85 % of

control systems that use PID algorithms are the feedback

type, up to 6 % are the feedforward type, and 9 % are con-

nected in a cascade [1, 2]. PID algorithms implemented as a

technical device are called PID controllers. Currently, the

PID controller structures are different from the original

analogue PID [3]. Presently, the implementation of the PID is

based on a digital design. These digital PID controllers

include several additional functions to improve their per-

formance, such as anti-windup, set point filtering, auto-tun-

ing, adaptive algorithms, fuzzy fine-tuning, genetic tuning,

and so on [4]. The controllers come in several different

forms, such as a standard single-loop controller, known as a

dedicated process controller and a software component in the

programmable logic controller, known as a programmable

logic controller (PLC) [5], as well as in built-in controller

machines, e.g., robots [6]. PID controllers are used in a wide

range of application, such as process control, flight control,

automotive control, motor drives, and so on. The PID algo-

rithms found in industry may have different structures [3].

Currently, the three largest classes of PID algorithms

implemented in the PLC are the ideal standard algorithm

(ISA, non-interacting), parallel (non-interacting), and series

(interacting) types. The general expressions of the PID

algorithms are represented by (1, 2, 3) as follows:

u ¼ KC 1þ 1

TIs
þ TDs

� �
ð1Þ
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u ¼ KP þ
KI

s
þ KDs ð2Þ

u ¼ K 0C
1

T 0Is
þ 1

� �
T 0Dsþ 1
� �

ð3Þ

where KC is the proportional gain of the ISA; TI is the reset

time of the ISA; TD is the derivative time of the ISA; KP is

the proportional gain of the parallel form; KI is the integral

gain of the parallel form; KD is the derivative gain of the

parallel form; K 0C is the proportional gain of the series

form; T 0I is the reset time of the series form; and T 0D is the

derivative time of the series form.

Previously, the parallel and ISA algorithms were less

commonly observed in industrial processes compared to

the series form. The reason for this phenomenon can be

found in analog control, where pneumatic controllers were

dominant. When pneumatic controllers were dominant, the

PID algorithm was difficult to design due to its use of

extremely expensive analog amplifiers [7]. Despite this

drawback, Astrom and Hagglund [2] indicated that the ISA

allows complex zeroes and is thus a more flexible structure

than the series algorithm, which has real zeroes. Many

controller manufacturers (ABB, Allen-Bradley, General

Electric, Honeywell, Omron, Siemens, Toshiba, Yokoga-

wa, etc.) offer a variety of modified versions of the above-

mentioned forms, where a few of the modifications are

improvements of the structures, a few of the modifications

are derived from early pneumatic implementations, and a

few of the modifications are more common in certain

industries than others. According to [2], many useful fea-

tures of PID control have not been widely disseminated

because they are considered to be trade secrets. Typical

examples include techniques for mode switches and anti-

windup. However, the basic actions remain the same. The

main issue is that the tuning behavior varies from one form

to another. An understanding of the various forms of PID

algorithms and the configuration options that are offered is

necessary to properly design and apply process control

strategies. For this type of modified structure, there are no

readily available tuning rules [8, 9]. Rhinehart and Shins-

key [3] reported that an operator who was accustomed to

tuning a controller with a particular PID algorithm would

be baffled when another controller did not respond as

expected. An operator or software program that follows a

tuning procedure to determine KC, KP, or K 0C; TI, KI, or T 0I ;

and TD, KD, or T 0D for the standard algorithm (1, 2, 3) could

be surprised by the response when applying the procedure

to a manufacturer-specific version.

Therefore, a PID controller’s structure should be com-

pletely understood before it is tuned [10]. Furthermore, the

structural difference becomes significant when one con-

troller is replaced by another. A variety of structure iden-

tification methods are under development. A popular and

frequently used method is the relay feedback for both the

off-line and on-line automatic identification of the PID [7];

however, relay feedback has disadvantages because it is

unacceptable for a few classes of processes, such as

unstable and integrals of the second-order processes. A

different approach to identify PI structures was shown in

[11], where artificial intelligence was used and PI algo-

rithms were treated as a black box [12].

In this report, we propose using the support vector

regression (SVR) [e.g., the support vector machine (SVM)

in regression mode] as a tool for PID-implemented mod-

eling in a real PLC. According to [8], about fifty non-

standard PID structures very often can be seen in the real

PLC. Thus, this method can be an alternative for engineers

who need to tune the PID and do not have any such

information on the structure and cannot use the default

settings for the known structures. Preliminary research for

this method was presented in [11] and was limited to the PI

algorithm.

In the first stage, we used the SVR for training PID

algorithm structures based on input and output signals from

the PLC (black box model). The goal was to train a SVR

and obtain the response comparable to the response of the

PID algorithm implemented in the PLC for any parameters

KP, TI, and TD. The advantage of this method is that the

structures with modification can then be both known and

unknown. The benefits of this method also indicate that

after the training of the SVR, we can simulate the real

output of the PID algorithm for a personal computer (PC)

and apply, for example, an imperialist competitive algo-

rithm (ICA) to tune the PID parameters and transfer them

to the PLC.

We used the SVR because it is a good tool to estimate

regression functions with generalization performances

when using structural risk minimization [13]. One of the

problems of using the SVR is that a large number of

samples are gathered with the PLC in addition to a few of

the features selected in mode training and testing. In this

report, we propose the selection of an optimal feature

vector and reduction samples to be trained. We focus on

two industrial controllers: Siemens and General Electric

(GE), the basic algorithms of which have already been

described (1, 2). To the best of our knowledge, SVR has

never been used in the context of PID algorithms imple-

mented in the PLC.

The method is sufficiently universal and can be applied

to any PI, PD, and PID algorithm implemented in the PLC,

with additional functions and modifications that are con-

sidered to be trade secrets. The report is organized as fol-

lows. The structures of the PID algorithms implemented in

the PLC are described in Sect. 2. The short studies on the

SVR are described in Sect. 3. The proposed feature

selection for the SVR is described in Sect. 4. Section 5 is
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devoted to describing the results. Finally, conclusions and

future studies are provided.

2 Structures of PID algorithms that are most

commonly implemented in PLC

Many controller manufacturers offer a variety of PID

versions. It is important to remember that there is no

standard terminology used among manufacturers. To reveal

the controller’s structure, the user should examine the

mathematical expression included in the user manual rather

than relying on the manufacturer’s nomenclature.

PID algorithms that continuously or repetitively calcu-

late the required position of the valve or other final actuator

are called position algorithms. Conversely, algorithms that

calculate the required change in position of the final

actuator are called velocity or incremental algorithms. The

position algorithm is the most popular algorithm in PLCs.

Three basic PID structures are described below.

2.1 PID structures

The first controller structure, which is most often imple-

mented, is called the ISA. This form is also labeled as the

dependent or gain-dependent form. The controller output is

calculated as presented in (2). The block diagram of the

ISA PID is shown in Fig. 1, where yref is set point, y is

measurement, e is control error, u is control variable.

The ISA is used in numerous controllers, e.g., GE

VersaMax PLC (‘PID ISA’ function block), Siemens S7-

300 (‘FB41’ function block), and Allen-Bradley PLC-5

(‘PID’ function block) [14, 15].

In this PID, KC is dimensionless, the units of TI are

minutes per repeat, and the units of TD are minutes.

However, various manufacturers express TI and TD in

seconds rather than minutes.

In certain cases, the proportional action can be expres-

sed as a proportional band (PB) rather than a proportional

gain, KC. The integral mode can be described by the reset

time, TI, or reset rate, TR. The units of TR are repeats/

minute.

The next PID structure, described by (2), is parallel,

ideal parallel, independent, or gain independent. The

proportional gain, KC, is dimensionless; the integral gain,

KI, is expressed in units of time-1; and the derivative

gain, KD, is expressed in units of time. Examples of this

form are the ‘PID IND’ function block in the GE Ver-

saMax PLC and ‘PID’ function block in the Allen-Brad-

ley PLC-5 [16]. Figure 2 illustrates how the controller

output is calculated.

Equation (3) and Fig. 3 refer to the series controller

structure. This form should be considered as interacting

because the integral block is in series with the derivative

block, and if one of the blocks change, the other block is

affected. Using this nomenclature, the parallel and ISA

form should be classified as non-interacting structures

because the integral and derivative blocks have a parallel

connection. It is worth noting that if the integral or deriv-

ative term is turned off, then the series and ISA forms are

identical. The units of the controller’s parameters, K 0C, T 0I ,

and T 0D, are the same as the ISA’s parameters. An example

of this form is the Foxbro controller [8].

2.2 Additional function and modification

In certain cases, a sudden set point change may cause a

spiking reaction in the controller output. To prevent this

phenomenon, numerous manufacturers propose an addi-

tional parameter that can weaken the proportional action

and soften the response of the set point. Another approach

to allow the controller output to be gentler is to add a

derivative smoothing filter. Equation (4) describes the ISA

controller with an embedded derivative filter. The coeffi-

cient N has a significant impact on the controller dynamics.

There is no standard value of this coefficient among

manufacturers, e.g., in the Siemens S7-300 and Toshiba

T-series, the value of N is equal to 10, whereas in the

Allen-Bradley PLC-5, the value of N is equal to 16 [16,

17]. Figure 4 shows the manner in which the N value can
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Fig. 1 Block diagram of an ISA PID controller
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influence the controller dynamics. In the GE VersaMax

PLC, the user can also enable derivative filtering by

applying a first-order filter [15]. Unfortunately, manufac-

turers do not describe this filter in great detail.

u ¼ KC 1þ 1

TIs
þ TDs

1þ TD

N
s

 !
ð4Þ

Furthermore, the PID structure can be modified, so that

the derivative term acts only on the y signal. In most PLCs,

this modification is a user option. This modification can be

performed by switching the proper bit or register in the

PLC’s memory. This result contributes to the elimination

of controller output bumps. The implementation of this

option is shown in Fig. 5. Figure 6 shows a comparison of

the derivative-on-measurement and derivative-on-error

PID structures.

A popular addition is the deadband. This is the quantity

that is compared to the error signal. If the error is within the

deadband range, an update of the controller output does not

occur.

Another problem strongly connected with PI and PID

controllers is an integral or reset windup. This problematic

situation occurs when the controller output signal remains

at its maximum or minimum limit, even though the value

of the error begins to decrease or increase. The integrator

windup can be avoided by verifying that the integral is kept

at a proper value when the controller’s output saturates;

thus, the controller is ready to resume action as soon as the

error changes. Furthermore, there are several solutions for

reset windup problems, but in practice, manufacturers of

PLCs do not describe which solution they use.

3 SVR studies

Support vector machines (SVMs) are classification and

regression methods, and the basis of these methods has

been derived by Vapnik and Chervonenkis [18]. SVMs that

address classification problems are called support vector

classifications (SVCs) [19], and SVMs that address mod-

eling and prediction are called SVRs [13]. The purpose of

the SVR is to obtain a function with a maximum deviation

of e from the actual destination vectors for all given

training data that is as flat as possible. SVR requires the

setting of fewer user-defined parameters as well as the

option of a kernel and its parameters. The advantage of

SVR over conventional algorithms based on empirical risk

minimization, such as an artificial neural network, is its

optimization algorithm, which includes solving a linearly

constrained quadratic programming function, leading to an

optimal and global solution. SVR has been successfully

used to solve problems in many fields, such as economics

[20], medicine [21], electrical circuits [22], power systems

[23], mechanics [24], and system identification [25, 26].

Let us assume that we have a data set of p training

samples, x1; d1ð Þ; x2; d2ð Þ; . . .; xp; dp

� �� �
, where xi 2 Rn;

di 2 R. We can introduce a nonlinear mapping

u �ð Þ : Rn ! H, where H is a hypothetical feature space,

and define e—insensitive loss function—as follows:

Le ¼ d � yðxÞj je¼ max 0; d � yðxÞj j � ef g ð5Þ

where y(x) is the estimation of the function. The SVR

formula can be expressed as follows:
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yðxÞ ¼ wTuðxÞ þ b w; x 2 Rn b 2 R ð6Þ

where w is the weight vector and b is the offset.Then, y(x)

can be determined from the minimization problem as

follows:

min Le ¼ min
1

p

Xp

i¼1

di � w � uðxiÞ � bj j � eð Þ ð7Þ

By introducing slack variables ni, ni* into (7), an optimi-

zation problem can be formulated as follows:

min
w;b;n;n�i

1

2
wk k2þC

Xp

i¼1

ni þ C
Xp

i¼1

n�i ð8Þ

which is subject to:

di � wTu xið Þ � b� eþ ni

wTu xið Þ þ b� di� eþ n�i ni; n
�
i � 0

ð9Þ

The constant C [ 0 determines the trade-off between

the model flatness and the training error. The flatness in (6)

indicates a small w value.

The solution to the optimization problem in (8) is given

by the saddle point of the Lagrangian as follows:

J w; n; n;� a; a�; c; c�ð Þ ¼ 1

2
wk k2þC

Xp

i¼1

ni þ C
Xp

i¼1

n�i

�
Xp

i¼1

a�i di � wTu xið Þ � bþ eþ n�i
� �

�
Xp

i¼1

ai wTu xið Þ þ b� di þ eþ ni

� �

�
Xp

i¼1

cini þ c�i n
�
i

� �

ð10Þ

It follows from the saddle point condition that the partial

derivatives of J with respect to the primal variables (w, ni,

ni*) must be excluded for optimality. The variables ai, ai*,

ci, ci* must satisfy the positivity constraints. The formu-

lation of the dual problem involving the Lagrange multi-

plier a is equivalent to finding an expression as follows:

min
a;a�

1

2
a� a�ð ÞT Q a� a�ð Þ þ e

Xp

i¼1

ai þ a�i
� �

þ
Xp

i¼1

di ai � a�i
� �

ð11Þ

which is subject to:

Xp

i¼1

ai � a�i
� �

¼ 0 0� ai; a
�
i �C ð12Þ

where Qij ¼ kðxi; xjÞ ¼ uTðxiÞuðxjÞ is the kernel function

in accordance with Mercer’s condition [27]. The kernel

function has been defined as a linear dot product of the

nonlinear mapping.

After solving the problem in (8), the regression function

can be written as follows:

y xð Þ ¼
XK

j¼1

ða�i � aiÞkðx; xiÞ þ b ð13Þ

where K is the number of so-called support vectors (SV).

The vector xi is associated with the coefficient ai is called a

support vector, and only those vectors have an effect on

y(x).

The selection of the coefficients e and C is of utmost

importance. The constant e determines the margin within

which the error is neglected. The smaller its value, the

more support vectors will be determined by the algorithm.

The constant C is the weight, which determines the trade-

off between the complexity of the network, characterized

by the weight vector and the error of approximation and is

measured by the slack variables (i = 1, 2, …, p).

4 Data collection

The preparation of training data and feature selection (i.e.,

a model selection) is usually the most important factors

influencing the correct operation of the model and the

ability to generalize the SVR. To generate a training and

validation data set for the identification of the PID algo-

rithm, an experiment is performed. In our study, a valida-

tion term is different than a test term and is explained in the

next section.

The training and validation data sets collected by the

system for our study are shown in Fig. 7.

However, there are difficulties with training the SVR on

a real data set. As the number of training patterns increases,

the generation of the SVR training takes significantly

PC

Matlab Simulink

DAQ NI
PCI-6229

PLC controller:
Siemens S7-300

or
GE VersaMax

PID

e u

Fig. 7 Block diagram of data set collection
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longer, with a time complexity of p3, where p is the number

of training patterns. Thus far, several algorithms, such as

chunking, SMO, SVM light, and SOR, have been proposed

to reduce the training time [28].

The control error, e, and control variable, u, of the PID

algorithm have been administered and recorded using a

PC with Matlab and Simulink 7.10.0 (R2010a) Math-

Works. In the Matlab and Simulink toolbox, the real-time

windows target was used. The connection between the

PLC and PC was maintained through a National Instru-

ments data acquisition board, NI PCI-6229. The sampling

frequency of both the PLC and Matlab & Simulink was

10 Hz (recommended frequency by the manufacturer of

the PLC).

Many attempts have shown that better SVR training

results were obtained by artificial excitation signals of

input rather than trying to collect data from a process that is

under a closed-loop control. When the input–output pat-

terns come from a PID under loop control, the variables are

highly correlated with each other, and the information

content is low. Most sampled states would reside in a

narrow region around the operating point, giving minimal

information on the interaction of the different input vari-

ables to produce the output [29]. Therefore, the control

error, e, was administered in the form of uniformly dis-

tributed random signals of a different amplitude and fre-

quency in the interval of -1 to 1 V. This type of artificial

excitation should be selected so as to not turn on anti-

windup because it will be tested at a later stage.

The example of a signal e and u collected for training

and validation of the SVR is shown in Fig. 8.

As a result of performing simulations for different set-

tings of the PID algorithm (PLC Siemens, GE) with dif-

ferent values of amplitude and frequency of the control

error, e, administered on the input of the PID, hundreds of

thousands of training samples were collected.

5 Model selection

Because the SVR has to emulate the work of the PID

algorithm, the goal of this study is to construct a multiple-

input and single-output (MISO) black box model for the

output of the PID algorithms. The input structure of the

SVR was used in accordance with the NARX (Nonlinear

AutoRegressive with eXogenous inputs) model in a pre-

dictor form. To obtain a good NARX model, the selection

of the amount of regressors is extremely important [30, 31].

The regressors are the inputs of the model. In our case, the

output of the model depends on past inputs and outputs and

can be described as follows:

ûðtÞ ¼ f ðuðtÞ; hÞ;
uðtÞ ¼ ½eðtÞ; eðt � 1Þ; . . .eðt � neÞ; uðt � 1Þ; . . .uðt � nuÞÞ�

ð14Þ

where ûðtÞ is the output of the model; u(t) is the regression

vector; h is the parameter vector; and ne and nu indicate the

order of the NARX model (number of lags).

Finally, the set of SVR inputs (features input set) is

extended with P, I, and D parameters, and the general form

is as follows:

x ¼ P I D eðtÞ eðt � 1Þ. . .eðt � neÞ uðt � 1Þ. . .uðt � nuÞ½ �
ð15Þ

where P = KC for the ISA; P = KP for the parallel form;

I = TI for the ISA; I = KI for the parallel form; D = TD

for the ISA; D = KD for the parallel form; e is the control

error at time t, t - 1, …, t - ne; and u is the controller

output at time t - 1, …, t - nu.

The output signal of the SVR was the control variable

ûðtÞ.
The general block diagram of the full set feature vector

covering both input and output is shown in Fig. 9.
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6 Results

The SVR was trained and tested for the PID algorithms,

which were implemented in S7-300 Siemens and GE Versa

Max controllers. The PID algorithms implemented in the

controllers’ PLC were ISA (Siemens, GE) and parallel

(GE). The manufacturers provided the transfer function

over a discrete time, described in (16) for the parallel form

and (17) for the ISA, as follows:

u ¼ KP þ KITS

1

z� 1
þ KD

N

1þ NTS
1

z�1

ð16Þ

u ¼ KC 1þ TS

TI

1

z� 1
þ TD

N

1þ NTS
1

z�1

 !
ð17Þ

where TS is the sampling time.

There is no information on the value of N or the mod-

ification of the structure. After many attempts, a value of

N equal to 10 was chosen for all structures.

The results of the SVR with the neural network NARX

model (NN) and transfer function (Tf) of the PID described

by the manufacturers (16, 17) were compared. For NN

structure, selection was made according to the procedure

proposed for the SVR. Number of both inputs and outputs

was the same as for the SVR. The initial number of neurons

in the hidden layer was assumed as the root of the sum of

inputs and outputs and then fine-tuned by trial and error

method. The learning for NN was performed using

Levenberg–Marquardt Method. The NN and Tf were

implemented in Matlab & Simulink 7.10.0 (R2010a). More

detailed description of the mechanism of the NN can be

found in [32].

The data set was divided into the training set and

validation set without averaging or filtering. The first

5 % of the data was used for estimation, and the last

95 % was used for validation. In the training and vali-

dation mode, a one-step-ahead prediction was performed,

whereas in the test mode, the simulation (the measured

inputs and estimated outputs are used to form the

regressors) was performed. The differences between the

validation and test mode are due to the lack of imple-

menting the cross-validation function in the SVR

toolbox.

The data set for training and validation for each of these

structures was generated for dozens of different settings.

The data set was normalized over the range of 0–1. The

ranges for each setting were as follows: KC: 0.5–0.9; TI:

0.5–9.9; TD: 0.03–0.48; KP: 0.1–0.47; KI: 0.1–0.91; and KD:

0.01–0.5. A sample set for different settings is shown in

Fig. 10.

Quality measures for the training, validation, and testing

set are performed on the basis of the mean squared error

(MSE) and fit measure (Fit) methods.

The mean squared error (MSE) is defined as follows:

MSE ¼ uðtÞ � ûðtÞk k2
2

p
ð18Þ

The Fit measure is defined as follows:

Fit ¼ 1� uðtÞ � ûðtÞk k2

uðtÞ � �uðtÞk k2

� �
� 100 % ð19Þ

where ûðtÞ is the simulated output; u(t) is the measured

output; and �uðtÞ is the mean of the measured output; p is

the number of samples.

To define the optimal number of regressors in the

training data set and the impact of the number of regressors

on the model, a training approach of trial and error was

performed. Because the order of the transfer function of the

PID algorithm was low, the number of lags was determined

over the range of 1–10. The minimum MSE values of the

analysis of all possible combinations in relation to nu: 1–10

and ny: 1–10 for the three structures are plotted in

Figs. 11,12, and 13.

The observation of the MSE values shows that there is

no clear minimum in the above figures, which indicates the

possibility that the model class is not entirely correct.

Attempts to determine the minimum value or a point close

to the minimum value for both the training data and vali-

dation were performed. We also tried to find a compromise

between the MSE index and the size of the input vector.

The effect of the selected values on the results of the test

data was also observed.

Finally, based on the MSE method for the training and

validation data set, optimal values of (3, 7), (3, 7), and (2,

7) were chosen, as depicted in Figs. 11, 12, and 13,

respectively.

For those values, the feature vectors of the SVR were

prepared as follows:

Parallel structure GE:

x ¼ P I D eðtÞ eðt � 1Þ. . .eðt � 3Þ uðt � 1Þ. . .uðt � 7Þ½ � ð20Þ

SVR

z-1

z-1

z-1
z-1

( )u t ( 1)u t −
( )uu t n−

( )ee t n−
( 1)e t −

( )e t
ˆ( )u t

P

I

D

Fig. 9 General block diagram of the input vector and the output of

the SVR
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ISA structure GE:

x ¼ P I D eðtÞ eðt � 1Þ. . .eðt � 3Þ uðt � 1Þ. . .uðt � 7Þ½ �
ð21Þ

ISA structure Siemens:

x ¼ P I D eðtÞ eðt � 1Þ eðt � 2Þ uðt � 1Þ. . .uðt � 7Þ½ �
ð22Þ

After the feature vectors were selected, the training

process of the SVR was performed using an SMO-type

algorithm implemented in the toolbox LIBSVM [33]. We

used the Gaussian radial basis function as the kernel

function kðx; xiÞ ¼ e�c x�xik k2

, where c is the kernel

parameter. The c parameter was tuned by trial and error.

The Gaussian radial basis function satisfied by the SVR

kernel and is described as the relation:
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kðx; xiÞ ¼ uTðxÞuðxiÞ. The optimal value of the e (i.e.,

insensitive loss function) parameter was determined after a

series of experiments and was assumed to be e = 0.001.

The test was performed under the simulation mode (i.e.,

estimated output is used to form the regressors). Both the sets

of parameters and excitation signals of input were different

from those in the training and validation mode. The proce-

dure for testing the data collection was the same as for the

training and validation mode. The number of SVR inputs

(i.e., the feature vector) was the same as in the training and

validation mode. The comparison of the PID algorithm’s

output and SVR’s output was for the same sets of parameters.

In both controllers, the anti-windup was turned on.

The diagram of the procedure for the test of the SVR

and comparison of the accuracy Fit and MSE for any set-

ting P, I, and D are shown in Fig. 14.

The signal e was varied over the range of -1 to 1 V.

The output of the SVR and PID algorithm implemented in

the PLC was compared at similar time points, and the MSE

and Fit error were calculated. The test procedure was

conducted in accordance with Fig. 14 and ten times repe-

ated for different sets. The final results of the SVR, transfer

function of the PID and NN test were averaged from sev-

eral tests.

The examples of the SVR responses and the comparison

with the response of the real output of the PID algorithm

for Siemens and GE for all examined structures are shown

in Figs. 15, 16, and 17.

As shown in Figs. 15, 16, and 17, the outputs of the

SVR coincide with the response of the PID algorithms

implemented in the PLCs. It should be noted that this

option is a considerably more difficult task than the one-

step-ahead prediction. In this case, there is a risk of

cumulative error because the inputs and estimated output

are used to form the regressors.

The final results of the training and testing of the

SVR combined with the results for the transfer func-

tion of PID algorithms implemented in the PLC and

NNs for both Siemens and GE are shown in Tables 1,

2, and 3.

As shown in Tables 1, 2, and 3, the results of both the

MSE and Fit methods for the training and testing of the

SVR are better than the Tf and NNs for the PID algo-

rithms implemented in both PLCs. The results of the SVR

for the ISA (Fit—88.62, 89.67 %) are better compared to

that of the parallel form (86.96 %). It can be assumed that

the parallel form may be slightly modified, as confirmed

by the worse result for the transfer function of the PID

algorithm (83.52 %). The results for the ISA for both

Siemens (89.67 %) and GE (88.62 %) are similar, most

likely due to the similar implementation of the algorithms

in the PLC. Generally, good results for the Tf (83.52,

88.18, 87.67 %) indicate for small modifications intro-

duced by manufacturers. The worst results obtained for

the NN (80.14, 81.07, 83.35 %) are clear because learning

algorithms can stop at the local minimum. For the SVR,
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the optimization process is convex and has a single opti-

mum value. Furthermore, the minor difference between

the results of the training and testing of the SVR

(90.93–86.96 % for parallel form GE, 91.26–88.62 % for

ISA GE, 92.00–89.67 % for ISA Siemens) demonstrates

good generalization properties.
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7 Conclusions and future work

The goal of this study was to demonstrate a method that

improves the accuracy of a PID algorithm simulation by

considering the real dynamics of control algorithms. We

have shown the practical advantages of the SVR and that it is

better to simulate the PID algorithm using SVR than the

ready transfer function of PID algorithms provided by the

manufacturer. The manufacturer often provides only a

general transfer function of PID algorithms and does not

inform on additional functions or modifications. Further-

more, we show that the SVR maps the function of PID

algorithms with the modifications introduced by the PLC

manufacturer with high accuracy. In this report, only the

most frequently implemented PID structures were studied.

However, this approach can be extended to any structure

due to the application of black box modeling, which does

not require knowledge of the structure or the modifications

provided by the manufacturer. With this approach, the SVR

simulation results can be used to tune the PID algorithms in

the PLC. In additional studies, we intend to focus on

emulating additional functions, e.g., anti-windup, control

zone, deadband, slew time, and weakening proportional

action as well as their combinations. Furthermore, we

intend to use ICA in connection with SVR, which will

enable a quick and accurate tuning of different PID algo-

rithms used in real PLCs from any manufacturer, and to

compare the results with auto-tuning implemented in the

PLC.
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