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ABSTRACT
C-Kit protein is a transmembrane tyrosine kinase (TK) receptor (c-KitR-TK), which 

is predominantly expressed on mast cells (MCs) playing a role in tumor angiogenesis. 
It could be  also expressed on epithelial breast cancer cells (EBCCs), but no data have 
been published regarding the correlation between mast cells positive to c-KitR (MCs-c-
KitR), EBCCs positive to c-KitR (EBCCs-c-KitR), BC angiogenesis in terms of microvessel 
density (MVD) and the main clinic-pathological features. This study aims to evaluate 
the above parameters and their correlations in a series of selected 121 female early BC 
patients. It has been found a strong correlation between MVD and MCDPT, and MCs-c-
KitR, MVD and MCs density positive to tryptase (MCDPT), and MCs-c-KitR and MCDPT  
by Pearson correlation. These data suggest an involvement of both MCDPT and MCs-
c-KitR in BC tumor angiogenesis. Furthermore, BC tissue expressing c-KitR could be a 
putative predictive factor to c-KitR-TK inhibitors. In this way, selected patients with 
higher MCs-c-KitR could be candidate to receive c-KitR-TK inhibitors (e.g. masitinib, 
sunitinib) or tryptase inhibitors (e.g. nafamostat mesilate, gabexate mesilate).

INTRODUCTION

C-KitR is the transmembrane tyrosine kinase 
(TK) receptor (c-KitR-TK) for stem cell factor (SCF), 
a cytokine regulating important functions of MCs such 
as proliferation and degranulation that in turn stimulate 
angiogenesis [1, 2]. C-KitR could be expressed also 
in other stromal cells, such as myofibroblasts and 

adipocyte cells, and epithelial breast cancer cells 
(EBCCs) stimulating proliferation. Several published 
studies showed that EBCCs positive to c-KitR (EBCCs-
c-KitR) are low (from 10% to 29%) or absent in invasive 
breast cancer (IBC) [3–11]. In agreement, a progressive 
decrease and almost complete loss of EBCCs-c-KitR 
have been reported during the progression of normal 
tissue to BC [7, 8, 11–13]. Furthermore, EBCCs-c-KitR 
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have been reported to be associated with more indolent 
cancer behavior [3, 6]. However, a small body of 
evidence suggests that EBCCs-c-KitR might represent an 
independent negative prognostic factor [4, 5, 10, 14–17]. 
Notably, c-KitR overexpression in IBC appeared to be an 
indicator of high-grade cancer resulting in poor prognosis 
[18]. This evidence suggests that c-KitR expression may 
play a role in BC progression. C-KitR expression has been 
also found increased in malignant breast phyllodes tumors 
(BPT), uncommon stromalepithelial lesions with different 
potential of malignancy [7, 8, 19–25]. For what concern 
the role of EBCCs-c-KitR and tumor angiogenesis, 
very little data have been published and only one study 
explored the relationship between EBCCs-c-KitR and 
microvascular density (MVD) demonstrating a negative 
correlation [3]. With special regard to MCs positive to 
c-KitR (MCs-c-KitR), a lot of in vitro data demonstrated 
that MCs play a role in tumor angiogenesis [26–31]. 
In particular, MCs stimulate angiogenesis by several 
mechanisms including c-KitR activation leading to the 
release of a plethora of angiogenic factors, contained in 
their cytoplasmic secretory granules [32, 33]. Among 
them, the most powerful factor is tryptase [32, 34]. 
Tryptase, acting on the proteinase-activated receptor-2 
(PAR-2) by its proteolytic activity, has angiogenic activity 
stimulating both human vascular endothelial and tumor 
cell proliferation in paracrine manner, helping tumor cell 
invasion and metastasis [30, 35]. In in vivo studies it has 
been also shown that MCs density positive to tryptase 
(MCDPT) is strongly related to angiogenesis in several 
animal and human malignancies [2, 28, 33, 36–50]. With 
concern to early BC patients, we already demonstrated 
a strong correlation between high serum tryptase levels 
before surgery (STLBS) and MVD, STLBS and MCDPT, 
MCDPT and MVD [40]. 

To the best of our knowledge, no data have been 
published regarding the correlation between EBCCs-
c-KitR, MCs-c-KitR, BC angiogenesis and clinico-
pathological features. In the current study we aim to 
evaluate the primary tumor tissue status of the above 
parameters to perform any possible correlation to each 
other and with clinico-pathological characteristics in a 
series of 121 female early BC patients. Adjacent normal 
breast tissue has been also evaluated in terms of MCDPT, 
MVD, MCs-c-KitR and normal breast epithelium-c-KitR 
(NBE-c-KitR) expression. Finally, difference between the 
all the evaluated parameters in tumor tissue and adjacent 
normal breast tissue has been also assessed.

RESULTS

Data obtained from tumor tissue using light 
microscopy and image analysis system (Quantimet500 
Leica, Wetzlar, Germany) [33] show the following mean ± 
1 s.d.: MCDPT 7.49±2.81 (Figure 1A), MVD 29.41 ± 6.63 
(Figure 1B), MCs-c-KitR 8.75 ± 3.26 (Figure 1C) and 

EBCCs-c-KitR 32.98 ± 16.61 (Figure 1D) (Table 2). 
MCs appear as round or spheroidal cells with a diffuse 
cytoplasmic red staining using the anti-tryptase antibody 
and with a filiform peripheral cell membranous intense 
staining using the anti-c-KitR and a blue spheroidal central 
nucleus. MCs are found as scattered cells (Figure 1A) or 
as cluster formation near and around microvessels that 
sometimes showed several red blood cells in their lumens 
(Figure 1C). Furthermore, microvessels appear as red 
immunostained structures and often their lumen is visible 
using the anti-CD34 antibody (Figure 1B). With special 
reference to EBCCs, a part of them shows a red strong 
filiform membranous staining utilizing the anti-c-KitR 
antibody (Figure 1D). 

With special regard to normal tissue [33] the 
evaluated parameters showing the following mean ± 1 
s.d.: MCDPT 2.86 ± 1.24 (Figure 2A), MVD 12.38 ± 3.97 
(Figure 2B), MCs-c-KitR 3.01 ± 1.57 (Figure 2C) and 
EBCCs-c-KitR 59.69 ± 27.35 (Figure 2D) (Table 2).

In normal tissue EBCCs show the red strong filiform 
membranous staining utilizing the anti-c-KitR antibody; 
interestingly the part of EBCCs negative to the same 
immunostaining represents the internal negative control 
(Figure 2C, 2D). Obtained data evaluated by t-test analysis 
show a significant difference between mean regarding 
tumor tissue vs normal tissue in terms of MCDPT (p 
= 0.001), MVD (p = 0.003) MCs-c-KitR (p = 0.001), 
EBCCs-c-KitR vs NBE-c-KitR (p = 0.02) as summarized 
in Table 2. 

A significant correlation between MVD and MCs-
c-KitR (r = 0.77, p = 0.001), MVD and MCDPT (r = 0.83, 
p = 0.000), and MCs-c-KitR and MCDPT (r = 0.94; 
p = 0.000) is found by Pearson correlation (Figure 3A). 
There is no correlation between EBCCs-c-KitR and 
MCDPT (r = 0.067, p = n.s.), MVD and EBCCs-c-KitR 
(r = 0.18, p = n.s.), MCs-c-KitR and EBCCs-c-KitR 
(r = 0.042; p = n.s.) by Pearson test (Figure 3B).

DISCUSSION

C-KitR, also known as CD-117 (according to 
cluster differentiation nomenclature) is the receptor 
for SCF, a cytokine regulating important functions of 
MCs such as proliferation and degranulation that in 
turn stimulate angiogenesis [1, 2]. In particular, c-KitR-
mediated MCs activation has been shown to induce tumor 
angiogenesis by the release of tryptase, the most powerful 
pro-angiogenic factor stored in MCs granules. In a pre-
clinical model tryptase induces in vitro endothelial cells 
(ECs) proliferation in a matrigel assay and displayed in 
vivo capillary growth in the chick embryo chorioallantoic 
membrane, which was suppressed by tryptase inhibitors. 
In addition, tryptase can act on PAR-2 that can be 
expressed on epithelial cells stimulating cell proliferation 
of cancer cells in paracrine manner, potentiating invasion 
and metastasis [27–32, 51].
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In vivo studies indicate that MCDPT is strongly 
related to angiogenesis in several malignancies [28, 33, 
36–41]. In particular, pilot data suggest that MCDPT 
play a role in early BC angiogenesis [52]. Results from 

Ribatti et al. demonstrated that MCDPT contribute to 
angiogenesis leading to lymph nodes micrometastases 
in BC patients [53]. In agreement with the above 
literature, we have already demonstrated an involvement 

Table 1: MCDPT, MVD, MCs-c-KitR and EBCCs-c-KitR as a function of clinico-pathological 
characteristics in a series of 121 breast cancer patients 

Variable No. of  
patients

No. of tumours
with
high

MCDPTa (%)

No. of tumours 
with
high

MVDb(%)

No. of 
tumours 
with high 

MCs-c-KitR 
(%)c

No. of 
tumours 
with high 
EBCCs-c-
KitR (%)d

No. of 
tumours

 with high 
STLBS ** (%)

Age, years 
Range 26–87 121
Median 57 121
< 57years 56 29 (52) 30 (54) 33 (59)  27 (48) 26 (55)
≥ 57 years 65 37 (57) 34 (52) 32 (49)  33 (51) 31 (54)
Menopausal status
Premenopausal 51 28 (55) 24 (47) 27 (53) 29 (57) 23 (53)
Postmenopausal 70 38 (54) 37 (53) 39 (56) 34 (49) 32 (52)
Hystological type
Ductal 88 40 (45) 47 (53) 43 (49) 44 (50) 38 (49)
Lobular 33 17 (52) 16 (48) 15 (45) 19 (58) 13 (48)
Tumour size
pT1 67 36 (54) 32 (48) 35 (52) 33 (49) 27 (55)
pT2 36 17 (47) 20 (56) 18 (50) 19 (53) 18 (51)
pT3 18 8 (44) 9 (50) 10 (56) 9 (50) 10 (50)
Nodal status
pN0 52 23 (44) 25 (48) 28 (54) 24 (46) 20 (46)
pN1–2 69 34 (49) 37 (54) 33 (48) 31 (45) 33 (54)
Cytohistological grade 
G1 42 23 (55) 19 (45) 21 (50) 22 (52) 21 (58)
G2 51 24 (47) 23 (45) 25 (49) 24 (47) 21 (47)
G3 28 16 (57) 13 (46) 15 (54) 12  (43) 11 (50)
Estrogen receptor status 
Negative  32 17 (53) 18 (56) 14 (44) 19 (59) 13 (46)
Positive  89 44 (49) 47 (53) 48 (54) 42 (47) 36 (48)
Progesteron receptor status
Negative 38 19 (50) 16 (42) 18 (47)  21 (55) 18 (53)
Positive 83 36 (43) 37 (45) 39 (47) 45 (54) 39 (55)
c-erbB-2 status
Negative 84 37 (44) 44 (52) 45 (54) 40 (48) 35 (51)
Positive 37 22 (59) 20 (54) 16 (43) 17 (6) 19 (52)

aMedian cut-off value: 7 cells per 400 field.
bMedian cut-off value: 29 microvessels per 400 field.
cMedian cut-off value: 8 cells per 400 field.
dMedian cut-off value:  31 cells per 400 field.
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of increased circulating tryptase and MCDPT in BC 
angiogenesis [40]. 

With special regard to IBC, several evidences 
suggested that EBCCs-c-KitR are low (from 10% to 29%) 
or absent [3–11]. Consistently, a progressive decrease and 
almost complete loss in EBCCs-c-KitR have been showed 
during the progression of normal tissue to BC [11–13]. 
In fact, c-KitR is expressed by non-malignant epithelial 
rather than malignant epithelial breast tissue employing 
immunohistochemistry [7, 8]. Furthermore, EBCCs-
c-KitR are related to a more indolent cancer behavior: 
high disease free survival, low grading, metastatic lymph 

nodes negative, receptor (ER, PgR, HER2neu) positive 
status [3, 6]. Conversely, some studies demonstrated 
that EBCCs-c-KitR may represent an independent 
factor of poor prognosis [5], as they are associated with 
receptor (ER, PgR, HER2neu) negative status, basal-like 
phenotype, BRCA1 mutation, positive metastatic lymph 
nodes positive, high grading, ki67 and mitotic index [4, 
10, 14–17]. Of note, Kondi-Pafiti et al. observed that 
EBCCs-c-KitR are decreased in IBC and they appeared 
to be a marker of high-grade IBC, correlating with poor 
prognosis [18]. In particular it has been demonstrated that 
c-KitR may be expressed in breast myoepithelial cells and 

Figure 1: (A) Breast cancer tissue sections evaluated by immunohistochemistry with the primary anti-tryptase antibody. Big arrows 
indicate single scattered red immunostained tryptase-positive mast cells, small arrows indicate single microvessels with red blood cells 
in theirs lumen and finally twice arrow indicates a cluster of breast cancer cells. Original magnification: x 400. (B) Breast cancer tissue 
sections evaluated by immunohistochemistry with the primary anti-CD34 antibody. Big arrows indicate single scattered red immunostained 
microvessel, small arrow indicates a cluster of red immunostained microvessels and finally twice arrow a cluster of breast cancer cells. 
Original magnification: x 400. (C) Breast cancer tissue sections evaluated by immunohistochemistry with the primary anti-cKitR antibody. 
Big arrows indicate single scattered red immunostained c-KitR positive mast cells with a well evident membranous staining.  Small arrows 
indicate single microvessels with red blood cells in theirs lumen. Original magnification: x 400. (D) Breast cancer tissue sections evaluated 
by immunohistochemistry with the primary anti-cKitR antibody. Many red immunostained epithelial breast cancer cells positive to c-KitR. 
Big arrows indicate a well evident positive c-KitR membranous staining. Original magnification: x 400.
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sometimes in some macrophages and smoothmuscle cells 
of vascular walls. Amin et al. evaluated the relationship 
between EBCCs-c-KitR and microvascular density 
(MVD), showing that the loss of EBCCs-c-KitR is 
associated with high MVD and some markers of tumor 
aggressiveness (higher tumor grade, larger size, and 

more lymph node metastasis) [3]. In this context there 
are no studies evaluating the correlation between c-KitR-
MCs and MVD in BC patients. Therefore, we aimed at 
verifying the presence of a correlation between MCs-c-
KitR and EBCCs-c-KitR, MCDPT, MVD to each other in 
121 female early BC patients. Our results demonstrated a 

Table 2: MCDPT, MVD, MCs-c-KitR and EBCCs-c-KitR means ± 1 standard deviations in a series 
of 121 breast cancer patients 

MCDPT
400x magnification
(0.19 mm2 area) 

MVD
400x
magnification
(0.19 mm2 area) 

MCs-c-KitR 
400x
magnification
(0.19 mm2 area)

EBCCs-c-KitR 
400x
magnification
(0.19 mm2 area)    

a7.49 ± 2.81 a29.41 ± 6.63 a8.75 ± 3,26 a32.98 ± 16.61
a2,86 ± 1,24 a12,38 ± 3,97 a3,01 ± 1,57 a59,69 ± 27,35
t-test p = 0.001 p = 0.003 p = 0.001 p = 0.02 

aMean ± 1 standard deviation.

Figure 2: (A) Breast normal tissue sections evaluated by immunohistochemistry with the primary anti-tryptase antibody. Big arrows 
indicate only two single scattered red immunostained tryptase-positive mast cells in all examinated field. Small arrows indicate normal 
breast epithelial cells. Original magnification: x 400. (B) Breast normal tissue sections evaluated by immunohistochemistry with the 
primary anti-CD34 antibody. Big arrows indicate two single scattered red immunostained microvessels, small arrows indicate normal breast 
epithelial cells. Original magnification: x 400. (C) Breast normal tissue sections evaluated by immunohistochemistry with the primary anti-
cKitR antibody. Big arrow indicates a single mast cell with the red filiform membranous staining and its central blue nucleus. Small arrows 
indicate normal breast epithelial cells negative to cKitR immunostaining. Twice arrow indicates two normal breast epithelial cells positive 
to cKitR immunostaining. Original magnification: x 400. (D) Breast normal tissue sections evaluated by immunohistochemistry with the 
primary anti-cKitR antibody. Big arrows indicate normal breast epithelial cells positive to cKitR immunostaining. Small arrow indicates a 
mast cell red immunostained. Original magnification: x 400.
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Figure 3: (A) Correlation analysis between: MVD and MCs-c-KitR (r = 0.77, p = 0.001), MVD and MCDPT (r = 0.83, p = 0.000), and 
MCs-c-KitR and MCDPT (r = 0.94; p = 0.000). (B) Correlation analysis between: EBCCs-c-KitR and MCDPT (r = 0.067, p = n.s.), MVD 
and EBCCs-c-KitR (r = 0.18, p = n.s.), c MCs-c-KitR and EBCCs-c-KitR (r = 0.042; p = n.s.). 
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strong and significant correlation between MVD, MCs-
c-KitR and MCDPT. With reference to this finding, it 
must be considered that the number of c-KitR expressing 
cells may be slightly greater than MCDPT in that several 
stromal cells (such as myoepithelial cells, macrophages 
and smooth muscle cells) can also result positive to 
c-KitR expression. Moreover, we observed a significant 
difference in terms of MCDPT, MVD, MCs-c-KitR, 
EBCCs-c-KitR vs NBE-c-KitR (p = 0.02) in tumor tissue 
vs adjacent normal tissue. 

Taken together, the above evidences confirm the 
involvement of both MC tryptase and MCs-c-KitR in BC 
tumor angiogenesis. Additionally, the lack of correlation 
between increased MVD and high percentage of EBCCs-
c-KitR suggests that clones of malignant EBCCs positive 
to c-KitR probably are not involved in tumor angiogenesis. 
Therefore, c-KitR and tryptase expressing MCs could 
represent a novel surrogate angiogenic marker in BC 
patients. Finally, they could also be identified as a new 
potential anti-angiogenetic target for several c-KitR-TK 
inhibitors (e.g. masitinib, sunitinib) or tryptase inhibitors 
(e.g. nafamostat mesilate, gabexate mesilate).

MATERIALS AND METHODS

The clinico-pathological features of the patients are 
summarized in the Table 1. A series of 121 BC patients 
observed at the Clinical Surgery Unit of the “Magna 
Graecia” University of Catanzaro were selected. Biopsy 
specimens were collected from 121 female BC patients 
who had undergone BC surgery. Patients were selected 
accordingly the presence of a primary, invasive breast 
tumor (stage T1-T3), the presence or not of metastases in 
axillary lymph nodes (stage N0-N2), the absence of distant 
metastases (M0), the presence of unilateral breast cancer 
and the absence of previous or concomitant primary 
cancer. Patients were staged according to the International 
Union Against Cancer Tumor Node Metastasis (UICC-
TNM) classification [31]. They not received neo-adjuvant 
therapies. Surgical treatment performed was either a 
modified radical mastectomy (44 patients in which the 
tumor had a diameter > 3 cm) or a quadrantectomy with 
axillary lymphadenectomy. No patient was subjected to the 
investigation of sentinel lymph node. Following surgery, a 
course of 5–6 weeks of radiation therapy (77 patients) was 
performed. On the basis of clinico-pathological features 
patients were evaluated to receive adjuvant hormonal 
therapy or chemotherapy or both. Full ethical approval 
and signed consent from individual patients were obtained 
to conduct the study. The full name of ethics institutional 
committee review board that approved our study is: 
University Hospital Ethics Committee “Mater Domini”, 
Germaneto, Catanzaro, Italy.

The histological diagnosis was made on 
haematoxylineosin-stained slides and histopathological 
grading was performed according to the criteria described 

by Bloom and Richardson, as well, moderately and 
poorly differentiated state [32]. For the evaluation of 
MCDPT, MVD, MCs-c-KitR and EBCCs-c-KitR a three-
layer biotin-avidin-peroxidase system was utilized [33]. 
Briefly, six-μm-thick serial sections of formalin-fixed and 
paraffin-embedded of tumor tissue and adjacent normal 
breast tissue were cut. Then, sections were microwaved 
at 500 W for 10 min, after which endogenous peroxidase 
activity was blocked with 3% hydrogen peroxide 
solution. Adjacent sections were stained with human-
specific monoclonal antibodies anti-tryptase (clone AA1; 
Dako, Glostrup,Denmark) diluted 1:100 for 1 h at room 
temperature, with anti-CD34 (QB-END 10; Bio-Optica 
Milan, Italy) as pan-endothelial marker diluted 1:50 for 
1 h at room temperature and with the rabbit polyclonal 
antibodies anti-CD117 to c-KitR (Dako, Glostrup, 
Denmark) diluted 1:100 at for 1 h at room temperature [2]. 
The bound antibody was visualized using a biotinylated 
secondary antibody, avidin-biotin peroxidase complex 
and fast red. Nuclear counterstaining was performed with 
Gill’s haematoxylin no. 2 (Polysciences, Warrington, PA, 
USA). The primary antibody was omitted in negative 
controls.

An image analysis system (Quantimet500 Leica, 
Wetzlar, Germany) was utilized [33]. For tumor tissue the 
five areas with higher immunostaining (‘hot spots’) were 
selected at low magnification and individual MCDPT 
(Figure 1A), MVD (Figure 1B), MCs-c-KitR (Figure 1C) 
and EBCCs-c-KitR (Figure 1D) were counted at x400 
magnification (0.19 mm2 area). 

With special reference to MVD, each microvessel 
was defined as single brown stained endothelial cells, 
endothelial cell clusters and microvessels, clearly 
separated from adjacent microvessels, tumor cells and 
other connective tissue elements were counted [54]. In the 
same manner, in adjacent normal tissue the five areas with 
higher immunostaining (‘hot spots’) were selected at low 
magnification and individual MCDPT (Figure 2A), MVD 
(Figure 2B), MCs-c-KitR (Figure 2C) and NBE-c-KitR 
(Figure 2D) were counted at x400 magnification (0.19 
mm2 area).

MCDPT, MVD, MCs-c-KitR, EBCCs-c-KitR and 
NBE-c-KitR mean values ±1 standard deviation (s.d.) 
were evaluated by two independent observers (V.Z. and 
G.R.) for each tumor sample and in all series of sections 
(Table 2). Correlations between MCDPT, MVD, MCs-c-
KitR and EBCCs-c-KitR were calculated using Pearson’s 
(r) analysis (Figure 3A, 3B). Difference between mean 
regarding tumor tissue vs normal tissue in terms of 
MCDPT (p = 0.001), MVD (p = 0.003) MCs-c-KitR (p = 
0.001), EBCCs-c-KitR vs NBE-c-KitR (p = 0.02) was 
evaluated by t-test analysis. Obtained data evaluated by 
t-test analysis show a significant difference between mean 
regarding tumor tissue vs normal tissue in terms of MCDPT 
(p = 0.001), MVD (p = 0.003) MCs-c-KitR (p = 0.001), 
EBCCs-c-KitR (p  =  0.02) as summarized in Table 2. 
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The correlations between the above indexes and 
the clinico-pathological features listed in Table 1 were 
analyzed by the Chi-square test. All statistical analyses 
were performed with the SPSS statistical software package 
(SPSS, Inc., Chicago, IL).
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