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B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental
to individuals with autoimmune diseases. However, in recent years, several studies have
shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert
protective effects against autoimmune diseases by secretion of inhibitory cytokines such
as IL-10. In practice, Breg cells are identified by their production of immune-regulatory
cytokines, such as IL-10, TGF-b, and IL-35, however, no specific marker or Breg cell-
specific transcription factor has been identified. Multiple phenotypes of Breg cells have
been found, whose functions vary according to their phenotype. This review summarizes
the discovery, phenotypes, development, and function of Breg cells and highlights their
potential therapeutic value in kidney diseases.
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INTRODUCTION

B lymphocytes play a critical role in adaptive immune system by secreting antibodies. They also
present antigens for the activation of T cells and produce several essential cytokines. A small
population of B cells known as regulatory B (Breg) cells demonstrates the ability of regulating
immune responses. Breg cells are a subtype of B cells that were first discovered in 1974 when two
studies described the suppressive function of B cells that could delay hypersensitivity independently
(1, 2). However, few studies have focused on suppressive B cells till 1996. Wolf et al. found that in
the development of experimental autoimmune encephalomyelitis (EAE), commonly considered as
an animal model of multiple sclerosis (MS) mediated by CD4+ T cells, EAE is inducible without the
exhibition of differences in disease onset or severity between wild-type and B cell-deficient mice.
However, B cell-depleted mice recovered with increased difficulty, highlighting the modulation
function of B cells in acute EAE (3). Subsequently, an increasing number of studies have found that
B cells with regulatory functions are involved in the development of not only EAE but also in other
inflammatory diseases (4, 5). To date, these regulatory B cell-induced immune response suppression
has been observed in autoimmune diseases, HIV, pregnancy, inflammatory diseases, and transplant
immunity, among others. In this review, we have described the different phenotypes and functions
of Breg cells and focused on their role in several types of kidney-related diseases, as well as potential
challenges in the study of these cells in the future.
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WHAT IS THE PHENOTYPE
OF BREG CELLS?

With gradual advances in the existing knowledge since their
discovery, Breg cells have not been restricted to a single
phenotype, but rather displaying several phenotypes, in both
humans and mice.

Phenotypes of Breg Cells Identified
in Humans
B cells that regulate immune responses were initially found to exert
their suppressive function in some specific diseases by producing
interleukin-10 (IL-10). Subsequently, several studies have shown
Breg cells exert suppressive functions mainly by secretion of IL-10
which also is the most important cytokine in Breg cells (6–10). It
should also be noted that in certain circumstances IL-10 can serve
as an enhancing role in the immune responses of B cells (11, 12)
and CD8 T cells (13, 14). The most frequently observed phenotype
for IL-10-producing B cells in peripheral blood is transitional
CD19+CD24hiCD38hi B cells (9, 15–20), since IL-10+ B cells are
abundant in this phenotype. Other phenotypes include
plasmablasts (CD19+CD27intCD38+) (21) and regulatory B1 cells
(Br1: CD19+CD25+CD71+CD73-) (22). Depending on the
expression of CD27, IL-10+ B cells can be divided into naïve IL-
10+ B cells (CD19+CD27-IL-10+) and memory IL-10+ B cells
(CD19+CD27+IL-10+), wherein the ratio of naïve/memory IL-
10+ B cells may hint at its function (7).

Additionally, Breg cells exhibit other markers. While
transcription factor Forkhead Box P3 (Foxp3) is known to be
expressed on several immune cells and is commonly regarded as a
marker for Tregs, it has also been identified as a transcription
factor of Breg cells, namely CD19+CD5+ B cells; in contrast, CD5-

B cells do not express Foxp3 (17, 23–25). Another transcription
factor should be noticed is T cell immunoglobulin and mucin
domain 1 (Tim-1), a member of Tim family. It is first discovered
on the cell surface of T cells and dendritic cells (DCs) and plays a
crucial role in immune response regulation (26–28). More
recently, B cells have also been found to express Tim-1 (29–31).
Human IL-10+ B cells also express Tim-1, Tim-1+IL-10+ B cells
are reported to suppress certain autoimmune diseases in human
(32). Moreover, Tim-1 may prove to be a better marker for the
identification of IL-10-producing B cells than CD5+CD1d+, since
Tim-1 is predominantly expressed on IL-10+ B cells in humans
(32). While not all of the Breg cells play a protective role in
diseases, tumor-evoked Breg cells (tBreg cells), which are
functionally different from conventional Breg cells, play negative
roles in the occurrence of lung metastasis. The phenotype of tBreg
cells is CD19+CD25+CD81hi (33). tBreg cells reportedly dampen
the immune system in breast cancer and the mechanism relies not
on the secretion of IL-10, IL-35, or activation of other suppressive
pathways, but on the secretion of transforming growth factor-b
(TGF-b) to facilitate Foxp3+ Treg cells (34).

Phenotypes of Breg Cells in Mice
The phenotypes of Breg cells vary considerably between humans
and mice. In a murine study, Breg cells were mainly defined as
Frontiers in Immunology | www.frontiersin.org 2
IL-10-producing B cells, which varied from the IL-10+ B cell
population in the peripheral blood and spleen. Interestingly,
according to the analysis of tiger mice, a type of IL-10 reporter
mouse, the majority of IL-10-producing cells in the spleen of WT
mice comprise B cells, and not T cells (6). The majority of IL-10-
producing T cells comprise CD4+ T cells (TCRb+CD4+) (83% ±
2%), and most IL-10+ B cells include follicular (FO) B cells
(CD19+CD23+CD21int) (41% ± 3%), while other IL-10-
producing cells include neutrophils, monocytes/macrophages,
and myeloid DCs. IL-10-producing B cells in the spleen
include FO B cells (CD19+CD23+CD21int), marginal zone
(MZ) B cells (CD19+CD23-CD21hi), transitional T1+T2 B cells
(CD19+AA4/CD93+), plasma/plasmablast cells (CD19+/B220lo/-

CD138+), and B1 a/b cells (CD19+CD138-CD21-CD23-

CD43+CD5+/-) (6). In murine studies, the commonly observed
IL-10+ B cells in the spleen are CD19+/B220lo/-CD1d+CD5+ cells
(B10 cells) (35–40), since IL-10+ B cells are enriched in B10 cells.

Except for B10 cells, other markers or cytokines related to B
cells may also play a regulatory role in immune responses. IL-35
secreted by B cells can inhibit inflammation in certain diseases,
including inflammatory bowel disease, and such cells are referred
to as IL-35-producing B cells (41–43). IL-35-treated mice
showed increased abundance of CD4+CD25+Foxp3+ Tregs and
IL-10+ Breg cells, indicating that IL-35 secreted by Breg cells
might exert positive feedback on Breg cells (44, 45). CD9 is a cell
surface glycoprotein that is encoded by a gene belonging to the
tetraspanin family and is considered a key marker expressed on
the cell surface of IL-10-producing B cells. Furthermore, most IL-
10+ B cells (87.5% ± 1.69%) express CD9 on their cell surface.
CD9+ B cells have been found to exert a stronger suppressive
function than CD9- B cells, while a small proportion of CD9- B
cells are known to also secrete IL-10. When CD9 expressed on B
cells is subjected to blockade by anti-CD9 antibody, the
suppression of T cell proliferation is inhibited, which is related
to the ratio of T/B cells in a co-culture system, indicating that the
suppressive function of CD9 is related to the establishment of T-
B cell crosstalk in an IL-10-dependent manner (38). Tim-1 is not
only expressed on human IL-10+ B cells, but also a marker for
mouse IL-10+ B cells. Interestingly, the expression of Tim-1 in B
cells is higher than that in T cells. B cells express Tim-1,
including transitional B cells, MZ B cells, FO B cells, and B10
cells, and most IL-10+ B cells express Tim-1 on their cell surface.
IL-4 and IL-10 secretion from Breg cells can be induced with the
use of anti-Tim-1 antibody, demonstrating that Tim-1 ligation
can induce B10 cell expansion (Table 1) (37).
DEVELOPMENT AND FUNCTION OF
BREG CELLS

Breg cells induction in vitro under different stimuli may associate
to Breg cells development in vivo. Breg cells constitute several
phenotypes of B cells, including transitional B cells, FO B cells,
plasmablasts and so forth. They are enriched in the spleen and
peritoneal cavity, while few Breg cells exist in the blood,
peripheral lymph nodes, mesenteric lymph nodes, and Peyer’s
May 2021 | Volume 12 | Article 683926
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patches (53). In vitro, Breg cells can be expanded when
stimulated with LPS (75), thereby inducing IL-10+ B cell
differentiation into plasma/plasmablast cells after transient IL-
10 production. After subjection to LPS stimulation for a period of
3 days, B10 cells gradually express CD43 and GL7 activation
markers for antibody-secreting cells. Furthermore, the
proportion of plasma/plasmablasts in IL-10+ B cells increased
with an increase in the expression of the plasma/plasmablast-
associated transcription factors, namely blimp1, xbp1, and irf4,
which are related to plasma/plasmablast cell expansion (76). IL-
10+ B cells can also be induced by anti-CD40 antibody (75, 77),
anti-Tim-1 antibody (37), PMA/ionomycin (78), IL-21 (77, 79)
and IL-35 (43, 44, 80). For example, IL-10+ B cells that mature
into functional IL-10+ B cells rely on IL-21 and CD40 signaling
activation, whereas IL-10 is not necessary for IL-10+ B cell
development (75, 77, 79), IL-21 secreted from follicular helper
T cells (Tfh) mediates the expansion of B10 cells via the
phosphorylation of STAT3 (39, 40). Interestingly, IL-21-
induced Breg cells exhibit a phenotype that expresses
granzyme B, which is a serine protease that is expressed in the
granules of NK cells and cytotoxic T cells. Granzyme B secreted
by Breg cells inhibits T cell proliferation and the degradation of
TCR z-chain (81, 82). Furthermore, IL-35 is also involved in the
development and function of Breg cells. Breg cell-secreted IL-35
is a cytokine that exerts an inhibitory on the immune response.
IL-35 induces the production of Treg cells, IL-10-producing Breg
cells, and IL-35-producing Breg cells, indicating that Breg cell
development is dependent on IL-35 signaling (43, 44, 80).

Breg cells regulate immune responses by many ways, such as
anti-inflammatory cytokines IL-10, IL-35, IL-12 (83), or TGF-b
(84, 85) secretion, or via the Fas-FasL (86) and PD-1/PD-L1 (86,
87) pathways. Through all these pathways, Breg cells regulate the
immune system by controlling immune cell differentiation and
proliferation. As the major functional cytokine secreted by Breg
cells, IL-10 production is related to the B-cell linker protein
(BLNK) expression, which is involved in the regulation of the
immune response in allergic and autoimmune diseases (88), it
regulates the differentiation of Th1 cells and Th17 cells and
inhibits T cell cytokine secretion resultantly (47). IL-10+ B cells
Frontiers in Immunology | www.frontiersin.org 3
also modulate the function of Foxp3+ Tregs and CD8+ T cells.
For example, the levels of IL-10 in the serum are elevated in
patients with chronic hepatitis B virus (HBV) infection, and the
blockade of IL-10 supports the function of virus-specific CD8+ T
cells. Both the frequency of IL-10+ B cells and the secretion of IL-
10 from IL-10+ B cells are facilitated in these patients, suggesting
that Breg cells inhibit CD8+ T cell function in an IL-10-
dependent manner (9). Additionally, IL-10+ B cells promote
CD4+Foxp3+ T cell proliferation both in vivo and in vitro (89, 90)
(91, 92). Evidence also indicates that IL-10 produced by Breg
cells induces CD4+ T cell apoptosis (93). IL-10+ B cells function
is also different among naïve IL-10+ B cells and memory IL-10+ B
cells. Naïve IL-10+ B cells are involved in the prevention of
immune responses in autoimmune diseases, while memory IL-
10+ B cells prevent disease exacerbation (94). The ratio of naïve/
memory IL-10+ B cells may be an indicator of the major function
of IL-10+ B cells in specific diseases (7). Breg cells also regulate
IgG production, with B10 cell depletion enhancing IgG
production in WT mice (35). In a human study, Breg cells
were found to impair the function of IgG4-producing B cells
(22). Moreover, Breg cells inhibit the differentiation of CD4+ T
cells into Tfh cells and suppress the antibody production
mediated by Tfh cells (91, 92). Breg cells not only participate
in the suppression of peripheral immune response but also
perform inhibitory functions in the brain. They are capable of
inhibiting inflammation and central nervous system damage
resulting from infiltrating pro-inflammatory cells (95).
Collectively, even though only 1%–2% of splenic B cells are IL-
10+ B cells, they play a critical role in the regulation of immune
responses (53) by suppressing immune responses and by
ameliorating autoimmune diseases.

Regarding tBreg cells, which play a negative role in immune
responses, anti-CD20 antibody treatment facilitates tumor
escape from the immune system via the enrichment of tBreg
cells that express low levels of CD20. Thus, using anti-CD20
antibody may enrich tBreg cells, which impairs the immune
system and promotes breast cancer development (33).

However, the role of Breg cells in mice and human are somehow
not always the same. It is also reported that CD19+CD24hiCD38hi
TABLE 1 | Subsets of Breg cells.

Subsets Mouse Human Reference

Transitional 2 marginal zone precursor B cells (T2-MZP cells) CD19+CD21hi

CD23+CD24hi

IgMhiIgD+

CD23+sIgMhi

sIgD+CD35hi
(46–49)

Marginal zone B cells CD19+CD23-CD21+ – (50–52)
B10 cells CD5+CD1dhi CD5+CD1dhi/

CD24hiCD27+
(51, 53–57)

CD1dhi B cells CD19+CD1dhi CD19+CD1dhi (58, 59)
Plasma cells/plasmablasts CD138+CD22- CD27intCD38+ (21, 60, 61)
Peritoneal B1a B cells CD19+CD5+

CD11b+
– (50, 62)

Tim-1+ B cells CD19+Tim-1+ CD19+Tim-1+ (37, 63–66)
Immature B cells – CD19+CD24hi

CD38hi
(67–73)

Circulating B cells – CD19+CD25hi

CD27hiCD1dhiCD86hi
(74)
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Breg cells are enriched in some SLE patients, together with elevated
serum IL-10 level from Breg cells and reduced IL-10R in circulating
lymphocytes, demonstrating that IL-10 secreted from Breg cells in
human is not necessarily protective in autoimmune diseases, and
can be targeted in some cases (96).
WHAT IS THE ROLE OF BREG CELLS IN
KIDNEY DISEASE?

Breg cells exert protective effects in systemic diseases that affect
the kidney, including allograft rejection (46, 97), systemic lupus
erythematosus (SLE) (98), type 1 diabetes (T1D) (99, 100), anti-
neutrophil cytoplasmic antibody-associated vasculitis (AAV)
(101), Sjogren’s syndrome (SS) (102), Immunoglobin G4-
related disease (IgG4-RD) (103), and IgA vasculitis with
nephritis (IgAVN) (104), among others. Breg cell populations
tend to be reduced in the above-mentioned kidney-targeting
diseases. The transfer or increase of Breg cell numbers and the
increased secretion of inhibitory cytokines from Breg cells
alleviates disease, leading to improved kidney function. Several
diseases, including AAV, T1D, and SLE, result from the
generation of autoantibodies and inflammatory cytokine
secretion, with or without T cell infiltration. An increased
number of Breg cells reduces antibody production and CD4+

and CD8+ T cell infiltration, and promotes the infiltration of
Treg cells, thereby leading to disease remission.
Kidney Transplantation
B cells play an important role in graft rejection by producing
donor-specific antibodies, while increasing evidence support the
role of B cells in the induction of tolerance. Long-term
acceptance was more likely to be induced in kidney-
transplanted rats administered with donor-derived B cells
compared to donor-derived T cells (105). The importance of B
cells in tolerance induction has also been demonstrated in
human studies (67, 106). Based on the studies conducted using
B cells collected from operational tolerant (OT) recipients, B cells
were found to produce higher levels of IL-10 (107). Furthermore,
the frequency of naïve B cells, memory B cells, and Breg cells
increased and tended to be normal (15, 108). Breg cells may
inhibit T cell function via the direct interaction of T:B cells
(109). Different from most settings, IL-10 shows counter-
regulatory effects in the setting of anti-CD45RB-induced
tolerance. In anti-CD45RB-induced heart allograft mice model,
IL-10 deficiency or IL-10 neutralization was found to improve
chronic allograft vasculopathy and reduce allograft reactive
antibody production. However the underlying mechanism
behind this abnormality is not yet known in this specific
setting (110). Breg cells in patients with tolerance were found
to be similar to those in healthy individuals, while patients who
experienced chronic rejection showed impaired Breg cell
population (15). The immunologic injury targeting allografts is
markedly related to the IL-10/TNF-a expression ratio on Breg
cells (111). Therefore, elevated circulating IL-10+ Breg cells could
Frontiers in Immunology | www.frontiersin.org 4
be a marker for relatively lower risk of antibody-mediated
rejection (20). More convincing evidence indicates that Breg
cells are protective in inducing the tolerance or preventing the
rejection of allografts in cases with IL10-/- on B cells or B cell
depletion, which are more likely to be rejected; furthermore,
evidence also indicates that the adoptive transfer of IL10+/+

marginal zone precursor regulatory B cells in recipients
prevents rejection (46, 97). The main mechanisms involved in
the induction of tolerance by Breg cells are as follows: (1) the
regulation of IL-10+ Breg cells promote Foxp3+ T cell
proliferation (90, 112), inhibit the proliferation (113) and
induce the apoptosis (93) of CD4+ T cells, and dampen the
function of CD8+ T cells (9); (2) activation of other cytokines
and pathways.

Lupus Nephritis (LN)
Kidney function is commonly investigated in the prognosis of
patients with SLE. As autoantibodies are the key factors in the
pathogenesis of SLE and LN, increasing evidence shows the
significant role of Breg cells in LN (98). Early studies have
reported that the number of IL-10-producing B cells is
increased in patients with SLE (114, 115). However, in patients
with new-onset SLE (116) and LN patients (117), the IL-10+

B cell population is decreased. The percentages of
CD19+CD24hiCD38hi subsets, including putative Breg cells in
PBMCs, between SLE patients and healthy controls are similar
(68, 117). However, Breg cells in the PBMCs of SLE patients
secrete fewer amounts of IL-10 with an impaired CD4+ T cell
suppressive capacity (118). Consistent with this finding,
CD19+CD24hiCD38hi Breg cells in SLE patients produced
fewer amounts of IL-10 with an impaired suppressive capacity.
The suppressive effect of Breg cells on CD4+ T helper 1 cells is
dependent on IL-10, CD80, and CD86, but is not TGF-b-
dependent. This suppression impairment of SLE-derived Breg
cells may be related to its inability to upregulate STAT3
phosphorylation upon CD40 engagement (68). Early immature
B cells can produce a substantial number of self-reactive
antibodies, including ssDNA-reactive antibodies (119, 120).
Interestingly, IL-10-producing CD27−CD38intIgD+ pre-naïve
B cells in SLE patients secrete fewer amounts of IL-10 with
enhanced CD80 and CD86 expression, and this occurrence leads
to the loss of self-regulation (120).

The reason for the reduced population of IL-10+ Breg cells in
SLE patients may be related to the regulatory circuit between
plasmacytoid dendritic cells (pDCs) and CD24+CD38hi Breg
cells (69). In healthy individuals, pDCs can promote the
differentiation of both Breg cells and plasmablasts by
moderating IFN-a secretion and CD40 signaling. On the other
hand, IL-10 produced by Breg cells can restrain the release of
IFN-a by pDCs. However, in SLE patients, increased IFN-a
production by hyperactive pDCs drives immature B cell
differentiation with an inclination toward plasmablast
generation. As a result, SLE Breg cells with reduced IL-10
production fail to restrain pDC-derived IFN-a, thus creating a
vicious circle. This study also found that in SLE patients
responding to rituximab, repopulated B cells contained a
normal frequency of CD24+CD38hi Breg cells, and this
May 2021 | Volume 12 | Article 683926
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mitigated pDC activation and restored the balance (69).
Epratuzumab, which targets CD22, can reportedly inhibit B
cell-derived pro-inflammatory IL-6 and TNF-a secretion while
maintaining the production of IL-10 (121). This represents a
potential therapeutic strategy to disrupt the vicious cycle between
pDCs and Breg cells.

Another immunosuppressive agent, prednisolone, is also
commonly used in SLE patients. However, the percentage of
IL-10+ B cells in LN patients is negatively correlated with the
daily dose of prednisolone (117) which indicates that the
currently available immunosuppressive agents can affect both
the effector and regulatory aspects of B cells. This might indicate
that the current immunosuppressive treatment strategy failed to
treat SLE/LN because of its inability to restore the natural
immune balance.

Efforts have been engaged to consider and utilize Breg cells as
therapeutic targets for treating LN. Human adipose-derived
mesenchymal stem cells (MSCs) can trigger the expansion of
IL-10-producing Breg cells in vitro and in vivo in a mouse model.
After MSC treatment in the SLE mouse model, both renal
histopathology improvement and autoantibody mitigation have
been achieved (122). A similar effect has also been reported with
the application of MDSCs, which can be subjected to blockade
using an inhibitor of iNOS (89).
Type 1 Diabetes (T1D)
T1D is an autoimmune disease characterized by the destruction of
cells of the islets of Langerhans, particularly beta cells.
Autoantibodies, such as an anti-insulin antibody, anti-islet cell
antibody, and anti-glutamic acid decarboxylase (GAD) antibody,
can be detected in most T1D patients, accompanied by lymphocyte
infiltration in the pancreas. Several immunosuppressive therapies
have been tested, including those involving the use of cyclosporine
A (CsA) and anti-CD3 monoclonal antibodies (123). Although
CsA is an effective initial therapeutic strategy to confer protection
to the pancreas, it is not appropriate for long-term use due to side
effects (123). Although anti-CD3 antibody showed long-term
effects in NOD mice, a mouse model for T1D, treatment
strategies using the antibody did not achieve success in phase III
clinical studies (124).

Despite considerable efforts to develop immunotherapies that
target Treg or T cells for the treatment of T1D, thus far, there is a
lack of effective immunotherapies. Interestingly, accumulating
evidence indicates that Breg cells play an important role in the
suppression of the pathology of T1D. B cell depletion by anti-
CD20 antibody leads to the long-term remission of T1D in NOD
mice, possibly due to the removal of autoreactive B cells and the
reduction in autoantibody generation, which is critical for the
development of disease in NOD mice. Another critical
mechanism is the increase in the number of Foxp3+ Treg cells,
which may be caused by an altered proportion of regenerated B
cells (100, 125–127); however, the anti-CD20 antibody is
effective only in the early stage of T1D, since pancreas-
infiltrating B cells lose the ability to express CD20 (126). A
similar result was obtained when B cells were subjected to
depletion with the use of anti-CD22 antibody in NOD mice.
Frontiers in Immunology | www.frontiersin.org 5
When conducting the transfer of the regenerated B cells into
NOD mice, Treg cells underwent expansion, anti-inflammatory
cytokine secretion from Treg cells increased, and infiltrated T cell
populations reduced, indicating that these regenerated B cells
were regulatory and might exert a protective effect in T1D (128).
Additionally, several studies have shown that Breg cells alleviate
T1D pathophysiology in an IL-10-dependent manner in both
mice and humans (99, 129). In a study using NOD mice of
different ages, long-term normoglycemic NOD mice (average
age, 30 weeks) exhibited reduced lymphoid infiltration with an
increase in pancreas-infiltrating IL-10-producing B cells
compared with glycemic NOD mice. To elucidate the role of
IL-10+ B cells in NOD mice, a reduction in IFN-g production by
CD4+ T cells was observed when the cells were co-cultured with
IL-10+ B cells and DCs. Additionally, milder disease pathology
was observed when IL-10+ B cells were transferred with
diabetogenic CD4+ T cells into NOD mice compared to the
mice subjected to transfer with IL-10-producing B cells,
demonstrating that IL-10+ B cells played a protective role in
the development of T1D in NOD mice (99, 130). In a study
conducted in humans, the proportion of CD5+CD1d+ B cells was
positively correlated with blood C-peptide levels, a test
performed to analyze insulin secretion, indicating that B10 cell
reduction was related to islet destruction (129). Taken together,
Breg cells seem to play a protective role in the development of
type 1 diabetes in an IL-10-dependent manner, suggesting that
Breg cells may be a potential target for the treatment of type
1 diabetes.

Anti-Neutrophil Cytoplasmic Antibody
(ANCA)-Associated Vasculitis (AAV)
ANCAs are autoantibodies that target neutrophil cytoplasmic
antigens, such as proteinase 3 (PR3) and myeloperoxidase
(MPO). Over 75% of the patients with AAV present with
rapidly progressive glomerulonephritis, which is an important
predictor of mortality (131). Studies have shown that
CD19+CD24hiCD38hi cell populations are decreased in active
AAV patients, while its suppressive functions and the ability to
produce IL-10 are not altered (101, 132). However, during
remission in AAV patients, one study found that this subset
was subjected to continuous reduction (101) while another study
found that the frequency of this subset did not vary from that of
healthy controls. The CD19+CD24hiCD27+ subset, supposedly
comprising B10 memory Breg cells, is reportedly reduced during
an active disease state and restored during remission (132).
Human CD5+ B cells are considered to produce IL-10 and
TGF-b (133, 134). This CD5+ B cell population decreases in
active AAV patients and rebounds after remission, highlighting
its potential role as an indicator of disease activity, remission,
and relapse (135, 136). Following B cell depletion with rituximab,
a lower CD5+ percentage in B cells was correlated with a shorter
time of relapse (137). However, whether CD5 alone is a
practicable putative surrogate marker for Breg cells and
whether its status can be considered as an indicator of AAV
disease activity warrant investigation. Another study found that
CD5+ B cells were inversely correlated with disease activity
during relapse after treatment with rituximab; however, they
May 2021 | Volume 12 | Article 683926
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were could not be used to predict the time to subsequent
relapse (138).

Sjogren’s Syndrome (SS)
Sjogren’s syndrome is one of the most common autoimmune
diseases, characterized by impaired exocrine function due to
lymphocyte infiltration (139). The clinically overt implication of
the kidney has been reported in approximately 5% of SS patients,
with a low incidence of progression to end-stage disease (140, 141).
Most cases of renal involvement comprise tubulointerstitial
nephritis (TIN). Biopsies have shown the infiltration of T cells, B
cells, and plasma cells (142). SS patients have been reported to
present with a higher frequency of CD19+CD24hiCD38hi Breg cells,
whose suppression ability is compromised (102, 143). However, IL-
10+ B cell populations are substantially lower in both primary SS
patients and SS mice models, and such a phenomenon is caused by
a decreased production of IL-10 by CD19+CD24hiCD38hi cells. The
adoptive transfer of IL-10-producing Breg cells can be used to
ameliorate SS progression in a mouse model, thereby revealing the
potential therapeutic effect of Breg cells (144). Another study found
no significant difference in the percentage of CD5+ B cells
compared to that observed in healthy controls; however, IL-21
receptor and Granzyme B expression in CD5+ B cells in primary SS
patients were markedly enhanced, indicating the elicitation of an
increased counter-regulatory reaction (145).

Immunoglobin G4-Related
Disease (IgG4-RD)
IgG4-RD is a rare fibroinflammatory disease histologically
characterized by lymphoplasmacytic infiltration enriched with
IgG4+ plasma cells and with the occurrence of storiform fibrosis.
Approximately 15% of the IgG4-RD patients exhibit clinical
implications in the kidney (146). In type 1 AIP (pancreatic
manifestation of IgG4-RD), CD19+CD24hiCD38hi Breg cell
populations were found to be significantly increased, while the
CD19+CD24hiCD27+ subset was decreased. IL-10-producing B
cells were found to be similar between type 1 AIP and healthy
controls (103). However, in another study involving 48 newly
diagnosed IgG4-RD patients, CD19+CD24hiCD38hi Breg cells
showed a marked reduction (143). This may be attributed to the
heterogeneity of IgG4-RD.

IgA Vasculitis With Nephritis (IgAVN)
IgA vasculitis, formally known as Henoch-Schönlein purpura, is a
type of IgA-mediated small-vessel vasculitis (147). Studies have
reported that, compared with healthy controls , a l l
CD19+CD24hiCD38hi, CD19+CD5+, and CD19+IL-10+ subsets
are decreased in patients with IgAVN (54, 104). Moreover, even
the concentration of IL-10 in the serum has been found to be
considerably lower. After treatment, mainly with the
glucocorticoid prednisolone, an increase was observed among
CD5+CD1d+, CD5+CD1d+IL-10+, and IL-10+ B cell subsets,
accompanied by an increase in the serum IL-10 concentration (54).

Breg Cells in Other Kidney Diseases
Numerical changes or functional alterations of Breg cells have
also been observed in other immune-related kidney diseases.
Frontiers in Immunology | www.frontiersin.org 6
IgA nephropathy (IgAN) patients tend to have a lower frequency
of CD5+CD1d+CD19+ Breg cells with a reduced IL-10
expression. CD5+CD1d+CD19+ Breg cells and Breg-derived IL-
10 concentrations are negatively correlated with serum IgA and
Gd-IgA1 levels, respectively (148). Similar findings have been
reported in diabetic nephropathy (DN) patients in terms of the
CD19+CD24hiCD38hi Breg subtype (149). However, among
patients with hepatitis B virus-associated membranous
nephropathy (HBV-MN), higher proportions of CD5+CD19+

and IL-10+CD19+ B cells and serum IL-10 levels have been
reported (150). These differences could be attributed to various
distinct Breg cell phenotypes or Breg cell changes that occur
depending on the immunological environment. However,
whether these numerical or functional changes in Breg cells are
a cause or an effect of immune-related kidney diseases should be
elucidated in future studies.

In addition carious studies have shown that renal fibrosis, as
an inevitable outcome of nearly every kind of chronic kidney
diseases, can be driven by TGF- b (151). On the other hand, IL-
10 was found as a protective factor in animal studies (152–154).
Presumably Breg cells might play a role in renal fibrosis through
cytokine production or interactions with other immune cells
such as macrophage, T cells etc. However, currently few works
has been done regarding the effects of Breg cells on renal fibrosis
which calls for further study.
DISCUSSION

Breg cells regulates immune responses through the secretion of
several inhibitory cytokines such as IL-10, IL-35 and TGF-b or
PD1/PDL1, Fas/FasL pathways, thus facilitate Treg cells, impair
CD4+ T cells, CD8+ T cells, DCs, Th1/Th17 and IgG production.
These aspects are crucial to achieve successful treatment of
autoimmune diseases, inflammation disease regulation, tumor
growth prevention, and transplant tolerance induction. Breg cells
exhibit several phenotypes, including transitional B cells, MZ B
cells, and plasma/plasmablasts, among others. As a result, there is
no single specific marker that can be considered for identifying
effective Breg cells. Therefore, Breg cells are generally identified
via their secretion of suppressive cytokines such as IL-10. Since
Breg cells secrete several cytokines, including IL-10, IL-35, and
TGF-b, to regulate immune responses, IL-10+ B cells may
constitute a considerable population of Breg cells, but cannot
represent all Breg cells.

Breg cells exert protective effects against many inflammatory
diseases and tolerance induction, While IL10 KO in B cells result
in deterioration of inflammatory disease conditions. The transfer
of IL-10+ B cells ameliorates autoimmune responses and induces
tolerance. Although Breg cells possess properties that are
beneficial in the immune response, they cannot be easily
utilized in clinical trials. Unlike Treg cells, Breg cell
development is not well understood due to its variation in
phenotypes. Thus, the identification of a surface marker
pattern or lineage-specific transcription factor involved in Breg
cell development remains a challenge.
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In summary, Breg cells are a robust inhibitory phenotype of B
cells that secrete several suppressive cytokines, such as IL-10,
TGF-b, and IL-35. Among these, IL-10-producing B cells are the
most extensively studied cells in research. These cells have been
proven to exhibit inhibitory functions in autoimmune diseases,
inflammation, and transplantation. Its role in transplantation is a
topic of immense interest, with Breg cells being comprehensively
studied for their crucial role in countering graft rejection and
inducing tolerance. The activation of tBreg cells has also attracted
attentions of many researchers in cancer immunology field. The
protective role of Breg cells have been well studied in many
kidney-affecting diseases such as SLE, T1D, AAV and other
inflammatory diseases, also including kidney transplantation
(Figure 1). Cell therapy with in vitro induction of effective Breg
cells to alleviate immune responses and to induce tolerance in
clinical settings could be a major focus for future studies in kidney.
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