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Abstract
Introduction: Organisms	use	environmental	cues	to	match	their	phenotype	with	the	
future	availability	of	resources	and	environmental	conditions.	Changes	in	the	magni-
tude	 and	 frequency	 of	 environmental	 cues	 such	 as	 photoperiod	 and	 temperature	
along	latitudes	can	be	used	by	organisms	to	predict	seasonal	changes.	While	the	role	
of	temperature	variation	on	the	induction	of	plastic	and	seasonal	responses	is	well	
established,	the	importance	of	photoperiod	for	predicting	seasonal	changes	is	 less	
explored.
Materials and methods: Here	we	studied	changes	in	life-history	and	thermal	stress	
resistance	 traits	 in	Drosophila subobscura in	 response	 to	 variation	 in	 photoperiod	
(6:18,	12:12	and	18:6	light:dark	cycles)	mimicking	seasonal	variations	in	day	length.	
The	populations	of	D. subobscura	were	collected	from	five	locations	along	a	latitudi-
nal	 gradient	 (from	North	Africa	 and	 Europe).	 These	 populations	were	 exposed	 to	
different	photoperiods	 for	 two	generations,	whereafter	egg-to-adult	viability,	pro-
ductivity,	 dry	 body	 weight,	 thermal	 tolerance,	 and	 starvation	 resistance	 were	
assessed.
Results: We	found	strong	effects	of	photoperiod,	origin	of	populations,	and	their	in-
teractions	on	life-history	and	stress	resistance	traits.	Thermal	resistance	varied	be-
tween	the	populations	and	the	effect	of	photoperiod	depended	on	the	trait	and	the	
method	applied	for	the	assessment	of	thermal	resistance.
Perspectives: Our	results	show	a	strong	effect	of	the	origin	of	population	and	photo-
period	on	a	range	of	fitness-related	traits	and	provide	evidence	for	local	adaptation	
to	environmental	cues	(photoperiod	by	population	interaction).	The	findings	empha-
size	an	important	and	often	neglected	role	of	photoperiod	in	studies	on	thermal	re-
sistance	 and	 suggest	 that	 cues	 induced	by	 photoperiod	may	provide	 some	buffer	
enabling	populations	to	cope	with	a	more	variable	and	unpredictable	future	climate.
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1  | INTRODUCTION

Ectotherms	 must	 cope	 with	 daily	 and	 seasonal	 changes	 in	 envi-
ronmental	 conditions	 (Bahrndorff,	 Loeschcke,	 Pertoldi,	 Beier,	 &	
Holmstrup,	2009;	Cossins	&	Bowler,	1987;	Dahlhoff	&	Rank,	2007),	
among	which	temperature	extremes	and	lack	of	adequate	nutrition	
can	 affect	 population	 viability	 and	 individual	 fitness	 (Andersen,	
Kristensen,	Loeschcke,	Toft,	&	Mayntz,	2010;	Braby	&	Jones,	1995;	
Dahlhoff	&	Rank,	2007;	Fischer	&	Fiedler,	2001).	Variation	in	envi-
ronmental	conditions	in	nature	can	be	dramatic,	and	it	is	predicted	
that	the	magnitude	and	frequency	of	extreme	local	weather	events	
will	 increase	 in	 the	coming	decades	due	 to	global	climate	changes	
(IPCC,	 2013).	 Species	 can	 cope	 with	 such	 stressful	 environments	
through	 plastic	 and/or	 evolutionary	 responses	 leading	 to,	 for	 ex-
ample,	behavioral,	morphological,	and/or	physiological	adjustments	
(Hoffmann	 &	 Parsons,	 1991).	 These	 processes	 occur	 at	 different	
timescales,	and	 their	efficacy	 rely	on	 the	predictive	value	of	envi-
ronmental	 cues	 that	 trigger	 the	 response	 (Kristensen,	 Ketola,	 &	
Kronholm,	2018).

Temperature	and	photoperiod	are	environmental	factors	provid-
ing	signals	that	regulate	the	induction	of	stress	responses	(Teets	&	
Denlinger,	2013;	Tyukmaeva,	Salminen,	Kankare,	Knott,	&	Hoikkala,	
2011;	 Williams	 &	 Sokolowski,	 2009).	 For	 example,	 hardening	 or	
acclimation	 responses	 induced	 by	 thermal	 variation	 can	modulate	
resistance	to	temperature	extremes	as	well	as	impact	upon	starva-
tion	and	desiccation	resistance	(Alemu,	Alemneh,	Pertoldi,	Ambelu,	
&	Bahrndorff,	2017;	Parkash,	Aggarwal,	Singh,	Lambhod,	&	Ranga,	
2013;	Schou,	Loeschcke,	&	Kristensen,	2015).	The	evolutionary	im-
portance	of	physiological	processes	as	a	consequence	of	variation	
in	ambient	temperature	is	strongly	supported	by	data	from	clinical	
studies,	where	 latitudinal	 gradients	 in	 thermal	 conditions	have	 re-
sulted	in	intraspecific	clinal	variation	in	stress	resistance	(Castaneda,	
Rezende,	 &	 Santos,	 2015;	 Hoffmann,	 Anderson,	 &	 Hallas,	 2002;	
Kingsolver	 &	 Buckley,	 2017;	 Pratt	 &	 Mooney,	 2013;	 Yampolsky,	
Schaer,	&	Ebert,	2014).	These	findings	demonstrate	the	importance	
of	past	evolutionary	processes	for	contemporary	ecological	dynam-
ics	(see	Hoffmann	et	al.,	2002	for	a	review).

Apart	 from	thermal	variation,	photoperiod	can	play	an	 import-
ant	 role	 in	 mediating	 seasonal	 events	 and	 stress	 resistance.	 The	
timing	of	migration	in	many	species	of	birds,	range	expansion	of	spe-
cies	 across	 latitudes,	 or	 flowering	 time	 in	 plants	 all	 happen	partly	
in	response	to	seasonal	changes	in	day	length	(Itoh	&	Izawa,	2013;	
Pulido,	 Coppack,	 &	 Berthold,	 2001;	 Saikkonen	 et	 al.,	 2012).	 The	
modulatory	effect	of	photoperiod	on	 thermal	 resistance	has	been	
reported	 in	 various	 species	 of	 Drosophila	 (Hoffmann,	 Shirriffs,	 &	
Scott,	2005;	Lanciani,	Giesel,	Anderson,	&	Emerson,	1990;	Vesala	&	
Hoikkala,	2011).	For	example,	 in	Drosophila melanogaster,	a	shorter	
photoperiod	reduced	the	cold	resistance	of	adult	flies	(Bauerfeind,	
Kellermann,	 Moghadam,	 Loeschcke,	 &	 Fischer,	 2014;	 Hoffmann	
et	 al.,	 2005),	 which	 was	 in	 contrast	 to	 previous	 studies	 on	 other	
Drosophila	 species	 (Hori	&	Kimura,	 1998;	 Lanciani,	 Lipp,	&	Giesel,	
1992;	Vesala,	Salminen,	Kankare,	&	Hoikkala,	2012).	The	importance	
of	photoperiod	and	stress	resistance	has	also	been	 investigated	 in	

a	 lowland	population	of	Drosophila buzzatii,	 in	which	different	 light	
regimes	 changed	 the	 heat	 knock-down	 resistance	 so	 that	 flies	 in-
creased	 resistance	 during	 the	 hours	 of	 the	 day	 with	 light	 where	
they	 were	 most	 active	 and	 thermal	 conditions	 were	 most	 favor-
able	(Sørensen	&	Loeschcke,	2002).	This	was	interpreted	as	an	ad-
aptation	to	surviving	the	warm	conditions	experienced	by	 lowland	
populations.	 Interestingly,	 the	 importance	of	photoperiod	was	not	
observed	 in	 a	 nearby	 highland	 population	 generally	 experiencing	
lower	 temperatures.	 The	 species-	 and	 population-specific	 effects	
of	photoperiod	suggest	that	responses	have	a	genetic	basis	and/or	
can	be	affected	by	assay	conditions	(Williams	&	Sokolowski,	2009).	
Apart	from	the	effects	of	photoperiod	on	thermal	resistance,	Fischer	
et	al.	(2012)	showed	that	photoperiod	is	important	for	a	range	of	life-
history	traits	including	growth	rate,	development	time,	and	body	size	
in	Protophormia terraenovae	and	for	many	of	the	traits	investigated	
results	showed	interactions	between	temperature	and	photoperiod.

In	 contrast	 to	 temperature,	 photoperiod	 can	 be	 defined	 as	 a	
highly	reliable	environmental	cue	due	to	the	constant	variations	 in	
photoperiod	across	days	and	seasons	for	a	given	latitude	and/or	al-
titude	(Bradshaw	&	Holzapfel,	2007;	Jackson,	2009;	Salis,	van	den	
Hoorn,	Beersma,	Hut,	&	Visser,	2018).	The	day	length	that	triggers	
the	 incidence	 of	 seasonal	 activities	 (critical	 photoperiod)	 is	 linked	
to	the	length	of	the	growing	season	and	the	timing	of	the	onset	of	
a	specific	season.	Therefore,	 in	the	northern	hemisphere	at	north-
ern	latitudes,	where	winter	sets	in	earlier	and	the	growing	season	is	
shorter	than	in	the	south,	organisms	use	a	longer	critical	photoperiod	
as	a	cue	to	switch	between	seasonal	phenotypes	(Bradshaw,	1976;	
Bradshaw	&	Holzapfel,	 2007;	Danilevskiĭ,	 1965).	 Further,	 a	 reduc-
tion	in	the	critical	photoperiod	of	populations	inhabiting	the	north-
ern	latitudes,	due	to	the	later	onset	of	winter	and	a	longer	growing	
season	caused	by	climate	change,	has	been	observed	(Bradshaw	&	
Holzapfel,	2006).	For	example,	the	pitcher-plant	mosquito	Wyeomyia 
smithii has	over	a	period	of	24	years	(from	1972	to	1996)	shifted	to-
ward	shorter	photoperiods	to	initiate	the	larval	dormancy	(Bradshaw	
&	 Holzapfel,	 2001).	 These	 results	 show	 the	 adaptive	 potential	 of	
photoperiodism	 and	 the	 importance	 of	 photoperiod	 in	 relation	 to	
coping	with	climate	change	through	evolutionary	responses.

Despite	 the	 importance	 of	 day	 length	 for	multiple	 life-history	
traits	and	for	the	ability	to	cope	with	stressful	thermal	conditions,	
most	experimental	studies	investigating	the	ability	to	perform	in	en-
vironments	with	variable	 temperatures	have	neglected	 the	 role	of	
photoperiod	and	its	importance	for	stress	resistance	and	for	shap-
ing	the	distribution	of	species	(Ketola	&	Saarinen,	2015;	Kristensen,	
Kjeldal,	 Schou,	 &	 Lund,	 2016;	 Manenti,	 Sørensen,	 Moghadam,	 &	
Loeschcke,	 2014,	 2016).	 In	 the	 present	 study,	 we	 investigate	 the	
importance	of	seasonal	variation	in	day	length	on	stress	resistance	
and	 life-history	 traits	 of	 five	 populations	 of	Drosophila subobscura 
distributed	across	North	Africa	and	Europe	spanning	 the	 latitudes	
31°N	to	59°N	(Table	1).	The	aim	of	the	study	was	to	evaluate	to	what	
extent	populations	from	different	latitudes	differ	in	photoperiod-as-
sociated	responses.	We	hypothesize	that	short	day	length	increases	
cold	 resistance	 and	 long	day	 length	 increases	 heat	 and	 starvation	
resistance	(Hoffmann	et	al.,	2005;	Lanciani	et	al.,	1990,	1992).	We	
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expect	that	a	long	day	length	reduces	energy	invested	in	reproduc-
tion	and	 increases	energy	used	 for	building	up	body	 reserves	and	
for	 inducing	stress	responses.	We	further	hypothesize	that	photo-
period-dependent	responses	are	more	pronounced	for	high-latitude	
populations	evolved	to	cope	with	highly	variable	and	unpredictable	
thermal	 environments	 (Bahrndorff	 et	 al.,	 2009;	 Sniegula,	 Nilsson-
Örtman,	&	Johansson,	2012).

2  | MATERIALS AND METHODS

2.1 | Fly populations

The	 experiments	 were	 performed	 on	 D. subobscura (Figure	 1),	 a	
Palearctic	 species	 with	 a	 wide	 distribution	 including	 North	 Africa,	
southern	Europe,	and	Scandinavia	(Krimbas,	1993).	The	European	pop-
ulations	of	D. subobscura	have	been	shown	to	be	genetically	variable,	
and	the	species	is	an	excellent	model	in	evolutionary	studies	(Pascual	
et	al.,	2007).	This	species	does	not	have	a	photoperiodically	controlled	
reproductive	 diapause	 for	 overwintering	 (Goto,	 Yoshida,	 Beppu,	 &	
Kimura,	 1999),	which	 is	 an	 advantage	when	 studying	 the	 impact	 of	
photoperiod	on	fitness	components	using	a	common	garden	set	up.

The	study	populations	used	in	the	present	study	were	collected	
from	five	different	locations.	These	locations	differ	in	photoperiod	

throughout	the	year	(Figure	2).	The	sampling	locations,	year	of	col-
lection,	 number	 of	 inseminated	 female	 flies	 used	 to	 establish	 the	
populations,	 and	 annual	 minimum	 and	 maximum	 of	 daylight	 are	
presented	in	Table	1.	After	collection,	each	population	was	kept	as	
one	interbreeding	mass	population	in	300-ml	plastic	bottles	(4	bot-
tles	 per	 population,	 ca.	 500	 individuals	 per	 bottle)	 containing	 70-
ml	 standard	Drosophila	 agar–sugar–yeast	medium	seeded	with	 live	
yeast	and	maintained	under	laboratory	condition	for	approximately	
one	year	before	starting	the	experiment.	For	the	purpose	of	the	ex-
periment,	the	populations	were	kept	at	23°C	under	three	different	
light	 regimes	 (6:18,	12:12	and	18:6	 light:dark	cycles	with	 lights	on	
at	9	a.m.)	for	two	generations.	Throughout	the	experiment,	the	flies	
were	maintained	at	23°C	(unless	otherwise	stated),	which	is	favor-
able	for	numerous	fitness	components	in	this	species	(Santos,	2007).	
In	the	second	generation,	the	eclosed	flies	from	each	population	and	
light	 regime	were	 collected	within	48	hr	of	 eclosion	and	placed	 in	
300-ml	plastic	bottles	(ca.	100	individuals	per	bottle)	containing	70-
ml	standard	Drosophila	medium	enriched	with	live	yeast	to	increase	
females’	fecundity.	Each	day	adult	flies	(aged	5–6	and	8–9	days	for	
the	 first	 and	 last	block,	 respectively)	were	given	16	hr	 to	 lay	eggs	
on	small	spoons	filled	with	1-ml	Drosophila	standard	medium	seeded	
with	live	yeast.	The	collection	of	eggs	was	conducted	at	a	controlled	
density	 (see	below)	 in	 four	consecutive	blocks	 (one	block	per	day)	
for	logistic	reasons.

2.2 | Traits assessed

2.2.1 | Egg‐to‐adult viability

Eggs	were	 collected	at	 a	 controlled	density	 (25	eggs	per	 vial)	 and	
placed	into	35-ml	plastic	vials	(12	replicates	per	population	per	light	
regime	for	each	block)	containing	7-ml	standard	Drosophila	medium.	
The	eggs	developed	at	 the	respective	 light	 regime	experienced	by	
their	 parents	 under	 controlled	 conditions	 (23°C,	 60%	 humidity).	
Following	 the	 first	 eclosion,	 number	 of	 eclosing	 flies	 was	 scored	
every	 24	hr	 until	 all	 the	 flies	 had	 emerged.	 The	 flies	 stuck	 in	 the	
medium	were	scored	as	alive	and	removed	using	a	brush.	The	flies	
collected	 within	 the	 first	 24	hr	 were	 transferred	 to	 35-ml	 plastic	
vials	 (25	±	5	 flies	 per	 vial)	with	 3-ml	 standard	Drosophila	medium.	
Unless	otherwise	stated,	at	3	days	of	age	flies	were	separated	by	sex	
under	 light	CO2	 anesthesia	 and	males	were	placed	at	 a	 controlled	

TA B L E  1  Position,	number	of	collected	inseminated	females	used	to	establish	each	population,	year	of	collection	and	annual	minimum	
and	maximum	daylight	period	for	the	populations

ID Population Position Location Inseminated females Year (month)

Min. 
daylight 
(min)

Max. daylight 
(min)

MO Morocco 31°11′N,	8°15′W Amizmiz 15 2016	(Jul) 606 852

SP Spain 41°43′N,	2°12′E Font	Groga 20 2015	(Oct) 552 909

SE Serbia 43°33′N,	20°45′E Mountain	Goc 50 2015	(Jun) 534 928

DE Denmark 55°56′N,	10°12′E Odder 14 2016	(Jan) 414 1,057

SW Sweden 59°49′N,	17°54′E Fjällnora 35 2016	(Jul) 358 1,125

F I G U R E  1  Female	fly	of	Drosophila subobscura
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density	(25	±	5	males	per	vial)	in	35-ml	plastic	vials	with	3-ml	stand-
ard	Drosophila	medium	and	placed	in	the	respective	light	regime	for	
further	assessments.

2.2.2 | Productivity

To	 assess	 the	productivity	 of	 flies	 exposed	 to	 different	 light	 re-
gimes,	one	male	and	one	female	fly	at	3	days	of	age	were	placed	
in	35-ml	plastic	vials	(20	vials	per	population	per	light	regime	were	
divided	equally	 into	 four	blocks)	with	10-ml	 standard	Drosophila 
medium	without	live	yeast.	Every	72	hr,	the	pairs	were	transferred	
to	new	vials	with	 fresh	food	using	an	aspirator	 to	prevent	 losing	
flies.	This	process	continued	for	9	days	(from	3	to	12	days	of	age).	
The	 vials	 were	 kept	 at	 their	 respective	 light	 regime	 under	 con-
trolled	condition	 (23°C,	60%	humidity).	The	number	of	offspring	
produced	 per	 pair	was	 recorded	 after	 eclosion	 until	 all	 the	 flies	
had	emerged.

2.2.3 | Dry body weight

Male	 flies	 were	 dried	 at	 60°C	 for	 24	hr	 and	 thereafter	 placed	 in	
a	 desiccator.	 The	 dry	 body	weight	 (dbw)	 of	 flies	was	measured	 in	

batches	of	four	males	(9	batches	per	population	per	light	regime)	to	
a	 precision	 of	 0.01	mg	 using	 a	 Sartorius®	 electrobalance	 (Quintix	
35–1S,	Germany).

2.2.4 | Thermal resistance assay

To	 assess	 critical	 thermal	 maximum	 (CTmax)	 and	 critical	 thermal	
minimum	(CTmin)	of	flies	from	the	five	populations	and	three	experi-
mental	 treatments,	 5-day-old	males	 (20	males	 per	 population	 per	
light	regime	were	divided	with	five	flies	in	each	of	four	blocks)	were	
placed	 individually	 into	5-ml	screw	cap	glass	vials	without	 the	use	
of	anesthetics.	The	vials	were	placed	randomly	in	a	metal	rack	and	
then	submerged	in	a	water	bath	set	at	23°C.	Thereafter,	the	water	
temperature	was	 increased	 (to	assess	CTmax)	or	decreased	 (to	as-
sess	CTmin)	with	a	rate	of	0.1°C/min	and	the	temperature	at	which	
a	fly	was	totally	immobilized	was	scored	until	all	flies	were	in	coma.

2.2.5 | Locomotor activity under heat ramping

The	 locomotor	 activity	 of	 5-day-old	males	was	 recorded	 using	 an	
assay	 where	 temperature	 was	 gradually	 increased	 (ramped	 up).	
Flies	were	placed	in	Drosophila	Activity	Monitors	(DAM;	Trikinetics,	

F I G U R E  2  Seasonal	variations	in	day	
length	(min)	for	each	of	the	sampling	
locations	(MO:	Morocco,	SP:	Spain,	SE:	
Serbia,	DE:	Denmark	and	SW:	Sweden).	
The	graphs	are	based	on	24	time	points	
per	location	(six	points	per	season)	and	
represent	latitudinal	variations	in	the	
amplitude	of	photoperiod
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Waltham,	MA,	USA)	 in	which	 infrared	 detectors	 registered	 an	 ac-
tivity	 count	 each	 time	 a	 fly	 crossed	 a	 beam	 (Pfeiffenberger,	 Lear,	
Keegan,	&	Allada,	2010).	Each	trial	started	at	10	a.m.	when	flies	(60	
males	 per	 population	 per	 light	 regime	 divided	with	 15	 in	 each	 of	
four	blocks)	were	individually	placed	into	a	narrow	glass	tube	(5	mm	
×65	mm)	with	parafilm	at	one	end	and	a	wet	cotton	stopper	at	the	
other	end	to	prevent	desiccation,	but	allowing	some	air	ventilation.	
The	 glass	 tubes	 were	 placed	 in	 the	 DAMs	 randomly,	 where	 each	
monitor	contained	two	samples	of	each	light	regime	and	population.	
Around	11	a.m.,	the	DAMs	were	placed	in	the	incubator	set	at	23°C	
for	1	hr	followed	by	an	increase	in	temperature	with	a	rate	of	0.1°C/
min	until	the	temperature	reached	40°C.	The	humidity	was	kept	at	
60%	in	the	incubator,	and	the	assay	was	performed	at	constant	light.	
The	activity	was	recorded	every	30	s,	and	sum	of	the	activity	counts	
was	 calculated	 as	 the	 total	 locomotor	 activity	 (TLMA)	 for	 an	 indi-
vidual.	In	addition,	we	recorded	the	temperature	at	which	no	further	
activity	(CTmax(LMA))	was	observed	for	each	individual.

2.2.6 | Starvation resistance

Male	 flies	 at	 5	days	of	 age	 from	each	population	 and	 light	 regime	
were	placed	 individually	 in	35-ml	plastic	vials	 (20	males	per	popu-
lation	per	 light	 regime	were	divided	with	 five	 flies	 in	each	of	 four	
blocks)	 containing	 2	ml	 of	 agar–water	medium	 (20	g/L)	 to	 provide	

moisture	 and	 avoid	 desiccation	 during	 the	 experiment.	 The	 vials	
were	 kept	 at	 the	 respective	 light	 regime	 experienced	 by	 parents	
under	 controlled	 conditions	 (23°C,	60%	humidity).	 The	number	of	
dead	flies	was	scored	every	12	hr	until	all	flies	had	died.

2.3 | Statistical analyses

Prior	to	analysis	all	data	were	tested	for	normality	and	homogene-
ity	of	variance,	and	the	block	effect	was	adjusted	by	a	standardiza-
tion	using	the	grand	mean.	To	obtain	normally	distributed	data	and	
homogeneity	of	variance,	 the	TLMA	and	CTmax(LMA)	were	 log	and	
square	 root	 transformed,	 respectively.	 The	 effects	 of	 population,	
photoperiod,	 and	 their	 interaction	on	various	 traits	 (viability,	 total	
productivity,	 DBW,	 and	 thermal	 and	 starvation	 resistance)	 were	
tested	using	 a	 two-way	ANOVA	with	population	 and	photoperiod	
as	fixed	factors.	The	unit	of	replication	was	group	of	flies	 (eggs	or	
adults)	 for	 viability	 (a	 group	 consisted	 of	 25	 eggs),	 productivity	 (a	
group	 consisted	 of	 one	male	 and	 one	 female),	 and	DBW	 (a	 group	
consisted	of	four	males)	and	individual	flies	for	the	remaining	traits.	
Populations	were	treated	as	a	fixed	effect	as	our	main	focus	was	on	
the	variance	between	populations.	The	productivity	of	flies	was	ana-
lyzed	by	repeated	measures	ANOVA	to	correct	for	repeated	meas-
urements	from	the	same	individual.	In	all	significant	cases,	multiple	
pairwise	 comparisons	 were	 performed	 using	 Tukey's	 method.	 All	

Trait Source df Sum of square F p‐value

Viability Pop 4 98,540 170.53 <0.0001

Light 2 7,653 26.49 <0.0001

Pop	×	Light 8 9,715 8.41 <0.0001

Productivity Pop 4 332,222 14.80 <0.0001

Light 2 372,122 33.16 <0.0001

Pop	×	Light 8 111,053 2.47 0.01

DBW Pop 4 0.63 30.28 <0.0001

Light 2 0.07 7.27 0.0009

Pop	×	Light 8 0.11 2.77 0.006

CTmin Pop 4 6.85 2.36 0.05

Light 2 0.05 0.03 0.97

Pop	×	Light 8 5.09 0.88 0.54

CTmax Pop 4 22.70 12.80 <0.0001

Light 2 0.79 0.89 0.41

Pop	×	Light 8 2.14 0.60 0.77

TLMA Pop 4 6.98 9.96 <0.0001

Light 2 3.46 9.90 <0.0001

Pop	×	Light 8 2.41 1.72 0.09

CTmax(LMA) Pop 4 0.22 14.66 <0.0001

Light 2 0.02 2.84 0.06

Pop	×	Light 8 0.02 0.86 0.55

Starvation Pop 3 15,107 9.18 <0.0001

Light 2 2,800 2.55 0.08

Pop	×	Light 6 10,180 3.09 0.006

TA B L E  2  Results	of	the	overall	ANOVA	
analysis	to	examine	the	effect	of	
population,	light	regime,	and	their	
interaction	on	egg-to-adult	viability,	
productivity,	DBW	(dry	body	weight),	
CTmin	and	CTmax	(thermal	resistance),	
TLMA	(total	locomotor	activity),	
CTmax(LMA)	(the	highest	temperature	with	
no	observed	activity	at	higher	
temperatures),	and	starvation	resistance.	
Significant	p	values	(p	<	0.05)	are	
represented	in	bold
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statistical	analyses	were	performed	in	R,	version	3.5	and	R	studio,	
version	1.1.44	(R	Core	Team,	2017).

3  | RESULTS

3.1 | Life‐history traits

3.1.1 | Egg‐to‐adult viability

Egg-to-adult	 viability	 of	 flies	 varied	 between	 populations	
(F4,	720	=	170.53,	p	<	0.0001;	Table	2).	In	general,	the	SE	(69.97%)	and	
SW	 (35.64%)	populations	showed	the	highest	and	 lowest	viability,	

respectively	 (Figure	 3a).	 The	 viability	 of	 the	 SP	 and	 MO	 popula-
tions	was	similar	(47.79%	and	47.22%,	respectively)	and	significantly	
(p	<	0.0001)	lower	than	the	viability	of	the	DE	population	(59.28%).	
On	average,	egg-to-adult	viability	decreased	significantly	when	we	
increased	 the	 day	 length	 (F2,	720	=	26.49,	p	<	0.0001).	 There	was	 a	
significant	interaction	between	photoperiod	and	population	(photo-
period	×	population:	F8,	720	=	8.41	and	p	<	0.0001;	Table	2)	indicating	
that	photoperiod	had	distinct	impacts	on	viability	in	populations	from	
different	latitudes.	The	egg-to-adult	viability	of	the	MO,	SP,	and	SW	
populations	exposed	to	the	12L:12D	photoperiod	was	considerably	
higher	 than	the	corresponding	populations	under	 the	18L:6D	 light	
regime	 (MO:	 p	=	0.004,	 SP:	 p	=	0.02,	 SW:	 p	<	0.0001).	 Moreover,	

F I G U R E  3  Variation	in	(a)	egg-to-adult	viability	(percentage	of	eggs	developing	into	adult	flies);	(b)	total	productivity;	(c)	dry	body	weight;	
(d);	CTmin;	(e)	CTmax;	(f)	total	activity	(sum	of	locomotor	activity	under	a	ramping	temperature	from	23°C	to	40°C	with	0.1°C	increase	per	
minute);	(g)	CTmax(LMA)	(the	highest	temperature	with	no	scored	activity	afterward)	and	(h)	starvation	resistance	of	five	populations	(MO:	
Morocco,	SP:	Spain,	SE:	Serbia,	DE:	Denmark	and	SW:	Sweden)	in	response	to	three	different	light	regimes	(6L:18D,	12L:12D	and	18L:6D).	
Symbols	indicate	mean	(95%	CI)

(a) (b)

(c)

°

(d)

°
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the	viability	of	 the	MO	population	under	 the	6L:18D	photoperiod	
was	 approximately	 15%	 higher	 than	 the	 18L:6D	 treatment	 group	
(p	<	0.0001).	In	the	DE	population,	no	difference	was	observed	in	the	
viability	of	the	12L:12D	and	the	18L:6D	treatment	groups	(p	>	0.05)	
and	the	highest	viability	was	observed	in	the	6L:18D	group	(6L:18D	
vs.	 12L:12D,	 p	<	0.0001;	 6L:18D	 vs.	 18L:6D,	 p	<	0.0001).	 The	 vi-
ability	of	the	SE	population	under	the	6L:18D	or	18L:6D	treatment	
was,	respectively,	similar	or	higher	than	the	12L:12D	group	(6L:18D	
vs.	12L:12D,	p	<	0.0001;	18L:6D	vs.	12L:12D,	p	<	0.001,	6L:18D	vs.	
18L:6D,	p	>	0.05).

3.1.2 | Productivity

Productivity	 differed	 between	 populations	 (F4,	285	=	14.80,	
p	<	0.0001;	Table	2).	The	highest	productivity	was	observed	in	the	
DE	population	(Figure	3b).	In	general,	exposure	to	long	hours	of	day-
light	 reduced	 the	 total	 productivity	 of	 populations	 (F2,	285	=	33.16,	
p	<	0.0001).	This	reduction	was	more	pronounced	under	the	18L:6D	
photocycle.	The	influence	of	photoperiod	on	flies’	productivity	dif-
fered	between	populations	(photoperiod	×	population:	F8,	285	=	2.47,	
p	<	0.01).	The	DE	and	SE	populations	showed	a	constant	reduction	in	
the	total	productivity	with	increasing	day	length,	while	the	produc-
tivity	of	the	MO,	SP,	and	SW	populations	increased	at	the	12L:12D	
and	reduced	at	the	18L:6D	photoperiod.	Repeated-measure	ANOVA	
with	population,	photoperiod,	and	age	as	crossed	fixed	factors	re-
vealed	a	significant	effect	of	age	on	the	productivity	of	populations	
developed	 under	 the	 three	 different	 light	 regimes	 (F3,	283	=	58.18,	
p	<	0.0001).

3.1.3 | Dry body weight

Population	 (F4,	178	=	30.28,	 p	<	0.0001),	 photoperiod	 (F2,	178	=	7.27,	
p	=	0.0009),	 and	 their	 interaction	 (photoperiod	×	population:	
F8,	178	=	2.77,	p	=	0.006)	affected	the	Dry	body	weight	(DBW)	of	flies	
(Table	 2).	 Across	 different	 photoperiods,	 the	MO	 and	 SE	 popula-
tions	showed	the	 lowest	and	 the	DE	population	 the	highest	DBW	
(Figure	3c).	In	general,	the	DBW	of	flies	kept	at	6L:18D	and	18L:6D	
was	similar	except	for	the	DE	population	in	which	the	flies	exposed	
to	the	6L:18D	treatment	were	approximately	6.6%	(p	=	0.04)	heav-
ier	than	flies	from	the	18L:6D	group.	The	development	of	the	MO	
and	 SW	 populations	 under	 a	 12L:12D	 photoperiod	 significantly	
increased	the	DBW	of	flies	compared	to	the	18L:6D	(p	<	0.01)	and	
6L:18D	(p	<	0.05)	light	regimes.	The	photoperiod	did	not	affect	the	
DBW	of	the	SE	population	(F2,	35	=	2.85,	p	=	0.07).

3.2 | Stress resistance

3.2.1 | Thermal resistance

Neither	 population	 nor	 photoperiod	 affected	 the	 cold	 resistance	
(CTmin)	of	flies	(Figure	3d).	There	was	a	significant	effect	of	popula-
tion	on	CTmax	 (F4,	293	=	12.80,	p	<	0.0001;	Table	2);	the	SP	and	MO	
populations	 showed	a	higher	heat	 resistance	 than	 the	other	 three	

populations	 (Figure	 3e).	 There	 was	 no	 effect	 of	 photoperiod	 on	
CTmax	(F2,	293	=	0.89,	p	>	0.05;	Table	2).

3.2.2 | Locomotor activity during heat ramping

The	 total	 locomotor	 activity	 (TLMA)	 of	 flies	 during	 heat	 ramping	
differed	 between	 populations	 (F4,	869	=	9.96,	 p	<	0.0001;	 Table	 2)	
with	 flies	 from	the	SE	and	SW	populations	being	 least	active.	The	
difference	 in	the	TLMA	of	populations	was	more	pronounced	dur-
ing	 the	 6L:18D	 and	 18L:6D	 photoperiods	 (Figure	 3f).	 There	 was	
also	 a	 significant	 effect	 of	 photoperiod	 on	 TLMA	 (F2,	869	=	9.90,	
p	<	0.0001),	where	the	lowest	activity	was	observed	in	the	6L:18D	
treatment	 groups.	 The	 pairwise	 comparisons	 showed	 no	 differ-
ence	 in	 activity	 between	 photoperiods	 for	 the	MO	 (F2,	172	=	0.21,	
p	>	0.05),	 SP	 (F2,	176	=	2.54,	 p	>	0.05),	 DE	 (F2,	170	=	2.50,	 p	>	0.05),	
and	 SW	 (F2,	176	=	0.66,	 p	>	0.05)	 populations.	 However,	 the	 SE	
population	under	the	12L:12D	photoperiod	showed	higher	activity	
compared	 to	 6L:18D	 (p	<	0.001)	 and	 18L:6D	 (p	<	0.01)	 photoper-
iod.	 The	CTmax(LMA)	 differed	 between	 populations	 (F4,	882	=	14.66,	
p	<	0.0001;	Table	2)	with	the	MO	and	SP	populations	being	the	most	
heat	resistant	and	SW	the	least	heat	resistant	population	(Figure	3g).	
This	pattern	was	present	for	both	the	6L:18D	and	12L:12D	photo-
period	 treatment	 groups,	 but	 with	 the	MO	 population	 being	 less	
heat	resistant	for	the	18L:6D	treatment	group.

3.2.3 | Starvation resistance

The	population	from	Sweden	(SW)	was	removed	from	the	data	set	
due	 to	 the	 small	 sample	 size	 at	 18L:6D	 photoperiod.	 The	 overall	
analysis	 displayed	 significant	 effects	 of	 population	 (F3,	227	=	9.18,	
p	<	0.0001)	 and	 the	 interaction	 with	 photoperiod	 (F6,	227	=	3.09,	
p	<	0.01)	 on	 the	 starvation	 resistance	 of	 flies	 (Table	 2).	 Across	 all	
treatments,	the	starvation	resistance	of	the	DE	population	was	sig-
nificantly	 higher	 than	 in	 other	 populations,	 except	 at	 the	 18L:6D	
photocycle	 where	 no	 difference	 was	 observed	 between	 popula-
tions	 (F3,	77	=	1.36,	p	>	0.05;	Figure	3h).	 The	effect	of	photoperiod	
on	 the	 starvation	 resistance	 of	 populations	 was	 not	 significant	
(F2,	227	=	2.55,	p	>	0.05),	 except	 for	 the	SP	population	 in	which	ex-
posure	 to	18L:6D	photoperiod	 increased	 the	starvation	 resistance	
of	individuals	compared	to	the	12L:12D	treatment	group	(p	<	0.01,	
ca.	28	hr).

4  | DISCUSSION

Organisms	respond	to	changes	 in	photoperiod	via	plastic	and	evo-
lutionary	 responses.	 These	 responses	 have	 been	 proposed	 to	 be	
essential	for	survival	and	reproductive	success	of	organisms	in	sea-
sonal	environments	(Bradshaw	&	Holzapfel,	2007;	Kimura	&	Beppu,	
1993;	Tyukmaeva	et	al.,	2011).	The	contribution	of	day	length	in	me-
diating	 the	 optimal	 timing	 of	 seasonal	 events	 varies	 as	 a	 function	
of	 latitude.	 Reliance	 on	 photoperiod	 elevates	 with	 increasing	 dis-
tance	from	equator	and	is	typically	more	pronounced	in	populations	
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inhabiting	the	northern	latitudes	(Sniegula	et	al.,	2012),	which	also	
suggests	that	genotype-by-photoperiod	interactions	are	 important	
for	the	expression	of	seasonal	phenotypes.	In	most	studies	on	ther-
mal	adaptation,	the	importance	of	photoperiod	is	rarely	considered	
and	the	main	focus	in	such	studies	is	on	the	role	of	thermal	changes	
in	 mediating	 thermal	 resistance,	 life-history	 traits,	 and	 in	 shap-
ing	the	distribution	of	species	 (Ketola	&	Saarinen,	2015;	MacLean,	
Kristensen,	Overgaard,	Sørensen,	&	Bahrndorff,	2017).

In	 the	 present	 study,	 we	 observed	 photoperiod-associated	
changes	 in	 life-history	 and	 thermal	 stress	 resistance	 traits	 across	
various	populations	of	D. subobscura.	Overall,	the	results	show	that	
the	photoperiodic	 regulation	of	 the	 flies’	 phenotypic	performance	
was	trait	and	population	specific.

Populations	used	in	our	study	have	been	kept	in	the	laboratory	
for	 several	 generations	 before	 performing	 the	 experiments	 pre-
sented	in	this	paper.	We	acknowledge	challenges	related	to	this;	that	
is,	potential	 laboratory	adaptation	and	genetic	drift.	However,	 the	
populations	were	 founded	based	on	a	 large	number	of	 individuals	
and	kept	at	a	large	population	size	(more	than	2,000	individuals	per	
population).	Therefore,	it	is	unlikely	that	the	patterns	established	are	
caused	 by	 chance	 events	 like	 genetic	 drift	 or	 bottleneck.	 Further,	
we	 argue	 that	 even	 though	 the	 populations	 had	 been	 kept	 in	 the	
laboratory	for	up	to	one	year	prior	to	the	experiment,	findings	show	
that	 laboratory	maintenance	 does	 not	 affect	 fundamental	 species	
characteristics	 and	 validates	 comparative	 studies	 based	 on	 labo-
ratory	 maintained	 populations	 (Maclean,	 Kristensen,	 Sørensen,	 &	
Overgaard,	2018).

4.1 | Effect of photoperiod and population on 
stress resistance

The	results	of	the	present	study	show	that	stress	resistances	(cold,	
heat,	 and	 starvation	 resistance)	 differed	 between	 populations	 of	
D. subobscura.	Generally,	the	most	southern	populations	were	most	
heat	resistant	and	the	northern	populations	most	cold	resistant.	This	
is	 in	 accordance	with	 other	 studies	 looking	 at	 thermal	 adaptation	
across	populations	and	indicates	the	presence	of	a	geographic	ther-
mal	 tolerance	cline	 for	 this	species	 (Castaneda	et	al.,	2015;	David,	
Gibert,	Moreteau,	Gilchrist,	&	Huey,	2003).	However,	some	popula-
tions	deviated	from	this	pattern	potentially	due	to	the	influence	of	
the	applied	photoperiods.	For	example,	the	SW	population	exposed	
to	a	 long	photoperiod	 is	 less	cold	 resistant	compared	to	 the	other	
populations	(Figure	3d),	which	may	signify	the	higher	reliance	of	this	
northernmost	population	on	day	length	for	adjusting	their	seasonal	
phenotypes.	 This	 suggests	 that	 photoperiod-related	 plasticity	 ap-
pears	particularly	important	for	populations	living	in	highly	fluctuat-
ing	and	unpredictable	thermal	environments.

Data	 on	 starvation	 resistance	 also	 showed	 evidence	 for	 local	
adaptation	 with	 a	 population-specific	 pattern	 as	 indicated	 by	 the	
significant	interaction	between	population	and	photoperiod.	This	is	
in	agreement	with	Gilchrist	et	al.	(2008),	where	male	D. subobscura 
collected	across	Europe	showed	large	differences	 in	starvation	re-
sistance	between	geographical	areas.	The	linear	cline	for	starvation	

resistance	observed	at	a	short	photoperiod	follows	our	expectation	
of	higher	starvation	resistance	with	increasing	latitude	since	north-
ern	 populations	 may	 face	 food	 deprivation	 during	 cold	 seasons.	
However,	this	result	is	in	contrast	with	previous	findings	where	star-
vation	resistance	decreased	with	increasing	latitude	(Arthur,	Weeks,	
&	Sgrò,	2008;	Hoffmann,	Hallas,	Sinclair,	&	Mitrovski,	2001;	Sisodia	
&	Singh,	2010).	This	 inconsistency	may	arise	from	the	influence	of	
photoperiod	on	the	association	between	starvation	resistance	and	
latitude,	which	 suggests	 that	 selection	on	 this	 trait	 is	 inconsistent	
across	seasons	and	stronger	in	seasons	with	short	photoperiods.	It	
also	 demonstrates	 the	 considerable	 plasticity	 of	 starvation	 resis-
tance	in	response	to	environmental	cues	(Rion	&	Kawecki,	2007).

We	 scored	 behavioral	 performance	 (locomotor	 activity)	 under	
heat	 ramping	 to	 estimate	 the	 critical	 upper	 thermal	 limits	 of	 flies.	
The	 assessment	 of	 thermal	 resistance	 through	 behavioral	 perfor-
mance	allowed	us	to	track	the	locomotor	activity	of	flies	throughout	
heat	ramping	and	use	a	 less	 invasive	method	to	estimate	the	tem-
perature	at	which	activity	is	no	longer	recorded.	Both	total	activity	
and	CTmax(LMA)	were	affected	by	population,	and	there	was	a	sig-
nificant	effect	of	photoperiod	on	total	locomotor	activity	recorded	
throughout	the	heat	ramping	assay	(Figure	3f	and	G).	In	general,	the	
high	activity	of	populations	exposed	to	a	long	photoperiod	prior	to	
entering	 the	 heat	 ramping	 assay	 supports	 the	 general	 notion	 that	
activity	of	flies	is	higher	during	the	growing	season	when	the	tem-
perature	is	high	(Wolda,	1988).	Moreover,	the	photoperiod-related	
increase	in	the	total	activity	highlights	that	this	trait	is	highly	plastic	
which	may	be	relevant	for	explaining	the	global	distribution	of	this	
species	 (Prevosti	et	al.,	1988).	Although	not	significant,	 individuals	
reared	at	18:6	L:D	showed	higher	CTmax(LMA)	values,	which	suggest	
an	improvement	in	thermal	tolerance	in	response	to	long	day	length,	
which	is	in	agreement	with	the	findings	of	Fischer	et	al.	(2012).

4.2 | Effect of photoperiod and population on life‐
history traits

Interestingly,	photoperiod	affected	all	life-history	traits	investigated	
in	the	present	study.	Interpreting	the	differences	in	response	to	pho-
toperiod	can	be	challenging	as	treatments	represent	a	mix	of	condi-
tions,	 and	 their	 relevance	depend	on	 the	 geographic	 origin	of	 the	
population	in	question	and	the	sensitivity	and	flexibility	of	the	trait.	
For	 example,	 the	 egg-to-adult	 viability	 of	 populations	 showed	 an	
overall	increase	with	latitude,	although	the	SW	population	deviated	
from	this	pattern	(Figure	3a).	A	positive	correlation	between	viabil-
ity	and	latitude	has	been	observed	in	D. buzzatii (Folguera,	Ceballos,	
Spezzi,	Fanara,	&	Hasson,	2008),	but	negative	or	no	correlation	has	
also	been	found	(Loeschcke,	Bundgaard,	&	Barker,	2000;	Overgaard,	
Kristensen,	Mitchell,	Cockerell,	&	Hoffmann,	2010).	The	low	viabil-
ity	of	the	SW	population	specially	at	the	18L:6D	photoperiod	may	
arise	from	photoperiod-induced	disruption	of	the	circadian	system	
due	to	the	higher	plasticity	in	this	northern	population	(Liu	&	Zhao,	
2014).	Clinal	variation	in	phenotypic	plasticity	is	observed	in	many	
organisms,	 and	 this	 might	 be	 explained	 by	 higher	 fluctuations	 in	
environmental	conditions	at	northern	latitudes	(Li,	Du,	Guan,	Yu,	&	
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van	Kleunen,	2016;	Mathur	&	Schmidt,	2017;	Molina-Montenegro	
&	Naya,	 2012).	 A	 reduction	 of	 viability	 in	 response	 to	 day	 length	
has	been	observed	in	D. melanogaster,	where	a	long	photoperiod	re-
duced	survival	(Vaiserman	et	al.,	2008).	The	biological	reason	behind	
the	photoperiod-related	reduction	in	viability	is	currently	unclear.

The	 total	 productivity	 reduced	with	 increasing	day	 length	 in	 a	
population-specific	manner;	 that	was	more	 pronounced	 in	 the	 SE	
population	 (Figure	 3b).	 The	 negative	 influence	 of	 long	 photope-
riod	 on	 productivity	 has	 been	 observed	 also	 in	Sesamia nonagrioi‐
des,	where	long	day	length	suppressed	the	oviposition	of	this	insect	
(Fantinou,	Perdikis,	&	Zota,	2004).	 In	another	study	by	Hodek	and	
Iperti	 (1983),	 exposure	 to	 short	 day	 length	 increased	 the	 females’	
fecundity	of	Semiadalia undecimnotata.	Therefore,	 the	 tendency	of	
females	 to	 lay	more	eggs	 at	 shorter	 day	 length	 can	partly	 explain	
the	differences	in	productivity	between	populations	(Fluegel,	1981;	
Oshima,	Inoue,	&	Ishiwa,	1972;	Shakunthala,	2014).	In	addition,	the	
low	egg-to-adult	viability	of	populations	under	long	day	length	can	
affect	the	reproductive	potential	of	populations.

The	DBW	of	populations	displayed	a	positive	trend	with	increas-
ing	latitude	(Figure	3c),	which	is	in	agreement	with	a	previous	study	
on	European	population	of	D. subobscura	 (Gilchrist,	Huey,	&	Serra,	
2001).	 According	 to	 the	 temperature–size	 rule,	 ectotherms	 usu-
ally	get	smaller	with	an	increase	in	the	developmental	temperature	
(Atkinson,	1994;	Walters	&	Hassall,	2006).	Therefore,	as	expected	
flies	 from	MO	and	northern	Europe	had	 the	 lowest	and	 the	high-
est	DBW	respectively,	although	 this	was	not	 the	case	 for	 the	SW	
population	 at	 the	6L:18D	photoperiod.	Results	 obtained	on	other	
diptera	species	(Musca domestica)	have	shown	similar	results,	where	
body	size	to	some	degree	is	independent	of	latitude	(Bryant,	1977;	
Kjærsgaard,	 Blanckenhorn,	 Pertoldi,	 Loeschcke,	 &	 Bahrndorff,	
2015).	Among	 the	 light	 regimes,	 the	highest	DBW	of	 populations	
was	observed	at	the	12L:12D	photoperiod	except	for	the	DE	pop-
ulation.	This	 finding	 is	 in	agreement	with	 the	study	on	 the	north-
ern	damselfly	(Coenagrion johanssoni)	in	which	the	central	European	
populations	showed	the	highest	growth	rate	during	spring	(Sniegula	
et	al.,	2012).

5  | CONCLUSION

Our	 results	 revealed	 a	 significant	 effect	 of	 population	 and	photo-
period	on	a	range	of	fitness-related	traits	in	D. subobscura.	However,	
photoperiod-related	responses	varied	between	traits	which	may	be	
explained	by	different	sensitivity	and	plastic	abilities.	The	observa-
tion	 of	 better	 performance	 of	 the	D. subobscura	 at	 short	 and	me-
dium	photoperiods	is	in	accordance	with	the	high	abundancy	of	this	
species	in	early	spring	in	nature	and	its	high	cold	tolerance	(Budnik	
&	Brncic,	1983;	Sørensen,	Kristensen,	Loeschcke,	&	Schou,	2015).	
The	 presence	 of	 strong	 local	 adaptation	 to	 day	 length	 (photoper-
iod	by	population	 interaction)	highlights	 the	 importance	of	photo-
period	 as	 a	 selective	 agent	 in	 the	 study	of	 population	differences	
observed	in	fitness	traits.	However,	further	experiments	are	needed	
to	 fully	 understand	 the	 evolutionary	 significance	 of	 photoperiod	

in	mediating	seasonal	events	across	populations.	For	example,	day	
lengths	mimicking	natural	conditions	for	each	population	should	be	
incorporated	into	future	studies	to	fully	assess	the	geographic	cline	
in	photoperiodism.

In	conclusion,	the	results	of	the	present	study	emphasize	the	role	
of	photoperiod	in	evaluating	the	consequences	of	fast	environmen-
tal	changes	and	suggest	that	cues	induced	by	photoperiod	may	pro-
vide	some	buffer	enabling	populations	to	cope	with	a	more	variable	
and	unpredictable	future	climate.
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