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Abstract
Introduction: Organisms use environmental cues to match their phenotype with the 
future availability of resources and environmental conditions. Changes in the magni-
tude and frequency of environmental cues such as photoperiod and temperature 
along latitudes can be used by organisms to predict seasonal changes. While the role 
of temperature variation on the induction of plastic and seasonal responses is well 
established, the importance of photoperiod for predicting seasonal changes is less 
explored.
Materials and methods: Here we studied changes in life‐history and thermal stress 
resistance traits in Drosophila subobscura in response to variation in photoperiod 
(6:18, 12:12 and 18:6 light:dark cycles) mimicking seasonal variations in day length. 
The populations of D. subobscura were collected from five locations along a latitudi-
nal gradient (from North Africa and Europe). These populations were exposed to 
different photoperiods for two generations, whereafter egg‐to‐adult viability, pro-
ductivity, dry body weight, thermal tolerance, and starvation resistance were 
assessed.
Results: We found strong effects of photoperiod, origin of populations, and their in-
teractions on life‐history and stress resistance traits. Thermal resistance varied be-
tween the populations and the effect of photoperiod depended on the trait and the 
method applied for the assessment of thermal resistance.
Perspectives: Our results show a strong effect of the origin of population and photo-
period on a range of fitness‐related traits and provide evidence for local adaptation 
to environmental cues (photoperiod by population interaction). The findings empha-
size an important and often neglected role of photoperiod in studies on thermal re-
sistance and suggest that cues induced by photoperiod may provide some buffer 
enabling populations to cope with a more variable and unpredictable future climate.
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1  | INTRODUCTION

Ectotherms must cope with daily and seasonal changes in envi-
ronmental conditions (Bahrndorff, Loeschcke, Pertoldi, Beier, & 
Holmstrup, 2009; Cossins & Bowler, 1987; Dahlhoff & Rank, 2007), 
among which temperature extremes and lack of adequate nutrition 
can affect population viability and individual fitness (Andersen, 
Kristensen, Loeschcke, Toft, & Mayntz, 2010; Braby & Jones, 1995; 
Dahlhoff & Rank, 2007; Fischer & Fiedler, 2001). Variation in envi-
ronmental conditions in nature can be dramatic, and it is predicted 
that the magnitude and frequency of extreme local weather events 
will increase in the coming decades due to global climate changes 
(IPCC, 2013). Species can cope with such stressful environments 
through plastic and/or evolutionary responses leading to, for ex-
ample, behavioral, morphological, and/or physiological adjustments 
(Hoffmann & Parsons, 1991). These processes occur at different 
timescales, and their efficacy rely on the predictive value of envi-
ronmental cues that trigger the response (Kristensen, Ketola, & 
Kronholm, 2018).

Temperature and photoperiod are environmental factors provid-
ing signals that regulate the induction of stress responses (Teets & 
Denlinger, 2013; Tyukmaeva, Salminen, Kankare, Knott, & Hoikkala, 
2011; Williams & Sokolowski, 2009). For example, hardening or 
acclimation responses induced by thermal variation can modulate 
resistance to temperature extremes as well as impact upon starva-
tion and desiccation resistance (Alemu, Alemneh, Pertoldi, Ambelu, 
& Bahrndorff, 2017; Parkash, Aggarwal, Singh, Lambhod, & Ranga, 
2013; Schou, Loeschcke, & Kristensen, 2015). The evolutionary im-
portance of physiological processes as a consequence of variation 
in ambient temperature is strongly supported by data from clinical 
studies, where latitudinal gradients in thermal conditions have re-
sulted in intraspecific clinal variation in stress resistance (Castaneda, 
Rezende, & Santos, 2015; Hoffmann, Anderson, & Hallas, 2002; 
Kingsolver & Buckley, 2017; Pratt & Mooney, 2013; Yampolsky, 
Schaer, & Ebert, 2014). These findings demonstrate the importance 
of past evolutionary processes for contemporary ecological dynam-
ics (see Hoffmann et al., 2002 for a review).

Apart from thermal variation, photoperiod can play an import-
ant role in mediating seasonal events and stress resistance. The 
timing of migration in many species of birds, range expansion of spe-
cies across latitudes, or flowering time in plants all happen partly 
in response to seasonal changes in day length (Itoh & Izawa, 2013; 
Pulido, Coppack, & Berthold, 2001; Saikkonen et al., 2012). The 
modulatory effect of photoperiod on thermal resistance has been 
reported in various species of Drosophila (Hoffmann, Shirriffs, & 
Scott, 2005; Lanciani, Giesel, Anderson, & Emerson, 1990; Vesala & 
Hoikkala, 2011). For example, in Drosophila melanogaster, a shorter 
photoperiod reduced the cold resistance of adult flies (Bauerfeind, 
Kellermann, Moghadam, Loeschcke, & Fischer, 2014; Hoffmann 
et al., 2005), which was in contrast to previous studies on other 
Drosophila species (Hori & Kimura, 1998; Lanciani, Lipp, & Giesel, 
1992; Vesala, Salminen, Kankare, & Hoikkala, 2012). The importance 
of photoperiod and stress resistance has also been investigated in 

a lowland population of Drosophila buzzatii, in which different light 
regimes changed the heat knock‐down resistance so that flies in-
creased resistance during the hours of the day with light where 
they were most active and thermal conditions were most favor-
able (Sørensen & Loeschcke, 2002). This was interpreted as an ad-
aptation to surviving the warm conditions experienced by lowland 
populations. Interestingly, the importance of photoperiod was not 
observed in a nearby highland population generally experiencing 
lower temperatures. The species‐  and population‐specific effects 
of photoperiod suggest that responses have a genetic basis and/or 
can be affected by assay conditions (Williams & Sokolowski, 2009). 
Apart from the effects of photoperiod on thermal resistance, Fischer 
et al. (2012) showed that photoperiod is important for a range of life‐
history traits including growth rate, development time, and body size 
in Protophormia terraenovae and for many of the traits investigated 
results showed interactions between temperature and photoperiod.

In contrast to temperature, photoperiod can be defined as a 
highly reliable environmental cue due to the constant variations in 
photoperiod across days and seasons for a given latitude and/or al-
titude (Bradshaw & Holzapfel, 2007; Jackson, 2009; Salis, van den 
Hoorn, Beersma, Hut, & Visser, 2018). The day length that triggers 
the incidence of seasonal activities (critical photoperiod) is linked 
to the length of the growing season and the timing of the onset of 
a specific season. Therefore, in the northern hemisphere at north-
ern latitudes, where winter sets in earlier and the growing season is 
shorter than in the south, organisms use a longer critical photoperiod 
as a cue to switch between seasonal phenotypes (Bradshaw, 1976; 
Bradshaw & Holzapfel, 2007; Danilevskiĭ, 1965). Further, a reduc-
tion in the critical photoperiod of populations inhabiting the north-
ern latitudes, due to the later onset of winter and a longer growing 
season caused by climate change, has been observed (Bradshaw & 
Holzapfel, 2006). For example, the pitcher‐plant mosquito Wyeomyia 
smithii has over a period of 24 years (from 1972 to 1996) shifted to-
ward shorter photoperiods to initiate the larval dormancy (Bradshaw 
& Holzapfel, 2001). These results show the adaptive potential of 
photoperiodism and the importance of photoperiod in relation to 
coping with climate change through evolutionary responses.

Despite the importance of day length for multiple life‐history 
traits and for the ability to cope with stressful thermal conditions, 
most experimental studies investigating the ability to perform in en-
vironments with variable temperatures have neglected the role of 
photoperiod and its importance for stress resistance and for shap-
ing the distribution of species (Ketola & Saarinen, 2015; Kristensen, 
Kjeldal, Schou, & Lund, 2016; Manenti, Sørensen, Moghadam, & 
Loeschcke, 2014, 2016). In the present study, we investigate the 
importance of seasonal variation in day length on stress resistance 
and life‐history traits of five populations of Drosophila subobscura 
distributed across North Africa and Europe spanning the latitudes 
31°N to 59°N (Table 1). The aim of the study was to evaluate to what 
extent populations from different latitudes differ in photoperiod‐as-
sociated responses. We hypothesize that short day length increases 
cold resistance and long day length increases heat and starvation 
resistance (Hoffmann et al., 2005; Lanciani et al., 1990, 1992). We 
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expect that a long day length reduces energy invested in reproduc-
tion and increases energy used for building up body reserves and 
for inducing stress responses. We further hypothesize that photo-
period‐dependent responses are more pronounced for high‐latitude 
populations evolved to cope with highly variable and unpredictable 
thermal environments (Bahrndorff et al., 2009; Sniegula, Nilsson‐
Örtman, & Johansson, 2012).

2  | MATERIALS AND METHODS

2.1 | Fly populations

The experiments were performed on D. subobscura (Figure 1), a 
Palearctic species with a wide distribution including North Africa, 
southern Europe, and Scandinavia (Krimbas, 1993). The European pop-
ulations of D. subobscura have been shown to be genetically variable, 
and the species is an excellent model in evolutionary studies (Pascual 
et al., 2007). This species does not have a photoperiodically controlled 
reproductive diapause for overwintering (Goto, Yoshida, Beppu, & 
Kimura, 1999), which is an advantage when studying the impact of 
photoperiod on fitness components using a common garden set up.

The study populations used in the present study were collected 
from five different locations. These locations differ in photoperiod 

throughout the year (Figure 2). The sampling locations, year of col-
lection, number of inseminated female flies used to establish the 
populations, and annual minimum and maximum of daylight are 
presented in Table 1. After collection, each population was kept as 
one interbreeding mass population in 300‐ml plastic bottles (4 bot-
tles per population, ca. 500 individuals per bottle) containing 70‐
ml standard Drosophila agar–sugar–yeast medium seeded with live 
yeast and maintained under laboratory condition for approximately 
one year before starting the experiment. For the purpose of the ex-
periment, the populations were kept at 23°C under three different 
light regimes (6:18, 12:12 and 18:6 light:dark cycles with lights on 
at 9 a.m.) for two generations. Throughout the experiment, the flies 
were maintained at 23°C (unless otherwise stated), which is favor-
able for numerous fitness components in this species (Santos, 2007). 
In the second generation, the eclosed flies from each population and 
light regime were collected within 48 hr of eclosion and placed in 
300‐ml plastic bottles (ca. 100 individuals per bottle) containing 70‐
ml standard Drosophila medium enriched with live yeast to increase 
females’ fecundity. Each day adult flies (aged 5–6 and 8–9 days for 
the first and last block, respectively) were given 16 hr to lay eggs 
on small spoons filled with 1‐ml Drosophila standard medium seeded 
with live yeast. The collection of eggs was conducted at a controlled 
density (see below) in four consecutive blocks (one block per day) 
for logistic reasons.

2.2 | Traits assessed

2.2.1 | Egg‐to‐adult viability

Eggs were collected at a controlled density (25 eggs per vial) and 
placed into 35‐ml plastic vials (12 replicates per population per light 
regime for each block) containing 7‐ml standard Drosophila medium. 
The eggs developed at the respective light regime experienced by 
their parents under controlled conditions (23°C, 60% humidity). 
Following the first eclosion, number of eclosing flies was scored 
every 24 hr until all the flies had emerged. The flies stuck in the 
medium were scored as alive and removed using a brush. The flies 
collected within the first 24 hr were transferred to 35‐ml plastic 
vials (25 ± 5 flies per vial) with 3‐ml standard Drosophila medium. 
Unless otherwise stated, at 3 days of age flies were separated by sex 
under light CO2 anesthesia and males were placed at a controlled 

TA B L E  1  Position, number of collected inseminated females used to establish each population, year of collection and annual minimum 
and maximum daylight period for the populations

ID Population Position Location Inseminated females Year (month)

Min. 
daylight 
(min)

Max. daylight 
(min)

MO Morocco 31°11′N, 8°15′W Amizmiz 15 2016 (Jul) 606 852

SP Spain 41°43′N, 2°12′E Font Groga 20 2015 (Oct) 552 909

SE Serbia 43°33′N, 20°45′E Mountain Goc 50 2015 (Jun) 534 928

DE Denmark 55°56′N, 10°12′E Odder 14 2016 (Jan) 414 1,057

SW Sweden 59°49′N, 17°54′E Fjällnora 35 2016 (Jul) 358 1,125

F I G U R E  1  Female fly of Drosophila subobscura
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density (25 ± 5 males per vial) in 35‐ml plastic vials with 3‐ml stand-
ard Drosophila medium and placed in the respective light regime for 
further assessments.

2.2.2 | Productivity

To assess the productivity of flies exposed to different light re-
gimes, one male and one female fly at 3 days of age were placed 
in 35‐ml plastic vials (20 vials per population per light regime were 
divided equally into four blocks) with 10‐ml standard Drosophila 
medium without live yeast. Every 72 hr, the pairs were transferred 
to new vials with fresh food using an aspirator to prevent losing 
flies. This process continued for 9 days (from 3 to 12 days of age). 
The vials were kept at their respective light regime under con-
trolled condition (23°C, 60% humidity). The number of offspring 
produced per pair was recorded after eclosion until all the flies 
had emerged.

2.2.3 | Dry body weight

Male flies were dried at 60°C for 24 hr and thereafter placed in 
a desiccator. The dry body weight (dbw) of flies was measured in 

batches of four males (9 batches per population per light regime) to 
a precision of 0.01 mg using a Sartorius® electrobalance (Quintix 
35–1S, Germany).

2.2.4 | Thermal resistance assay

To assess critical thermal maximum (CTmax) and critical thermal 
minimum (CTmin) of flies from the five populations and three experi-
mental treatments, 5‐day‐old males (20 males per population per 
light regime were divided with five flies in each of four blocks) were 
placed individually into 5‐ml screw cap glass vials without the use 
of anesthetics. The vials were placed randomly in a metal rack and 
then submerged in a water bath set at 23°C. Thereafter, the water 
temperature was increased (to assess CTmax) or decreased (to as-
sess CTmin) with a rate of 0.1°C/min and the temperature at which 
a fly was totally immobilized was scored until all flies were in coma.

2.2.5 | Locomotor activity under heat ramping

The locomotor activity of 5‐day‐old males was recorded using an 
assay where temperature was gradually increased (ramped up). 
Flies were placed in Drosophila Activity Monitors (DAM; Trikinetics, 

F I G U R E  2  Seasonal variations in day 
length (min) for each of the sampling 
locations (MO: Morocco, SP: Spain, SE: 
Serbia, DE: Denmark and SW: Sweden). 
The graphs are based on 24 time points 
per location (six points per season) and 
represent latitudinal variations in the 
amplitude of photoperiod
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Waltham, MA, USA) in which infrared detectors registered an ac-
tivity count each time a fly crossed a beam (Pfeiffenberger, Lear, 
Keegan, & Allada, 2010). Each trial started at 10 a.m. when flies (60 
males per population per light regime divided with 15 in each of 
four blocks) were individually placed into a narrow glass tube (5 mm 
×65 mm) with parafilm at one end and a wet cotton stopper at the 
other end to prevent desiccation, but allowing some air ventilation. 
The glass tubes were placed in the DAMs randomly, where each 
monitor contained two samples of each light regime and population. 
Around 11 a.m., the DAMs were placed in the incubator set at 23°C 
for 1 hr followed by an increase in temperature with a rate of 0.1°C/
min until the temperature reached 40°C. The humidity was kept at 
60% in the incubator, and the assay was performed at constant light. 
The activity was recorded every 30 s, and sum of the activity counts 
was calculated as the total locomotor activity (TLMA) for an indi-
vidual. In addition, we recorded the temperature at which no further 
activity (CTmax(LMA)) was observed for each individual.

2.2.6 | Starvation resistance

Male flies at 5 days of age from each population and light regime 
were placed individually in 35‐ml plastic vials (20 males per popu-
lation per light regime were divided with five flies in each of four 
blocks) containing 2 ml of agar–water medium (20 g/L) to provide 

moisture and avoid desiccation during the experiment. The vials 
were kept at the respective light regime experienced by parents 
under controlled conditions (23°C, 60% humidity). The number of 
dead flies was scored every 12 hr until all flies had died.

2.3 | Statistical analyses

Prior to analysis all data were tested for normality and homogene-
ity of variance, and the block effect was adjusted by a standardiza-
tion using the grand mean. To obtain normally distributed data and 
homogeneity of variance, the TLMA and CTmax(LMA) were log and 
square root transformed, respectively. The effects of population, 
photoperiod, and their interaction on various traits (viability, total 
productivity, DBW, and thermal and starvation resistance) were 
tested using a two‐way ANOVA with population and photoperiod 
as fixed factors. The unit of replication was group of flies (eggs or 
adults) for viability (a group consisted of 25 eggs), productivity (a 
group consisted of one male and one female), and DBW (a group 
consisted of four males) and individual flies for the remaining traits. 
Populations were treated as a fixed effect as our main focus was on 
the variance between populations. The productivity of flies was ana-
lyzed by repeated measures ANOVA to correct for repeated meas-
urements from the same individual. In all significant cases, multiple 
pairwise comparisons were performed using Tukey's method. All 

Trait Source df Sum of square F p‐value

Viability Pop 4 98,540 170.53 <0.0001

Light 2 7,653 26.49 <0.0001

Pop × Light 8 9,715 8.41 <0.0001

Productivity Pop 4 332,222 14.80 <0.0001

Light 2 372,122 33.16 <0.0001

Pop × Light 8 111,053 2.47 0.01

DBW Pop 4 0.63 30.28 <0.0001

Light 2 0.07 7.27 0.0009

Pop × Light 8 0.11 2.77 0.006

CTmin Pop 4 6.85 2.36 0.05

Light 2 0.05 0.03 0.97

Pop × Light 8 5.09 0.88 0.54

CTmax Pop 4 22.70 12.80 <0.0001

Light 2 0.79 0.89 0.41

Pop × Light 8 2.14 0.60 0.77

TLMA Pop 4 6.98 9.96 <0.0001

Light 2 3.46 9.90 <0.0001

Pop × Light 8 2.41 1.72 0.09

CTmax(LMA) Pop 4 0.22 14.66 <0.0001

Light 2 0.02 2.84 0.06

Pop × Light 8 0.02 0.86 0.55

Starvation Pop 3 15,107 9.18 <0.0001

Light 2 2,800 2.55 0.08

Pop × Light 6 10,180 3.09 0.006

TA B L E  2  Results of the overall ANOVA 
analysis to examine the effect of 
population, light regime, and their 
interaction on egg‐to‐adult viability, 
productivity, DBW (dry body weight), 
CTmin and CTmax (thermal resistance), 
TLMA (total locomotor activity), 
CTmax(LMA) (the highest temperature with 
no observed activity at higher 
temperatures), and starvation resistance. 
Significant p values (p < 0.05) are 
represented in bold
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statistical analyses were performed in R, version 3.5 and R studio, 
version 1.1.44 (R Core Team, 2017).

3  | RESULTS

3.1 | Life‐history traits

3.1.1 | Egg‐to‐adult viability

Egg‐to‐adult viability of flies varied between populations 
(F4, 720 = 170.53, p < 0.0001; Table 2). In general, the SE (69.97%) and 
SW (35.64%) populations showed the highest and lowest viability, 

respectively (Figure 3a). The viability of the SP and MO popula-
tions was similar (47.79% and 47.22%, respectively) and significantly 
(p < 0.0001) lower than the viability of the DE population (59.28%). 
On average, egg‐to‐adult viability decreased significantly when we 
increased the day length (F2, 720 = 26.49, p < 0.0001). There was a 
significant interaction between photoperiod and population (photo-
period × population: F8, 720 = 8.41 and p < 0.0001; Table 2) indicating 
that photoperiod had distinct impacts on viability in populations from 
different latitudes. The egg‐to‐adult viability of the MO, SP, and SW 
populations exposed to the 12L:12D photoperiod was considerably 
higher than the corresponding populations under the 18L:6D light 
regime (MO: p = 0.004, SP: p = 0.02, SW: p < 0.0001). Moreover, 

F I G U R E  3  Variation in (a) egg‐to‐adult viability (percentage of eggs developing into adult flies); (b) total productivity; (c) dry body weight; 
(d); CTmin; (e) CTmax; (f) total activity (sum of locomotor activity under a ramping temperature from 23°C to 40°C with 0.1°C increase per 
minute); (g) CTmax(LMA) (the highest temperature with no scored activity afterward) and (h) starvation resistance of five populations (MO: 
Morocco, SP: Spain, SE: Serbia, DE: Denmark and SW: Sweden) in response to three different light regimes (6L:18D, 12L:12D and 18L:6D). 
Symbols indicate mean (95% CI)

(a) (b)

(c)

°

(d)

°

(e) (f)

(
)(°

)

(g) (h)
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the viability of the MO population under the 6L:18D photoperiod 
was approximately 15% higher than the 18L:6D treatment group 
(p < 0.0001). In the DE population, no difference was observed in the 
viability of the 12L:12D and the 18L:6D treatment groups (p > 0.05) 
and the highest viability was observed in the 6L:18D group (6L:18D 
vs. 12L:12D, p < 0.0001; 6L:18D vs. 18L:6D, p < 0.0001). The vi-
ability of the SE population under the 6L:18D or 18L:6D treatment 
was, respectively, similar or higher than the 12L:12D group (6L:18D 
vs. 12L:12D, p < 0.0001; 18L:6D vs. 12L:12D, p < 0.001, 6L:18D vs. 
18L:6D, p > 0.05).

3.1.2 | Productivity

Productivity differed between populations (F4, 285 = 14.80, 
p < 0.0001; Table 2). The highest productivity was observed in the 
DE population (Figure 3b). In general, exposure to long hours of day-
light reduced the total productivity of populations (F2, 285 = 33.16, 
p < 0.0001). This reduction was more pronounced under the 18L:6D 
photocycle. The influence of photoperiod on flies’ productivity dif-
fered between populations (photoperiod × population: F8, 285 = 2.47, 
p < 0.01). The DE and SE populations showed a constant reduction in 
the total productivity with increasing day length, while the produc-
tivity of the MO, SP, and SW populations increased at the 12L:12D 
and reduced at the 18L:6D photoperiod. Repeated‐measure ANOVA 
with population, photoperiod, and age as crossed fixed factors re-
vealed a significant effect of age on the productivity of populations 
developed under the three different light regimes (F3, 283 = 58.18, 
p < 0.0001).

3.1.3 | Dry body weight

Population (F4, 178 = 30.28, p < 0.0001), photoperiod (F2, 178 = 7.27, 
p = 0.0009), and their interaction (photoperiod × population: 
F8, 178 = 2.77, p = 0.006) affected the Dry body weight (DBW) of flies 
(Table 2). Across different photoperiods, the MO and SE popula-
tions showed the lowest and the DE population the highest DBW 
(Figure 3c). In general, the DBW of flies kept at 6L:18D and 18L:6D 
was similar except for the DE population in which the flies exposed 
to the 6L:18D treatment were approximately 6.6% (p = 0.04) heav-
ier than flies from the 18L:6D group. The development of the MO 
and SW populations under a 12L:12D photoperiod significantly 
increased the DBW of flies compared to the 18L:6D (p < 0.01) and 
6L:18D (p < 0.05) light regimes. The photoperiod did not affect the 
DBW of the SE population (F2, 35 = 2.85, p = 0.07).

3.2 | Stress resistance

3.2.1 | Thermal resistance

Neither population nor photoperiod affected the cold resistance 
(CTmin) of flies (Figure 3d). There was a significant effect of popula-
tion on CTmax (F4, 293 = 12.80, p < 0.0001; Table 2); the SP and MO 
populations showed a higher heat resistance than the other three 

populations (Figure 3e). There was no effect of photoperiod on 
CTmax (F2, 293 = 0.89, p > 0.05; Table 2).

3.2.2 | Locomotor activity during heat ramping

The total locomotor activity (TLMA) of flies during heat ramping 
differed between populations (F4, 869 = 9.96, p < 0.0001; Table 2) 
with flies from the SE and SW populations being least active. The 
difference in the TLMA of populations was more pronounced dur-
ing the 6L:18D and 18L:6D photoperiods (Figure 3f). There was 
also a significant effect of photoperiod on TLMA (F2, 869 = 9.90, 
p < 0.0001), where the lowest activity was observed in the 6L:18D 
treatment groups. The pairwise comparisons showed no differ-
ence in activity between photoperiods for the MO (F2, 172 = 0.21, 
p > 0.05), SP (F2, 176 = 2.54, p > 0.05), DE (F2, 170 = 2.50, p > 0.05), 
and SW (F2, 176 = 0.66, p > 0.05) populations. However, the SE 
population under the 12L:12D photoperiod showed higher activity 
compared to 6L:18D (p < 0.001) and 18L:6D (p < 0.01) photoper-
iod. The CTmax(LMA) differed between populations (F4, 882 = 14.66, 
p < 0.0001; Table 2) with the MO and SP populations being the most 
heat resistant and SW the least heat resistant population (Figure 3g). 
This pattern was present for both the 6L:18D and 12L:12D photo-
period treatment groups, but with the MO population being less 
heat resistant for the 18L:6D treatment group.

3.2.3 | Starvation resistance

The population from Sweden (SW) was removed from the data set 
due to the small sample size at 18L:6D photoperiod. The overall 
analysis displayed significant effects of population (F3, 227 = 9.18, 
p < 0.0001) and the interaction with photoperiod (F6, 227 = 3.09, 
p < 0.01) on the starvation resistance of flies (Table 2). Across all 
treatments, the starvation resistance of the DE population was sig-
nificantly higher than in other populations, except at the 18L:6D 
photocycle where no difference was observed between popula-
tions (F3, 77 = 1.36, p > 0.05; Figure 3h). The effect of photoperiod 
on the starvation resistance of populations was not significant 
(F2, 227 = 2.55, p > 0.05), except for the SP population in which ex-
posure to 18L:6D photoperiod increased the starvation resistance 
of individuals compared to the 12L:12D treatment group (p < 0.01, 
ca. 28 hr).

4  | DISCUSSION

Organisms respond to changes in photoperiod via plastic and evo-
lutionary responses. These responses have been proposed to be 
essential for survival and reproductive success of organisms in sea-
sonal environments (Bradshaw & Holzapfel, 2007; Kimura & Beppu, 
1993; Tyukmaeva et al., 2011). The contribution of day length in me-
diating the optimal timing of seasonal events varies as a function 
of latitude. Reliance on photoperiod elevates with increasing dis-
tance from equator and is typically more pronounced in populations 
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inhabiting the northern latitudes (Sniegula et al., 2012), which also 
suggests that genotype‐by‐photoperiod interactions are important 
for the expression of seasonal phenotypes. In most studies on ther-
mal adaptation, the importance of photoperiod is rarely considered 
and the main focus in such studies is on the role of thermal changes 
in mediating thermal resistance, life‐history traits, and in shap-
ing the distribution of species (Ketola & Saarinen, 2015; MacLean, 
Kristensen, Overgaard, Sørensen, & Bahrndorff, 2017).

In the present study, we observed photoperiod‐associated 
changes in life‐history and thermal stress resistance traits across 
various populations of D. subobscura. Overall, the results show that 
the photoperiodic regulation of the flies’ phenotypic performance 
was trait and population specific.

Populations used in our study have been kept in the laboratory 
for several generations before performing the experiments pre-
sented in this paper. We acknowledge challenges related to this; that 
is, potential laboratory adaptation and genetic drift. However, the 
populations were founded based on a large number of individuals 
and kept at a large population size (more than 2,000 individuals per 
population). Therefore, it is unlikely that the patterns established are 
caused by chance events like genetic drift or bottleneck. Further, 
we argue that even though the populations had been kept in the 
laboratory for up to one year prior to the experiment, findings show 
that laboratory maintenance does not affect fundamental species 
characteristics and validates comparative studies based on labo-
ratory maintained populations (Maclean, Kristensen, Sørensen, & 
Overgaard, 2018).

4.1 | Effect of photoperiod and population on 
stress resistance

The results of the present study show that stress resistances (cold, 
heat, and starvation resistance) differed between populations of 
D. subobscura. Generally, the most southern populations were most 
heat resistant and the northern populations most cold resistant. This 
is in accordance with other studies looking at thermal adaptation 
across populations and indicates the presence of a geographic ther-
mal tolerance cline for this species (Castaneda et al., 2015; David, 
Gibert, Moreteau, Gilchrist, & Huey, 2003). However, some popula-
tions deviated from this pattern potentially due to the influence of 
the applied photoperiods. For example, the SW population exposed 
to a long photoperiod is less cold resistant compared to the other 
populations (Figure 3d), which may signify the higher reliance of this 
northernmost population on day length for adjusting their seasonal 
phenotypes. This suggests that photoperiod‐related plasticity ap-
pears particularly important for populations living in highly fluctuat-
ing and unpredictable thermal environments.

Data on starvation resistance also showed evidence for local 
adaptation with a population‐specific pattern as indicated by the 
significant interaction between population and photoperiod. This is 
in agreement with Gilchrist et al. (2008), where male D. subobscura 
collected across Europe showed large differences in starvation re-
sistance between geographical areas. The linear cline for starvation 

resistance observed at a short photoperiod follows our expectation 
of higher starvation resistance with increasing latitude since north-
ern populations may face food deprivation during cold seasons. 
However, this result is in contrast with previous findings where star-
vation resistance decreased with increasing latitude (Arthur, Weeks, 
& Sgrò, 2008; Hoffmann, Hallas, Sinclair, & Mitrovski, 2001; Sisodia 
& Singh, 2010). This inconsistency may arise from the influence of 
photoperiod on the association between starvation resistance and 
latitude, which suggests that selection on this trait is inconsistent 
across seasons and stronger in seasons with short photoperiods. It 
also demonstrates the considerable plasticity of starvation resis-
tance in response to environmental cues (Rion & Kawecki, 2007).

We scored behavioral performance (locomotor activity) under 
heat ramping to estimate the critical upper thermal limits of flies. 
The assessment of thermal resistance through behavioral perfor-
mance allowed us to track the locomotor activity of flies throughout 
heat ramping and use a less invasive method to estimate the tem-
perature at which activity is no longer recorded. Both total activity 
and CTmax(LMA) were affected by population, and there was a sig-
nificant effect of photoperiod on total locomotor activity recorded 
throughout the heat ramping assay (Figure 3f and G). In general, the 
high activity of populations exposed to a long photoperiod prior to 
entering the heat ramping assay supports the general notion that 
activity of flies is higher during the growing season when the tem-
perature is high (Wolda, 1988). Moreover, the photoperiod‐related 
increase in the total activity highlights that this trait is highly plastic 
which may be relevant for explaining the global distribution of this 
species (Prevosti et al., 1988). Although not significant, individuals 
reared at 18:6 L:D showed higher CTmax(LMA) values, which suggest 
an improvement in thermal tolerance in response to long day length, 
which is in agreement with the findings of Fischer et al. (2012).

4.2 | Effect of photoperiod and population on life‐
history traits

Interestingly, photoperiod affected all life‐history traits investigated 
in the present study. Interpreting the differences in response to pho-
toperiod can be challenging as treatments represent a mix of condi-
tions, and their relevance depend on the geographic origin of the 
population in question and the sensitivity and flexibility of the trait. 
For example, the egg‐to‐adult viability of populations showed an 
overall increase with latitude, although the SW population deviated 
from this pattern (Figure 3a). A positive correlation between viabil-
ity and latitude has been observed in D. buzzatii (Folguera, Ceballos, 
Spezzi, Fanara, & Hasson, 2008), but negative or no correlation has 
also been found (Loeschcke, Bundgaard, & Barker, 2000; Overgaard, 
Kristensen, Mitchell, Cockerell, & Hoffmann, 2010). The low viabil-
ity of the SW population specially at the 18L:6D photoperiod may 
arise from photoperiod‐induced disruption of the circadian system 
due to the higher plasticity in this northern population (Liu & Zhao, 
2014). Clinal variation in phenotypic plasticity is observed in many 
organisms, and this might be explained by higher fluctuations in 
environmental conditions at northern latitudes (Li, Du, Guan, Yu, & 
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van Kleunen, 2016; Mathur & Schmidt, 2017; Molina‐Montenegro 
& Naya, 2012). A reduction of viability in response to day length 
has been observed in D. melanogaster, where a long photoperiod re-
duced survival (Vaiserman et al., 2008). The biological reason behind 
the photoperiod‐related reduction in viability is currently unclear.

The total productivity reduced with increasing day length in a 
population‐specific manner; that was more pronounced in the SE 
population (Figure 3b). The negative influence of long photope-
riod on productivity has been observed also in Sesamia nonagrioi‐
des, where long day length suppressed the oviposition of this insect 
(Fantinou, Perdikis, & Zota, 2004). In another study by Hodek and 
Iperti (1983), exposure to short day length increased the females’ 
fecundity of Semiadalia undecimnotata. Therefore, the tendency of 
females to lay more eggs at shorter day length can partly explain 
the differences in productivity between populations (Fluegel, 1981; 
Oshima, Inoue, & Ishiwa, 1972; Shakunthala, 2014). In addition, the 
low egg‐to‐adult viability of populations under long day length can 
affect the reproductive potential of populations.

The DBW of populations displayed a positive trend with increas-
ing latitude (Figure 3c), which is in agreement with a previous study 
on European population of D. subobscura (Gilchrist, Huey, & Serra, 
2001). According to the temperature–size rule, ectotherms usu-
ally get smaller with an increase in the developmental temperature 
(Atkinson, 1994; Walters & Hassall, 2006). Therefore, as expected 
flies from MO and northern Europe had the lowest and the high-
est DBW respectively, although this was not the case for the SW 
population at the 6L:18D photoperiod. Results obtained on other 
diptera species (Musca domestica) have shown similar results, where 
body size to some degree is independent of latitude (Bryant, 1977; 
Kjærsgaard, Blanckenhorn, Pertoldi, Loeschcke, & Bahrndorff, 
2015). Among the light regimes, the highest DBW of populations 
was observed at the 12L:12D photoperiod except for the DE pop-
ulation. This finding is in agreement with the study on the north-
ern damselfly (Coenagrion johanssoni) in which the central European 
populations showed the highest growth rate during spring (Sniegula 
et al., 2012).

5  | CONCLUSION

Our results revealed a significant effect of population and photo-
period on a range of fitness‐related traits in D. subobscura. However, 
photoperiod‐related responses varied between traits which may be 
explained by different sensitivity and plastic abilities. The observa-
tion of better performance of the D. subobscura at short and me-
dium photoperiods is in accordance with the high abundancy of this 
species in early spring in nature and its high cold tolerance (Budnik 
& Brncic, 1983; Sørensen, Kristensen, Loeschcke, & Schou, 2015). 
The presence of strong local adaptation to day length (photoper-
iod by population interaction) highlights the importance of photo-
period as a selective agent in the study of population differences 
observed in fitness traits. However, further experiments are needed 
to fully understand the evolutionary significance of photoperiod 

in mediating seasonal events across populations. For example, day 
lengths mimicking natural conditions for each population should be 
incorporated into future studies to fully assess the geographic cline 
in photoperiodism.

In conclusion, the results of the present study emphasize the role 
of photoperiod in evaluating the consequences of fast environmen-
tal changes and suggest that cues induced by photoperiod may pro-
vide some buffer enabling populations to cope with a more variable 
and unpredictable future climate.
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