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A B S T R A C T

This study hypothesizes that the brain shows hyper connectedness as amyotrophic lateral sclerosis (ALS) pro-
gresses. 54 patients (classified as “early stage” or “advanced stage”) and 25 controls underwent magnetoence-
phalography and MRI recordings. The activity of the brain areas was reconstructed, and the synchronization
between them was estimated in the classical frequency bands using the phase lag index. Brain topological
metrics such as the leaf fraction (number of nodes with degree of 1), the degree divergence (a measure of the
scale-freeness) and the degree correlation (a measure of disassortativity) were estimated. Betweenness centrality
was used to estimate the centrality of the brain areas.

In all frequency bands, it was evident that, the more advanced the disease, the more connected, scale-free and
disassortative the brain networks. No differences were evident in specific brain areas. Such modified brain
topology is sub-optimal as compared to controls. Within this framework, our study shows that brain networks
become more connected according to disease staging in ALS patients.

1. Introduction

Recently, autoptic, neuropsychological, genetic and neuroimaging
evidence has suggested that amyotrophic lateral sclerosis (ALS) in-
volves regions beyond the primary motor cortex (Turner and Swash,
2015).

According to this evidence, fMRI has identified wide areas of both
increased and decreased connectivity across the whole brain (Agosta
et al., 2011, 2013; Chiò et al., 2014). Several hypotheses have been
taken into account to explain such evidence, including the interpreta-
tion of hyper-connectivity as a compensation mechanism or as a by-
product of the loss of inhibitory circuitry (Turner and Kiernan, 2012).
Furthermore, it was proposed that damage to peripheral areas of the
brain might lead more central areas to process information that can no

longer be handled locally, resulting in the overload of such areas (Stam,
2014). In primary lateral sclerosis, it was reported that patients with the
greatest clinical disability also displayed the highest functional con-
nectivity (Agosta et al., 2014). Interestingly, such increased functional
connectivity was widespread, since it was present in the sensorimotor,
premotor, prefrontal and talamic regions (Agosta et al., 2014). Fur-
thermore, it was shown in ALS, with combined structural and functional
MRI, that regions with lower structural connectivity displayed in-
creased functional connectivity (Douaud et al., 2011). Moreover, pa-
tients with a slow rate of progression displayed lower connectivity, thus
being more similar to the controls (Douaud et al., 2011). Recently, in a
small, MRI based study, cortical excitability (evaluated by the
threshold-tracking transcranial magnetic stimulation paradigm) nega-
tively correlated with functional connectivity (Geevasinga et al., 2017).
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Furthermore, Verstraete et al., by exploring abnormalities of MRI
structural and functional connectivity in a cohort of ALS patients
compared to healthy controls, noted that the connectedness of the
network related directly with the progression rate (Verstraete et al.,
2010). In a large, fMRI based study, Schulthess et al. revealed increased
functional connectivity, with a topography linked to the spreading of
the pTDP-43 pathology (Schulthess et al., 2016). The reported evidence
might be compatible with the idea that hyper connectedness might
relate to neuronal damage in ALS (Trojsi et al., 2017).

Beside fMRI, relevant information on the functioning of brain net-
works can be obtained using neurophysiological techniques, such as
electroencephalography (EEG) and magnetoencephalography (MEG),
since they directly capture the electrical/magnetic activity of the neu-
ronal ensembles (Lopes Da Silva, 2013). In ALS, increased EEG co-
herence in the theta and gamma band was shown to correlate with
structural MRI changes (Nasseroleslami et al., 2017) and EEG based
network topological metrics related to disease burden (Fraschini et al.,
2016b).

MEG systems measure magnetic fields produced by neuronal ac-
tivity. Such fields are minimally distorted by the layers surrounding the
brain, allowing for a temporally and spatially accurate reconstruction of
the neural signals within the brain (source space) (Baillet, 2017).

Recently, a source level MEG study based on power confirmed that
hyperactivation might be a relevant feature in ALS during eyes opened
resting state (Proudfoot et al., 2018). Such evidence would confirm
further that the hyperactivation would relate to neuronal damage.

However, MEG can be further exploited extracting the phases of the
signals in order to evaluate the amount of information exchanged be-
tween brain areas. More precisely, the estimation of the phases allows
the quantification of true synchrony, defined as a constant phase dif-
ference between time-series in isofrequency (Tass et al., 1998). We
chose the phase lag index (PLI) (Stam et al., 2007) to estimate func-
tional connectivity between brain areas, since the PLI quantifies syn-
chronization between time series while being entirely unaffected by the
amplitude of the signal. The PLI was also chosen since it is insensitive to
volume conduction (at the cost of discarding true zero-lag interactions).
Interestingly, the fact that the PLI estimates synchronization rather than
simultaneous activations of brain areas, makes the information pro-
vided in this paper complementary to the fMRI based evidence and
power-based MEG analyses.

Some of the properties of the interactions among brain areas can be
captured using Graph Theory (Bullmore and Sporns, 2009). In fact, the
human brain can be modelled as a network, with the brain areas as
nodes and their interactions as edges. However, comparing such metrics
is non-trivial, as they are influenced by network size, thresholding or
edge density, not allowing for a purely topological interpretation of the
results (van Wijk et al., 2010). The minimum spanning tree (MST) al-
gorithm allows the computation of statistically comparable metrics,
while retaining most of the information about the original network
(Tewarie et al., 2015). The combination of the PLI and the MST, while it
is on the one hand costly in the sense that it might discard some in-
formation, on the other hand reduces to a minimum the detection of
either artefactual or uninterpretable differences between groups.

On the basis of the available evidence, we hypothesized that the
topological alterations associated to different stages of ALS may involve
vast areas of the brain and not be confined to motor areas. Secondly,
given the evidence showing that hyper-connectedness is related to
atrophy and disease progression, we hypothesize that, as the patients
reach more advanced stages, the brain network will show a more
connected topology accordingly. A more integrated topology implies
that it is quicker and/or less costly, on average, to move among the
nodes of the network. Lastly, we hypothesize that the alterations will be
spread across frequency bands. To test our hypothesis, a large cohort of
ALS patients and healthy controls underwent clinical evaluation, MRI
and MEG scan. The population was classified into “early” and “ad-
vanced” stage on the base of the King's disease staging system (Balendra

et al., 2015). In particular, considering the current unavailability of
validated markers of disease progression, we chose to base our analyses
on such clinical staging system since it seems to reproduce the curvi-
linear course of disease progression typical of ALS (Gordon et al., 2010)
especially in the later stages of the disease (Balendra et al., 2015).
Based on the PLI and the MST, we computed topological metrics, fo-
cusing on features such as scale-freeness, assortativity and connected-
ness of the brain networks, as well as on the betweenness centrality of
each area, in order to test if such parameters would differ among
controls and ALS patients at different disease stages.

2. Material and methods

2.1. Participants

Fifty-four right-handed and native Italian speakers patients (39
males, 15 females; mean age ± SD, 58.84 ± 12.14) with probable or
definite ALS, according to the revised El-Escorial criteria of ALS (Brooks
et al., 2000), were consecutively recruited at the ALS Center of the First
Division of Neurology of the University of Campania “Luigi Vanvitelli”
(Naples, Italy). The patients were classified according to the King's
disease staging system (Balendra et al., 2015) that is based on the ap-
pearance of sequential clinical milestones during the ALS course and
does not include cognitive information (i.e., stage 1= impairment of
one body site; stage 2= impairment of two body sites; stage 3= im-
pairment of three body sites; stage 4= non-invasive ventilation or
percutaneous endoscopic gastrostomy). In order to improve the group
sizes, we classified as “early stage” the patients belonging to King's
stage 1 and 2 (9 and 17 patients, respectively) and as “advanced stage”
the patients in King's stages 3 and 4 (12 patients in each group). None of
the patients showed any mutation in any of the following genes: SOD1,
TARDBP, FUS/TLS and C9ORF72. More clinical details of participants
included in the final analysis (4 patients were dropped out of the
analysis as they did not have enough high quality MEG data) are given
in Table 1. Twenty-five controls (16 males and 9 females; mean
age ± SD, 57.00 ± 9.35), enrolled by “word of mouth”, were age-,
−gender and education-matched with the ALS patients. To be included
in this study, all participants had to satisfy the following criteria: a) to
have no major medical illnesses and not to abuse substances or use

Table 1
Detailed characteristic of patients and controls used for the analysis.

Parameters ALS “advanced”
patients mean (SD)
(n=24)

ALS “early” patients
mean (SD) (n=26)

Controls mean
(SD) (n=25)

Demographic and clinical measures
Age 59.96 (13.89) 57.50 (10.76) 57 (9.35)
Male/Female 19/5 18/8 16/9
Education 10.46 (4.51) 10.19 (4.09) 11 (4)
Disease duration

(months)
61.83 (60.23) 28.77 (20.69)

ALSFRS-R score 30.70 (8.79) 41.15 (4.80)
UMN score 8.22 (5.13) 6.46 (4.58)
Site of onset 6 bulbar 5 bulbar

6 UL 11 UL
9 LL 9 LL
2 UL and LL 1 UL and LL
1 respiratory 0 respiratory

Phenotype 9 classic 9 classic
6 predominant LMN 12 predominant

LMN
9 predominant UMN 5 predominant UMN

Neuropsychological parameters
ECAS test (total

score)
83.13 (28.08) 91.50 (21.09)

ALSFRS-R=Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised;
ECAS=Edinburgh Cognitive and Behavioural ALS Screen; LL= Lower Limb;
LMN=Lower Motor Neuron; UL=Upper Limb; UMN=Upper Motor Neuron.
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medication that could interfere with MEG/EEG signals; b) to show no
other major systemic, psychiatric, or neurological illnesses; and c) to
have no causes of focal or diffuse brain damage, including lacunae, and
extensive cerebrovascular disorders at routine MRI. Four patients did
not have a MEG recording of sufficient quality and were discarded from
the study. The study protocol was approved by the local Ethics Com-
mittee. All participants gave written informed consent.

2.2. MRI acquisition

For 41 patients and 22 controls, MR images were acquired on a 3-T
scanner equipped with an 8-channel parallel head coil (General Electric
Healthcare, Milwaukee, WI, USA) either after the MEG recording or a
minimum of 21 days earlier (within one month). In particular, three-
dimensional T1-weighted images (gradient-echo sequence Inversion
Recovery prepared Fast Spoiled Gradient Recalled-echo, time repeti-
tion=6988ms, TI= 1100ms, TE=3.9ms, flip angle= 10, voxel
size= 1×1×1.2mm3) were acquired. The remaining participants
did not complete the MRI because of the difficulty to lie down or re-
fused to perform the MRI scan. In this case, we used a standard template
MRI.

2.3. MEG acquisition

Subjects underwent a magnetoencephalographic examination in a
163-magnetometers MEG system (Rombetto et al., 2014) placed in a
magnetically shielded room (AtB Biomag UG - Ulm - Germany). The
position of four position coils and of four reference points (nasion, right
and left pre-auricolar and apex) were digitized before acquisition. The
brain activity was recorded for 10min, alternating between eyes closed
and eyes opened condition every 2.5min, so as to minimize the chances
of drowsiness. The instruction to close/open eyes was given using a
standardized sentence communicated through intercom. The head po-
sition was recorded at the start of each segment of the recording. The
order between eyes closed and eyes opened segments was randomized
for both patients and controls. After the anti-aliasing filter, the data
were sampled at 1024 Hz. Subsequently, a 4th order Butterworth IIR
band-pass filter has been applied in order to remove components below
0.5 and beyond 48 Hz. The filter is implemented within the Fieldtrip
toolbox (Oostenveld et al., 2011). During the acquisitions, electro-
cardiogram (ECG) and electrooculogram (EOG) were also recorded
(Gross et al., 2013).

2.4. Preprocessing

Eyes-closed trials were selected for further analysis. Principal
component analysis (PCA) was performed to reduce the environmental
noise (Sadasivan, 1996). Specifically, the filter orthogonalizes the re-
ference signals to obtain a basis and projecting the brain sensors on the
basis of the noise, removing the projections to clean the data (de
Cheveigné and Simon, 2007). We adopted the PCA filtering im-
plementation available within the Fieldtrip Toolbox (Oostenveld et al.,
2011). Subsequently, noisy channels were removed manually through
visual inspection of the whole dataset by an experienced rater (Gross
et al., 2013). On average, 130 ± 2 channels have been used. For each
subject, supervised independent component analysis (ICA) (Barbati
et al., 2004) was performed to eliminate the ECG (generally one, rarely
two components) and the EOG (none, rarely one components) compo-
nent from the MEG signals. It is important to notice that ICA modifies to
some extent the phases of the signal (Bridwell et al., 2018; Montefusco-
Siegmund et al., 2013; Shou and Ding, 2014). In order to test if this
would affect our results, one population (i.e. controls) was also cleaned
by visual inspection without ICA. The results have been then compared
to those obtained after ICA had been applied, and no difference was
evident either at visual inspection or after statistical analysis (see
Supplementary material 1 for details).Ten epochs of 8 s for each subject

that did not contain artefacts (either system related or physiological) or
strong environmental noise were selected. As stated earlier, 4 patients
did not meet the criteria, and 50 patients went on for further analysis.
The length of 8 s is a trade-off between the need to have enough cleaned
epochs, to avoid drowsiness (Gross et al., 2013) and to obtain a reliable
estimate of the connectivity measure (Fraschini et al., 2016a). How-
ever, in order to make our results more robust, also 6 s long and 10 s
long epochs have been analyzed and no difference was observed (data
not shown).

2.5. Source reconstruction

All the processing related to the beamforming procedure has been
done using the Fieldtrip toolbox (Oostenveld et al., 2011). Initially, the
subject's fiducial points were used to coregister the MEG acquisition to
the native MRI of the subjects by computing the transformation matrix.
In case the native MRI was not available, a template was adopted.
Subsequently, the volume conduction model proposed by Nolte (Nolte,
2003) was considered and the Linearly Constrained Minimum Variance
(LCMV) beamformer (Van Veen et al., 1997) was implemented to re-
construct time series related to the centroids of 116 regions-of-interest
(ROIs), derived from the Automated Anatomical Labeling (AAL) atlas
(Gong et al., 2009; Hillebrand et al., 2016; Tzourio-Mazoyer et al.,
2002). We considered only the first 90 ROIs, excluding those corre-
sponding to the cerebellum given the low reliability of the re-
constructed signal in those areas. For each source, we projected the
time series along the dipole direction that explains most variance by
means of singular value decomposition (SVD). Source space time series
were re-sampled at 512 Hz. For each subject we selected by visual in-
spection at least ten epochs of 8 s free from artefacts (both system re-
lated or physiological) or excessive environmental noise. An overview
of the whole pipeline is provided in Fig. 1.

2.6. Connectivity analysis

The phase lag index (PLI) was chosen to measure synchrony be-
tween brain areas (Stam et al., 2007). The PLI was computed using
BrainWave software [CJS, version 09.152.1.23, available from http://
home.kpn.nl/stam7883/brainwave.html]. The instantaneous phases
were computed using a Hilbert transform of the time series, and the PLI
was used to estimate the asymmetry of the distribution of the phase
differences (Δφt) between the two time series as:

= < >PLI sign[sin( t)]

where ‘< .> ’ indicates the mean value, ‘sign’ stands for the signum
function, ‘|.|’ denotes the absolute value and ‘t’ are the discrete time-
steps. A PLI of 0 indicates completely symmetric distribution of the
phase differences, or phase differences of zero (mod π), and 1 indicates
perfectly asymmetric distribution of the phase differences (Stam et al.,
2007). This metric has been shown to be insensitive to volume con-
duction (Stam et al., 2007), since zero lag interactions do not contribute
to the estimate of the PLI. However, this implies that true zero lag in-
teraction will also be neglected. By computing PLI for each couple of
brain regions, we obtained a 90×90 weighted adjacency matrix for
each epoch and for each subject, in all of the frequency bands: delta
(0.5–4 Hz), theta (4.0–8.0 Hz), alpha (8.0–13.0 Hz), beta
(13.0–30.0 Hz) and gamma (30.0–48.0 Hz).

2.7. Network analysis

The network analyses were performed using BrainWave software as
before. The weighted adjacency matrix was used to reconstruct a net-
work or complete weighted graph, where the 90 areas of the AAL atlas
are represented as nodes, and the PLI values form the weighted edges. A
frequency specific minimum spanning tree was calculated for each
epoch. Since we were interested in the strongest connections, for the
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construction of the MST the edge weight was defined as 1/PLI. In fact,
Kruskal's algorithm first ranks the links in ascending order and then
constructs the network by adding one link at a time, discarding links
that would form a loop. The algorithm proceeds until all nodes are
connected resulting in a loop-less graph with N nodes and M=N-1
links.

We used the minimum spanning tree (MST) to avoid some of the
biases in traditional network analyses (Stam, 2014; Stam et al., 2014;
Tewarie et al., 2015; van Wijk et al., 2010), to allow for an unbiased
topological interpretation of the results (Stam et al., 2014). Based on
the MST, we calculated the leaf fraction, the degree divergence and the
degree correlation and the tree hierarchy. The leaf fraction is defined as
the fraction of nodes with degree of 1 (Boersma et al., 2013), providing
an indication of the integration of the network. A higher leaf fraction
implies that the network tends toward a star-like topology, where the
nodes are on average closer to each other as compared to a more line-
like topology (see Fig. 3). The degree divergence is a measure of the
broadness of the degree distribution, related to the resilience against
attacks (Tewarie et al., 2015). The degree correlation measures to what
extent the degree of a node is influenced by the degree of its neighbors.
Degree correlation is computed using the Pearson correlation coeffi-
cient of the degrees of pairs of connected nodes. If the correlation is
positive the graph is called assortative, and if the correlation is negative
the graph is called disassortative (Boersma et al., 2013; Newman,

2002). Finally, the tree hierarchy (Th) is defined as the number of leaf
over the maximum betweenness centrality. The idea behind the Th is
that an optimal network should achieve efficient communication while
avoiding hub overload. The tree hierarchy has been designed to
quantify the balance between both features. Furthermore, we calcu-
lated the betweenness centrality (BC) for each region (Freeman, 1977),
in order to determine if specific regions differed according to the dis-
ability of patients. The BC is defined as the number of shortest paths
passing through a given node over the total of the shortest paths of the
network (Freeman, 1977). Before moving to the statistical analysis, all
the metrics were averaged across epochs in order to obtain one value
per subject. An overview of the analysis pipeline is provided in Fig. 1.

2.8. Statistical analysis

Clinical parameters were compared among the three groups, using
ANOVA to test differences in age and educational level and the Chi-
square test for gender differences.

For each frequency band, the observations were assumed to be in-
dependent. Levene's test was used to test for homogeneity of variances.

The groups were compared for each variable of interest using
asymptotic Kruskal-Wallis test in Matlab R2017b (MathWorks®), in
order to test the effect of disease stage on brain connectivity in controls,
“early stage” and “advanced stage” patients. After the computation of

Fig. 1. Data analysis pipeline.A.Neuronal activity in the sensor space as recorded by magnetoencephalography (MEG). Alpha activity has been represented in the
image as an example. B. Magnetic resonance (MR) of the subject. C. The MR and the MEG sensors are coregistered (i.e. they are in the same space). D. A model of the
brain volume is created. E. The Activity on the sensor level is back projected onto brain regions (based on the AAL atlas). F. The phase lag index (PLI) is estimated in a
pairwise fashion between each pair of 90 (AAL-based) brain regions. G. Based on the Kruskal's algorithm, the minimum spanning tree is reconstructed. H. The
minimum spanning tree is represented graphically, where raws and columns of the matrix in G are represented as red dots, and the entries of the matrix in G are
represented as lines. Once a frequency specific MST has been obtained, it will be used to compute topological metrics.
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the H-statistic, the p values were corrected using the false discovery rate
(FDR) (Benjamini and Hochberg, 1995), so as to account for multiple
comparison. The FDR was run across the 90 areas for the BC analysis,
and across the four metrics (leaf fraction, degree divergence, degree
correlation and tree hierarchy) for the global analysis. For the sig-
nificant p values (after FDR correction), post-hoc analysis was carried
out, using Scheffe correction for multiple comparisons among groups.
In all statistical analysis, a level of significance of 0.05 was used.

Furthermore, the disease progression rate (DPR), defined as 48
minus the ALSFRS-R score, divided by the disease duration in months,
was used as an index of disease burden. Both the ALSFRS-R and the DPR
were related to topological metrics by linear regression. The correla-
tions were corrected across metrics using the FDR.

3. Results

Table 1 shows the descriptive information of the population. Subject
and controls were not different with regard to age (F < 1), education
(F < 1) and gender (χ(2)= 1398, p=0.497). The variables never
violated the assumption of equality of variances.

With respect to the tree hierarchy, differences among groups ap-
peared in the delta band [H(2)= 7.66, p=0.0217, pFDR=0.0289], in
the theta band [H(2)= 10.63, p=0.0049, pFDR=0.0065], in the beta
band [H(2)= 9.44, p=0.0089, pFDR=0.0173] and in the gamma
band [H(2)= 10.03, p=0.0066, pFDR=0.0266].

In the theta band, post-hoc analysis shows that AS group differed as
compared to both ES and HC (p=0.0082 and p=0.0476, respec-
tively). The same differences were also present in the beta band
((p=0.0255 and p=0.0308, respectively). In the delta band, the
controls showed a lower tree hierarchy as compared to AS
(p=0.0262). In the gamma band, a difference has been found between
AS and HC as well (p=0.0112). Results are reported in Fig. 2A.

The leaf fraction was shown to differ between healthy controls (HC),
patients in early stage (ES), and patients in advanced stage (AS) in the
delta band [H (2)= 15,88, p < 0.001, pFDR=0.0014], in the theta
band [H (2)= 11,77, p=0.0028, pFDR=0.0065], in the beta band [H
(2)= 10.02, p=0.0067, pFDR=0.0173] and in the gamma band [H
(2)= 7.74, p=0.0208, pFDR=0.0277]. In the alpha band, the test
resulted significant but did not hold to the FDR correction, and it was
not tested any further [H(2)= 6.25, p=0.0438, pFDR=0.2847].

The post–hoc analysis revealed the same pattern in all four fre-
quency bands, whereby the AS group has higher leaf fraction as com-
pared to ES group and HC in the delta band (p=0.0235 and
p=0.0005, respectively), in the theta band (p=0.0271 and p=0.0057,
respectively), in the beta band (p=0.0149 and p=0.0357, respec-
tively). In the gamma band, only HC and AS were different (p=0.0287).
Results are reported in Fig. 2B.

With regard to the degree divergence, differences among groups
were evident in the delta band [H (2)= 12,78, p=0.0017,
pFDR=0.0034], in the theta band [H (2)=11.35, p=0.0034,
pFDR=0.0065], in the alpha band [H(2)=9.72, p=0.0078,
pFDR=0.0310], in the beta band [H(2) =8.6856, p=0.0130,
pFDR=0.0173] and in the gamma band [H(2)=6.09, p=0.0476,
pFDR=0.0476].

The post-hoc analysis revealed that the AS group showed higher
degree divergence as compared to both ES and HC groups in the delta
band (p= .0367, p= .0026, respectively), theta band (p= .0183,
p= .0102, respectively) and beta band (p= .0290 and p= .0490); in
the alpha band, AS was only different as compared to HC (p= .0094).
In the gamma band, no group was different at the post-hoc analysis,
with HC and AS being close to significance (p= .0513). Results are
reported in Fig. 2C.

The degree correlation showed differences in the gamma band [H
(2)= 8.25, p=0.0162, pFDR=0.0277]. Post-hoc analysis revealed
that AS differed as compared to HC (p=0.0199). Results are reported
in Fig. 2D.

The BC, computed for the 90 regions of interest, did not show any
statistically significant difference in any frequency band after correc-
tion for multiple comparisons (data not shown).

The correlation between both the ALSFRS-R and the DPR and the
topological metrics did not yield any significant results.

The cumulative distributions of the topological parameters that
were different among groups are available in Supplementary material 2.

4. Discussion

In this paper, we set out to test the hypothesis that the rearrange-
ment of the brain networks in ALS spreads beyond the precentral re-
gions and across multiple frequency bands. Furthermore, we hypothe-
sized that modifications, in terms of increased connectedness of
functional brain networks, are related to disease progression.

Applying the PLI and the MST to a well-characterized population of
ALS patients compared to HC,

the tree hierarchy did not differ between healthy controls and ES
patients. However, both groups differed from AS (see. Fig. 2) in mul-
tiple frequency bands. As explained earlier, the tree hierarchy suggest
that advanced patients have a suboptimal trade-off between having a
well-integrated network while preventing hub overload (see Fig. 3).

Furthermore, the leaf fraction showed a trend, whereby it is the
lowest in HC, and then it increases in ES patients and even more so in
AS patients. This finding implies a shift toward a more centralized or-
ganization of the brain network for patients in the advanced stage as
compared to those in the early stage and to controls (Boersma et al.,
2013). Similarly, the degree divergence (width of the degree distribu-
tion) is lower in controls, and grows in early stages of disease and even
higher in patients in more advanced stages. Higher values of degree
divergence imply the presence of high-degree nodes (Boersma et al.,
2013), which is in line with a more centralized network. Such nodes
allow a more rapid synchronization while making the network more
vulnerable to targeted attacks (Otte et al., 2015; Tewarie et al., 2015).
This happens since, if a high-degree node fails, a high number of nodes
of the network become disconnected from each other (Otte et al.,
2015).

The provided evidence altogether might be interpreted considering
that the less effective trade-off between efficient communication and
hub overload (demonstrated by the changes in the tree hierarchy)
might be due to a more centralized network that is more prone to node
overload (demonstrated by changes in the leaf fraction and degree di-
vergence). Please refer to Fig. 3 for an explanation of the topological
metrics.

Furthermore, it has been shown that networks with higher values of
degree correlation are more scale–free (Stam and van Straaten, 2012).
Recently, it has been proposed that, when a node in the brain network
fails, the flow of information that would normally be directed to that
node is rerouted to higher nodes. This pattern can be repeated multiple
times, propagating across the network and eventually leading to nodes
with higher degree to become overloaded (Stam, 2014). Through this
process, the network might become more centralized and hyper-con-
nected, maintaining functional output at the cost of becoming more
vulnerable to pathological stressors. In accordance with this hypothesis,
our results show that the brain functional networks become more
star–like (i.e. more connected) and more scale-free as the disease pro-
gresses. Furthermore, the analysis of the degree correlation showed that
in the gamma band, HC display a less disassortative network, while
patients in advanced stage show the highest disassortativity. This im-
plies that when the disease is in an advanced stage, the quantity of
connections between nodes with high degree and nodes with low de-
gree is also higher (Newman, 2002). As stated above, this evidence
might also be framed within the idea that, as the disease progresses,
more and more peripheral nodes need to connect to higher degree
nodes, in order to compensate for areas that are no longer able to
process information.
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Interestingly, the difference in disassortativity was evident in the gamma
band. Given that some evidence showed that fast rhythms are spatially re-
stricted (Destexhe et al., 1999; Engel et al., 2013; Steriade et al., 1996), one
might speculate that such frequencies would be affected the most by the
rewiring process, whereby newer connection across larger (on average)
distances would be created in order to connect peripheral areas to more
central regions. However, such consideration is only speculative.

Globally, the fact that structurally damaged areas show hyper-
activation might be compatible with disease progression relating to more
connected networks. One hypothesis might be that hyper connectedness
is due to the loss of inhibitory connections (Turner and Kiernan, 2012).
We did not find any difference in the centrality of any region (as mea-
sured using BC) after correction for multiple comparisons. One fasci-
nating explanation might be that the progression of the pathological
process would affect the brain functional networks as a whole more than
it does single regions, and hence the global metrics would be more ef-
fective in capturing such modifications (Sorrentino et al., 2017). How-
ever, given the dependencies among the activity of the brain areas, it
could also be possible that the application of the correction for multiple
comparisons (FDR) would introduce some false negatives.

Our results were found globally in multiple frequency bands, namely
delta, theta, alpha, beta and gamma. This result is in accordance with the
previous literature taken altogether. In a MEG study, widespread slow-
wave dipole sources could distinguish seven ALS patients from controls.
Furthermore, intensified cortical beta desynchronization, followed by
delayed rebound, was observed during motor preparation in both contra-
and ipsilateral motor cortices of 11 “classic” ALS patients, 9 primary

lateral sclerosis patients and 12 asymptomatic carriers of ALS-associated
gene mutations compared with healthy control groups (Proudfoot et al.,
2017), which is in favour of the hypothesis of cortical hyperexcitability
as a key mechanism in the pathogenesis of ALS. Failure of the inhibitory
cortical interneuronal function might be underlying such a mechanism
(Turner and Kiernan, 2012). Interestingly, Iyer et al. analyzed the EEG of
18 ALS patients and found that connectivity was increased in all fre-
quency bands, and that the clustering coefficient was increased among
patients in the alpha and gamma bands (Iyer et al., 2015).

When interpreting our results, one should consider that the choice of
using the AAL atlas does affect the results. Classically, the AAL has been
considered to have a resolution comparable to that of MEG. Furthermore,
it has been reported that the MST itself is affected by the chosen atlas,
and applying the MST using the AAL atlas 88% of the individual con-
nections overlapped to the group averaged MST (van Dellen et al., 2018).
Possible limitations of our work could be related to patient classification
and to the use of a template to reconstruct the sources for subjects
lacking MRI scans. With regard to the subsets of patients taken into ac-
count, although the classification used may have a low resolution, we
still miss better validated biomarkers of disease progression (Turner,
2016). Of note, with regard to the potential usefulness of correlating
topological metrics with the currently available clinical scores, we have
checked if scores of disability and disease progression, as estimated by,
respectively, ALSFRS-R and DPR, were related to MEG topological me-
trics, revealing no correlation by linear regression analysis after FDR
corrections. Regarding to the latter limitation, the quality of the source
reconstruction was inferior for subjects' lacking native MRI scans.

Fig. 2. Comparison of network parameters by disease stage.A. Scatter plot of the leaf fraction among healthy controls, early stage patients and advanced stage
patients in delta, theta, beta and gamma band. B. Scatter plot of the degree divergence among healthy controls, early stage patients and advanced patients in delta,
theta, alpha and beta band. C. Scatter plot of the degree correlation among healthy controls, early stage patients and advanced patients in gamma band. D. Scatter
plot of the tree hierarchy among healthy controls, early stage patients and advanced patients in delta, theta, beta and gamma band.
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However, it was recently shown that for the metrics we chose, no sta-
tistically significant difference was evident in the same subject re-
constructed with either native or template MRI (Douw et al., 2017).

5. Conclusions

In conclusion, our study is the first magnetoencephalography study
on a large cohort of ALS patients. We estimated the connectivity by
measuring synchronization between brain areas (instead of coactiva-
tion) and used a graph theoretical approach to study disease staging in
ALS. The value of our study is to have shown that the stage of the
disease in ALS is related to a widespread topological reorganization of
the brain toward a more integrated and more vulnerable network.
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