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Abstract: Outbreaks of highly pathogenic avian influenza virus (HPAIV) often result in the infection
of millions of poultry, causing up to 100% mortality. HPAIV has been shown to emerge from low
pathogenicity avian influenza virus (LPAIV) in field outbreaks. Direct evidence for the emergence
of H7N7 HPAIV from a LPAIV precursor with a rare di-basic cleavage site (DBCS) was identified
in the UK in 2008. The DBCS contained an additional basic amino acid compared to commonly
circulating LPAIVs that harbor a single-basic amino acid at the cleavage site (SBCS). Using reverse
genetics, outbreak HPAIVs were rescued with a DBCS (H7N7DB), as seen in the LPAIV precursor or
an SBCS representative of common H7 LPAIVs (H7N7SB). Passage of H7N7DB in chicken embryo
tissues showed spontaneous evolution to a HPAIV. In contrast, deep sequencing of extracts from
embryo tissues in which H7N7SB was serially passaged showed retention of the LPAIV genotype.
Thus, in chicken embryos, an H7N7 virus containing a DBCS appears naturally unstable, enabling
rapid evolution to HPAIV. Evaluation in embryo tissue presents a useful approach to study AIV
evolution and allows a laboratory-based dissection of molecular mechanisms behind the emergence
of HPAIV.

Keywords: highly pathogenic avian influenza (HPAI); low pathogenicity avian influenza (LPAI);
H7N7; reverse genetics; embryo culture; deep sequencing; immunohistochemistry

1. Introduction

Avian influenza viruses (AIVs) are segmented negative sense RNA viruses belonging to the family
Orthomyxoviridae [1]. They are divided into subtypes determined by the external viral glycoproteins,
namely haemagglutinin (HA:H1-H16) and neuraminidase (NA: N1-N9), and normally occur as low
pathogenicity (LP)AIVs, causing few (if any) clinical signs in wild birds and poultry [2,3]. The H5 and
H7 subtypes may mutate to the highly pathogenic (HP)AIV variant typified by severe morbidity and
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mortality in domesticated galliforme species. The major genetic determinant of H5 and H7 pathogenicity
occurs at the cleavage site (CS) in the HA protein [4,5]. Mutation to HPAIV is characterised by insertion
of basic amino acids to produce a multi-basic cleavage site (MBCS) which is recognised by endogenous
furin-like proteases, which enable HA cleavage and viral replication. These ubiquitous enzymes occur
throughout multiple organ systems, resulting in systemic HPAIV infection. LPAIVs differ by possessing
a single-basic cleavage site (SBCS) which requires exogenous trypsin-like proteases for HA cleavage
and viral entry into cells for subsequent replication. These proteases are restricted to the respiratory
and gastrointestinal tracts, thereby limiting LPAIV tissue tropism with usually very mild pathogenesis
outcomes. The direct association of the MBCS with HA cleavability in vitro, and pathogenicity in vivo,
has been demonstrated [6–11]. Critically, pathogenicity appears to be a polygenic trait and residues
other than the MBCS contribute to an increase in virulence. Specifically, amino acids neighboring the
CS in the HA protein and mutations in other viral proteins have been identified [12,13].

HPAIV outbreaks appear to originate from previous H5/H7 LPAIV incursions from wild birds to
poultry, followed by mutation in galliformes (chickens or turkeys) to yield the corresponding HPAIV
variant. Earlier LPAIV precursors to HPAIV outbreaks have been documented: Ontario Canada
(H5N9) 1966 [14], Australia (H7N7) 1976 [15], Pennsylvania USA (H5N2) 1983 [16], Mexico (H5N2)
1994-1995 [17–19], Pakistan (H7N3) 1994-1995 [20], Italy (H7N1) 1999-2000 [21], Chile (H7N3) 2002 [22],
Netherlands (H7N7) 2003 [23], Canada (H7N3) 2004 [24] and 2007 [25], England (H7N7) 2008 [26]
and 2015 [27], Spain (H7N7) 2009 [28], Italy (H7N7) 2013 [29], Germany (H7N7) 2015 [30], Indiana
USA (H7N8) 2016 [31], Italy (H7N7) 2016 [32] and Tennessee USA (H7N9) 2017 [33]. H7N9 LPAIV
has circulated in China since March 2013 and continues to evolve [34], with eventual mutation to
a corresponding HPAIV reported by February 2017 [35,36]. Mutation mechanisms at the HA CS
have been proposed from past outbreaks [37], including the addition of basic amino acids due to
polymerase slippage or stuttering during transcription [17,18], changes in the secondary structure in
the CS region [38] and non-homologous recombination [21,22,24]. Understanding why some strains of
H5 and H7 LPAIV can mutate relatively readily to become HPAIV and others do not remains a key
unanswered question.

H7 outbreak investigations by reverse genetics (RG) and deep sequencing have addressed the
insertion or composition of residues at the CS, analysing both the initial LPAIV sequences followed by
HPAIV emergence and the distribution of subsequent HPAIV variants [11,39–42].

The prior existence of minority populations of more virulent viruses was demonstrated by
plaque-purification from H5N2 and H7N2 LPAIV preparations using trypsin-free medium [43,44],
with the latter containing an insertion of three basic residues at the CS and demonstrating a HPAIV
phenotype in chickens. Multiple in ovo passages elicited the emergence of HPAIVs from H5N2 LPAIV
precursors, which included CS sequence changes and increased virulence (with characteristic systemic
organ tropism) in chickens, thereby demonstrating the value of this approach [45]. Viral subpopulations
with differing pathogenic properties may be selected in the presence of adaptation pressure [46,47].
The generation of HPAIVs from H5N1 and H5N3 LPAIVs was achieved by passages through
chicken air sacs followed by cerebral passage [6,48]. While these reports describe increasing virus
pathogenicity through likely minority HPAIV selection during passaging experiments, none have
recreated spontaneous HPAIV emergence from LPAIV by a single passaging method alone in the
laboratory that represents the emergence of HPAIV in the field.

Differences in tissue tropism between LPAIVs and HPAIVs occur following in ovo inoculation
of chicken-embryonated fowls’ eggs (EFEs). LPAIV replication in EFEs differs depending on the
inoculation route, with allantoic cavity tropism facilitated by trypsin-like proteases, and viable LPAIV
progeny are released into the allantoic fluid. Chorioallantoic membrane (CAM) inoculation restricts
LPAIV replication to the site of introduction [49,50]. In contrast, HPAIV replication is not restricted and
disseminates throughout the allantoic epithelium, mesenchyme and chorionic epithelium following
allantoic or CAM inoculation. HPAIV infection can result in systemic spread within the embryo,
with endothelial tropism apparent in the blood vessels, which also occurs in free-living chickens [50–52].
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Investigation of H7N1 HPAIV in chicken, turkey, Muscovy duck and mallard embryos showed that all
species supported HPAIV replication with virus spread observed in endothelial cells of the CAM and
embryo tissues. H7N1 LPAIVs were restricted to the epithelial cells of the CAM in all embryo species
when inoculated allantoically, but surprisingly, LPAIV spread to the skin, oesophagus and respiratory
tract of mallard embryos [53].

H7N7 HPAIV caused an outbreak in 2008 in a layer farm in the UK [26], with three
distinct HPAIV CS motifs (PEIPKRKKR/GLF, PEIPKKKKR/GLF and PEIPKKKKKKR/GLF) identified.
Clinical, epidemiological and virological investigations provided evidence for an initial LPAIV
incursion and circulation on the premises followed by mutation to HPAIV. Molecular analyses of
samples collected from the environment revealed a viral subpopulation with a rare di-basic CS
(DBCS) motif (PEIPKKR/GLF). This DBCS motif was also found in an H7N7 LPAIV from a mallard
from Sweden in 2008, demonstrating its natural occurrence [54]. While a viable LPAIV was not
isolated from the UK outbreak, statutory intravenous pathogenicity index (IVPI) testing of the Swedish
isolate resulted in an IVPI of 0.00, confirming a LPAIV phenotype. Sequence comparisons of the
outbreak virus and the Swedish LPAIV revealed high similarity in the HA gene only, with other
segments being phylogenetically divergent [26]. Previously, this DBCS was identified in an LPAIV from
ducks (Australia, 1976) which subsequently mutated to HPAIV after transmission to chickens [15,55].
Therefore, as the LPAIV isolates contained a DBCS instead of the typical SBCS, but remained as a
LPAIV in vivo, it could be considered as an intermediate between LPAIV and HPAIV involved in the
transmission chain from wild aquatic birds to domestic poultry.

Discovery of the DBCS at the UK H7N7 (2008) HPAIV outbreak prompted the current investigation
of the emergence of HPAIV from an LPAIV precursor. AIV outbreaks in commercial poultry flocks
are clearly characterised by an extremely large number of individual infections and transmission
events, the scale of which would be impractical and prohibitive to reproduce in an in vivo experimental
setting, and may also exclude other field factors (e.g., environmental) which may be conducive to the
emergence of HPAIV. As noted above, previous studies have demonstrated the emergence of minority
viral populations, which include the detection of increased proportions of previously existing HPAIV
variants. Importantly, the current study differs in that it is not reliant on such HPAIV emergence from
any pre-existing viral sub-population. Instead, the novelty of the current study exploits RG technology
to provide clonally generated RG-viruses passaged in an in ovo embryo culture model to drive the
emergence of HPAIV. Should HPAIV emergence then occur, such an event may be judged to be a
more spontaneous LPAIV-to-HPAIV switch, as opposed to the amplification of a pre-existing minority
HPAIV population within the inoculum. Assessing the potential of an LPAIV to mutate into HPAIV
once introduced into galliforme poultry is required to understand why some LPAIV strains rapidly
mutate to become HPAIV, while others do not.

2. Materials and Methods

2.1. Ethics and Biosafety Statement

Animal experiments were approved by the APHA Animal Welfare and Ethical Review Body
(70/8332-9-002, 20/5/2015) in accord with UK and European legislation. Laboratory and animal
experiments were conducted in UK approved SAPO level 4, ACDP level 3 biocontainment facilities at
APHA-Weybridge, UK [56].

2.2. Cells

Primary chicken embryo fibroblasts (CEFs) and cell lines of Madin-Darby canine kidney (MDCK)
and human embryonic kidney (HEK 293T) origin were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% foetal calf serum and 1% penicillin-streptomycin (Invitrogen,
Renfrew, UK). Incubation of all cells was at 37 ◦C in a 5% CO2 atmosphere.
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2.3. Viruses

The eight H7N7 viruses used in this study are listed in Table 1. A 12-plasmid RG system
was used to rescue recombinant viruses [57], comprising eight rescue plasmids (pPol I) based on
A/chicken/England/11406/2008 H7N7 (England-08; GISAID accession # EPI712884-EPI712891 [26])
with four helper plasmids (pPol II) that express the viral polymerase genes and nucleoprotein from
A/Victoria/3/75 (H3N2) [58]. Plasmids were synthesised by GeneArtTM Gene Synthesis (ThermoFisher
Scientific, Paisley, UK). Modifications to the HA pPol I plasmid were performed using QuickChange
II XL Site-Directed Mutagenesis Kit (primers available on request) following the manufacturer’s
instructions (Agilent Technologies, Stockport, UK). All 12 plasmids were transfected into 293T cells in
12-well plates using FUGENE HD transfection reagent (Promega, Southampton, UK). After overnight
incubation, cells were removed and co-cultured with MDCK cells in 25 cm2 flasks. After 6–8 h
incubation the cells were washed and 5 mL fresh serum-free DMEM was added. Where appropriate,
TPCK trypsin was added at 0.5 µg/mL (Fisher Scientific, UK). Rescued “synthetic” viruses were
passaged once in 9-11–day-old EFEs to increase their titer and also to obtain an avian origin envelope
as per the wildtype (wt) viruses. Viruses were full-genome sequenced to confirm the introduced
genetic changes.

Table 1. CS motifs for each wt and recombinant-RG virus.

Virus Name Cleavage Site Nucleotide and Amino Acid Sequence CS Sequence Origin

Wildtype (wt)
virus

England-08 CCCGAAATCCCAAAG AGA AAG AAA AGA / GGCCTATTT
P E I P K R K K R / G L F

Wt H7N7 HPAIV
A/chicken/England/11406/2008

Sweden-08 CCTGAAATCCCAAAG AAA - - - - - - AGA / GGCCTATTT
P E I P K K - - R / G L F

Wt H7N7 LPAIV
A/mallard/Sweden/100993/2008

Recombinant-RG
virus

H7N7MB
H7N7MB +

CCCGAAATCCCAAAG AGA AAG AAA AGA / GGCCTATTT
P E I P K R K K R / G L F

CS derived from HPAIV
England-08

H7N7DB
H7N7DB +

CCCGAAATCCCAAAG AAA - - - - - - AGA / GGCCTATTT
P E I P K K - - R / G L F

Putative LP precursor virus to
the HPAIV outbreak

H7N7SB
H7N7SB +

CCCGAAATCCCAAAG GGA - - - - - - AGA / GGCCTATTT
P E I P K G - - R / G L F

Typical European and Asian
LP CS motif

+ The three different CS motifs were rescued on two H7N7 HA backgrounds. H7N7MB, H7N7DB and H7N7SB with
the HA gene sequence obtained from clinical material from the outbreak, and H7N7MB+, H7N7DB+ and H7N7SB+
with the HA gene sequence obtained from the EFE-amplified stock, which included three nucleotide changes. Two of
these nucleotide changes were non-synonymous; I77V and A125T (H7 numbering from mature protein), the latter
resulting in the acquisition of a potential N-linked glycosylation site at position 123 [26].

2.4. Titration According to Plaque-Forming Units (pfu)

Infectious viral titres were determined by plaque assays using 100% confluent MDCK cells.
Ten-fold dilution series of viruses were added to wells in duplicate and overlay DMEM media
containing 2.5% agar (Oxoid, Basingstoke, UK). Where appropriate, TPCK trypsin was included
at 2 µg/mL (Fisher Scientific, UK). After 72 h incubation, cells were stained with 1% crystal violet
(Sigma, Poole, UK) and visible plaques counted. Viruses were titrated in triplicate and titres were
expressed as pfu/mL.

2.5. Multi-Cycle Growth Kinetics

Titrated viruses infected confluent MDCK cells at a multiplicity of infection (MOI) of 0.0001.
Where appropriate, TPCK trypsin was added at 0.5 µg/mL. Supernatants were removed from each
well at 8, 24, 48, and 72 h post infection (hpi).
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2.6. Viral RNA Isolation

Viral RNA was extracted manually using the QIAquick Viral RNA extraction kit (QIAGEN,
Manchester, UK) [59]. RNA was extracted from formalin-fixed paraffin-embedded (FFPE) embryonic
tissues using RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE (Ambion, Paisley, UK) according
to the manufacturer’s instructions.

2.7. M-Gene Reverse Transcription RealTime (RRT)-PCR

M-gene RRT-PCR was carried out using primers and probe [60] as described [59]. Viral RNA
was quantified as relative equivalent units (REUs) against a 10-fold dilution series of EID50 quantified
RNA [61].

2.8. Intravenous Pathogenicity Index (IVPI) Determination

Standard IVPI tests were carried out [2], with each SPF chicken inoculated intravenously
with 0.1 mL allantoic fluid diluted to a specified titer or a haemagglutinating activity titer >24.
Welfare considerations and IVPI scoring were applied as described [56], with an IVPI of ≥1.2
considered as an HPAIV phenotype [2].

2.9. Embryonated Fowls’ Eggs (EFEs)

2.9.1. Virus Isolation and Propagation in EFEs

Nine- to eleven-day-old specific pathogen-free (SPF) EFEs were used for virus isolation, growth and
titration of median egg infectious dose (EID50/mL) by standard means [2,62].

2.9.2. Allantoic Fluid Passage Experiments of H7N7DB

H7N7DB RG virus was blind passaged ten times in 14-day-old (14do) EFEs. Thirty eggs
were inoculated via the allantoic cavity with 0.1 mL per egg containing 105 EID50 H7N7DB virus.
Following embryo death, or after 72 hpi, 1 mL allantoic fluid was harvested from each egg and pooled.
Subsequent passages were carried out in two groups each consisting of 15 14do EFEs inoculated with
either 0.1 mL neat allantoic fluid from the previous passage (neat group) or this material diluted 1:5000
in PBS (diluted group). At each passage, egg death was recorded and HA activity of the allantoic fluid
was determined [2].

2.9.3. Tissue Tropism in EFEs

Nine-day-old (9do) and 14do EFEs were each inoculated with 0.1 mL of either 101 EID50 or 104

EID50 virus. Embryos were harvested after 37 ◦C incubation at 24, 48, and 72 hpi. The allantoic fluid
and membranes (allantoic and amniotic) were harvested and the membranes fixed in 10% buffered
formalin. Each embryo was removed from the egg, humanely killed by disruption of membranes
and decapitation (cessation of circulation), embryo head and body tissues were fixed in the same pot
of 10% buffered formalin. The method was later refined to include only 14do embryos inoculated
with 0.1 mL 101 EID50 and harvested at 72 hpi. Embryos were bisected longitudinally; one half of the
head and body was fixed in 10% buffered formalin for IHC as described [61] and the other remained
unfixed for subsequent homogenization for further characterisation, which included EFE passage,
RNA extraction, DNA Sanger or deep sequencing.

2.10. Sanger Sequencing

DNA sequencing using the BigDye v3.1 kit (Applied Biosystems, Warrington, UK) used
gene-specific primers (available on request), with analysis on an ABI Prism 3130 Genetic Analyser
(Applied Biosystems, Warrington, UK). The Lasergene package version 12 (DNAStar, USA) was used
for nucleotide sequence analysis.
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2.11. Deep Sequencing

Deep sequencing was carried out on the MiSeq Illumina platform directly from extracted viral
RNA or PCR-amplified across the CS region (see supplementary materials). DNA library preparation
was performed using the Illumina Nextera® XT Library Prep Kit (Illumina, Cambridge, UK) according
to the manufacturer’s instructions. Indexed libraries were quantified and pooled in equimolar
concentrations (2 nM final concentration) and sequenced in multiplex with 2 × 150 base-paired end
reads on the MiSeq Illumina platform. Adaptors and primers were removed and reads with a Phred
quality score below 30 were excluded using Trimmomatic [63]. Reads shorter than 120bp were
also excluded. Raw sequence reads were mapped to the genome of A/chicken/England/11406/2008
H7N7 (accession numbers EPI712884-EPI712891) England-08 using a BWA-MEM algorithm [64].
The consensus sequence was extracted from the resultant bam file using a modified SAMtools
script [65] (vcf2consensus.pl available at: https://github.com/ellisrichardj/csu_scripts/blob/master/
vcf2consensus.pl). The frequency of background variants generated by experimental and technical
error were established (see supplementary materials, Tables S1 and S2) and the derived error level,
1.92%, was applied to sequenced samples.

2.12. Statistics

Statistical analysis for multi-cycle growth kinetics were performed using GraphPad Prism version
6.04. Individual Log values were transformed using the equation Y=Log(Y). The statistical significance
of virus growth was assessed by a two-way ANOVA with Bonferroni post-test correction for multiple
comparisons. The binomial test of proportions was used to calculate the sample size required to
estimate a prevalence of 0% with a 97.5% one-sided confidence interval of 0.05–0% of infected embryos
(n = 72).

3. Results

3.1. Rescue of Recombinant RG Viruses

An RG-copy of wt England-08 containing a MBCS was successfully rescued along with RG viruses
containing the DBCS from the LPAIV precursor to the HPAIV outbreak (H7N7DB) and a typical SBCS
of circulating viruses in Eurasia (H7N7SB). Previous isolation of wt England-08 in EFEs resulted in
sequence changes in the HA gene compared to the sequence obtained from the original clinical material.
Consequently, the three different CS motifs were rescued on both H7N7 HA backgrounds (Table 1).
Full genome sequencing of each of the rescued recombinant viruses revealed no other genetic changes
in all eight genome segments.

3.2. A MBCS Reflects a Trypsin-Independent Phenotype In Vitro

H7N7SB and H7N7DB required trypsin to produce plaques (Figure 1a) and grew to lower titres
in MDCK cells than H7N7MB in the absence of trypsin at 24 hpi (p < 0.001), 48 hpi and 72 hpi
(p < 0.0001) (Figure 1b). In contrast, monolayers infected with H7N7MB produced plaques without
trypsin (Figure 1a) with growth independent of trypsin (Figure 1b). H7N7MB achieved a slightly higher,
although not statistically significant, titre in the absence of trypsin.

https://github.com/ellisrichardj/csu_scripts/blob/master/vcf2consensus.pl
https://github.com/ellisrichardj/csu_scripts/blob/master/vcf2consensus.pl
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Figure 1. In vitro assessment of recombinant viruses. (a) Plaque assay using MDCK cells infected with
H7N7MB, H7N7DB and H7N7SB, or uninfected, in the presence (+T) or absence (−T) of TPCK trypsin
(2 µg/mL). Plaque assay pictures are representative of at least two independent experiments. (b) Virus
growth using MDCK cells at a multiplicity of infection (MOI) of 0.0001 in the presence (+T) or absence
(−T) of TPCK trypsin (1 µg/mL). Viral RNA is detected by M gene RRT-PCR and measured as relative
equivalent units (REU) of viral RNA against a 10-fold dilution series of median egg infectious dose
(EID50) quantified RNA. The results are representative of two independent experiments, with standard
errors indicated. ***, p < 0.001; ****, p < 0.0001.
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3.3. A MBCS in the HA Protein Is Required for a HP Phenotype In Vivo

Five groups of chickens were inoculated as per the IVPI test. IVPI chickens were previously
infected with England-08 [26] and are included to compare pathogenicity of the various H7N7 viruses
(Figure 2). Following infection with England-08 and H7N7MB+, 100% mortality occurred, although the
former all died very rapidly by 1 dpi. While the H7N7MB attained 50% mortality, all three registered
IVPI scores of >1.2 as evidence of being HPAIVs (Figure 2). Following the observation that H7N7MB+

gave a higher IVPI than H7N7MB, the H7N7DB+ and H7N7SB+ rescued viruses were then selected for
IVPI testing. Neither virus showed clinical signs throughout the duration, with both registering IVPI
values of 0.00, indicating an LPAIV phenotype (Figure 2).

Viruses 2020, 12, x FOR PEER REVIEW  8  of  27 

 

3.3. A MBCS in the HA Protein is Required for a HP Phenotype in Vivo 

Five groups of chickens were  inoculated as per  the  IVPI  test.  IVPI chickens were previously 

infected with England‐08 [26] and are included to compare pathogenicity of the various H7N7 viruses 

(Figure 2). Following infection with England‐08 and H7N7MB+, 100% mortality occurred, although the 

former all died very rapidly by 1 dpi. While the H7N7MB attained 50% mortality, all three registered 

IVPI scores of >1.2 as evidence of being HPAIVs (Figure 2). Following the observation that H7N7MB+ 

gave a higher IVPI than H7N7MB, the H7N7DB+ and H7N7SB+ rescued viruses were then selected for 

IVPI testing. Neither virus showed clinical signs throughout the duration, with both registering IVPI 

values of 0.00, indicating an LPAIV phenotype (Figure 2). 

 

Figure 2. Kaplan–Meier survival curve  indicating  the percentage of surviving chickens  inoculated 

intravenously. England‐08  (hexagons), H7N7MB  (squares), H7N7MB+  (diamonds), H7N7DB+  (circles) 

and H7N7SB+  (triangles).  Chickens  infected with  viruses  containing  an MBCS  (England‐08  [26], 

H7N7MB  and H7N7MB+)  resulted  in  varying  levels  of mortality.  Chickens  infected with  di‐basic‐ 

(H7N7DB+)  or  single‐basic‐  (H7N7SB+)  containing  viruses  did  not  display  any  clinical  signs  and 

survived until 10 dpi when the experiment was terminated. 

3.4. H7N7DB Passage in Allantoic Fluid 

The effect of in ovo passage of H7N7DB was initially assessed by sequential passage of allantoic 

fluid in 14do EFEs. No substantial change in embryo death time or allantoic fluid HA titres (all >1:64) 

across 10 passages were seen. Sanger sequencing of passage 10 material did not reveal any genetic 

changes at the consensus level, with the HA sequence being identical to the initial inoculum. Four 

non‐synonymous changes were observed outside of the CS region (S31I, F92V, N123D, G196E; H7 

numbering of the mature protein) but with no evidence of any MBCS emergence via in ovo passage. 

3.5. Comparative Pathotyping of H7N7 Wt and Recombinant RG Viruses in Chicken Embryo Tissues 

Nine‐day‐old and 14do EFEs were  inoculated with  two  titres, 101 EID50 and 104 EID50, of  the 

HPAIVs wt England‐08 and RG H7N7MB as well as the LPAIV wt Sweden‐08 virus. Three embryos 

per  titre were harvested after 37  °C  incubation at 24, 48 and 72 hpi. Virus‐specific  IHC  revealed 

differences between  the HPAIVs and LPAIV which reflected pathotype distinction.  In addition  to 

viral tropism in the allantoic and amniotic membranes, both HPAIVs displayed systemic multi‐organ 

distribution, including parenchymal and endothelial cells which defined an HP phenotype (Figure 

3A,B). Widespread  endothelial  staining was  prominent  in  lung,  heart,  spleen,  liver  and  kidney 

tissues. The viral distribution  in embryos  for both  the HPAIVs were  comparable and no marked 

differences  in antigen distribution were seen between the 9do and 14do EFEs  infected with either 

Figure 2. Kaplan–Meier survival curve indicating the percentage of surviving chickens inoculated
intravenously. England-08 (hexagons), H7N7MB (squares), H7N7MB+ (diamonds), H7N7DB+ (circles)
and H7N7SB+ (triangles). Chickens infected with viruses containing an MBCS (England-08 [26],
H7N7MB and H7N7MB+) resulted in varying levels of mortality. Chickens infected with di-basic-
(H7N7DB+) or single-basic- (H7N7SB+) containing viruses did not display any clinical signs and
survived until 10 dpi when the experiment was terminated.

3.4. H7N7DB Passage in Allantoic Fluid

The effect of in ovo passage of H7N7DB was initially assessed by sequential passage of allantoic
fluid in 14do EFEs. No substantial change in embryo death time or allantoic fluid HA titres (all >1:64)
across 10 passages were seen. Sanger sequencing of passage 10 material did not reveal any genetic
changes at the consensus level, with the HA sequence being identical to the initial inoculum. Four
non-synonymous changes were observed outside of the CS region (S31I, F92V, N123D, G196E; H7
numbering of the mature protein) but with no evidence of any MBCS emergence via in ovo passage.

3.5. Comparative Pathotyping of H7N7 Wt and Recombinant RG Viruses in Chicken Embryo Tissues

Nine-day-old and 14do EFEs were inoculated with two titres, 101 EID50 and 104 EID50, of the
HPAIVs wt England-08 and RG H7N7MB as well as the LPAIV wt Sweden-08 virus. Three embryos
per titre were harvested after 37 ◦C incubation at 24, 48 and 72 hpi. Virus-specific IHC revealed
differences between the HPAIVs and LPAIV which reflected pathotype distinction. In addition to
viral tropism in the allantoic and amniotic membranes, both HPAIVs displayed systemic multi-organ
distribution, including parenchymal and endothelial cells which defined an HP phenotype (Figure 3A,B).
Widespread endothelial staining was prominent in lung, heart, spleen, liver and kidney tissues. The viral
distribution in embryos for both the HPAIVs were comparable and no marked differences in antigen
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distribution were seen between the 9do and 14do EFEs infected with either dose. In contrast to the
HPAIV infections, embryos infected with Sweden-08 showed dominant replication in the allantoic
and amniotic epithelia from 24 hpi, independent of dose or age (shown as duplicate embryo findings;
Figure 3C,D). These observations are consistent with typical LPAIV in ovo infection and are defined as
an LP phenotype. Occasional dissemination of Sweden-08 was observed in some embryonic organs
comparable to HPAIV-infected embryos e.g., in lung tissue (Figure 3C). Absence of endothelial tropism
was another overall outcome of LPAIV infection, although staining of discrete foci of hepatocytes and
endothelial cells in the liver of one embryo was detected (Figure 3D), indicative of a mixed LP/HP
phenotype. The above IHC results obtained from in ovo infection with the two wt viruses (one LPAIV
and one HPAIV) and the one recombinant HPAIV (Figure 3), in young and older aged embryos at two
different doses, enabled clear distinction of three phenotypes: LP, HP and a mixed LP/HP phenotype.

3.6. Emergence of HPAIV after H7N7DB Passage in Chicken Embryo Tissues

Following the identification of the mixed LP/HP phenotype in embryo tissues infected with
Sweden-08, the role of the DBCS in the emergence of HPAIV was investigated. Two different titers of
H7N7DB (101 EID50 or 104 EID50) were inoculated in 9do and 14do EFEs and harvested at 37 ◦C for 24, 48
and 72 hpi (n = 36 total). The majority of infected embryos showed characteristic LP phenotypes by IHC
(Figure 4A). At 72 hpi, two embryos displayed a mixed LP/HP phenotype: one inoculated at 9do with
104 EID50 (H7N7DB 9do) and another inoculated at 14do with 101 EID50 (H7N7DB 14do). Positive cells
were stained in the membranes of the mesenchyme and blood vessels with widespread labelling in
blood vessel endothelium. The H7N7DB 9do embryo had widespread multifocal labelling of endothelial
cells and labelling in tubular epithelial cells. Moderately positive amnions in addition to positive
sloughed cells in the parabronchi, hepatocytes and numerous splenic cells were observed. Positive
labelling was also found in the brain, heart, kidney, intestine and bursa tissues (Figure 4B). The H7N7DB

14do embryo also showed positive labelling in skeletal muscle cells, brain tissue, bursal follicles, spleen
and hepatocytes in addition to amniotic cells (Figure 4C). To attempt reproducibility of the above mixed
LP/HP phenotype findings, a repeat inoculation of nineteen 14do EFEs was done with 101 EID50 of
H7N7DB and harvested at 72 hpi. Six of nineteen (32%) embryos displayed a mixed LP/HP phenotype
by IHC.

RNA extracted from FFPE tissue or tissue homogenates from both experiments was
Sanger-sequenced across the CS. Sequence was obtained from one 9do embryo and five 14do embryos
that showed a mixed LP/HP phenotype at 72hpi and demonstrated that the H7N7DB virus had acquired
additional basic amino acids to create MBCS sequence motifs. Two different MBCS were sequenced:
PEIPKKKKR/GLF and PEIPKRKKR/GLF, both of which occurred naturally during the 2008 H7N7
UK outbreak [26]. RNA was extracted from total tissue homogenates for deep sequencing from
amplicons. Concordant with Sanger sequencing, tissue homogenates from two embryos with a mixed
LP/HP phenotype (H7N7DB E3 and E10) contained a majority MBCS population at 53.10% and 69.24%
respectively by deep sequencing (Figure 5 and Table S3). However, deep sequencing revealed that a
high proportion of DBCS also remained in the tissues at 43.50% and 29.59%, respectively (Figure 5 and
Table S3).

Interestingly, for another embryo (H7N7DB E14), only the FFPE block from the body section
displayed a mixed LP/HP phenotype (Figure 4D) and MBCS by Sanger sequencing. The head and
membrane tissues had very few positively stained endothelial cells (Figure 4D) compared to the
same sections in other embryos (Figure 4B,C). DNA Sanger sequencing revealed retention of the
DBCS. Deep sequencing showed that the head and membrane FFPE tissues contained a majority
DBCS population as expected (72.77%) but also enabled detection of MBCS variants, albeit at a lower
proportion of the total variant (26.52% MBCS population; Figure 6 and Table S3). The body section
(visceral organs) contained a majority MBCS population at 98.94%, which was in accord with Sanger
sequencing, with only 0.02% DBCS detected (i.e., below the error threshold of 1.92%; Figure 6 and
Table S3).
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Figure 3. Defining H7N7 phenotypes by immunohistochemistry-stained sections of infected chicken
embryos. Representative 14do EFEs infected with 101 EID50 or 104 EID50 England-08 (A) and H7N7MB

(B), and two embryos infected with 104 EID50 Sweden-08 (C,D). Influenza A anti-NP stain shown as
brown pigment. Images are at original magnification × 200. Three phenotypes were defined: (i) LP
phenotype—dominant replication in the allantoic and amniotic epithelia. Virus antigen primarily
detected in the allantoic epithelium with occasional spread to the amniotic epithelium. Positive cells
observed in nasal, dermal and alveolar epithelial cells as well as in the air sacs and trachea/bronchi. Low
numbers of immunolabelled cells observed in the liver or spleen. No consistent endothelial infection
detected (C). (ii) HP phenotype—systemic multi-organ distribution with widespread endothelial
staining. Positive labelling observed in parenchymal cells of internal organs and embryonic membranes,
occasionally within neurons. Infrequently labelled dermal and nasal epithelial cells (A,B). (iii) Mixed
LP/HP phenotype—replication in epithelial and dermal cells as expected for LPAIV infection but
endothelial cells also labelled in multiple foci, e.g., hepatocytes as generally observed for HPAIV
infection (D).
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Figure 4. Immunohistochemistry stained sections of chicken embryos infected with H7N7DB virus.
Positive influenza A anti-NP stain shown as brown pigment. Images are at original magnification
× 200. Recovered phenotype and genotype of each embryo are indicated. (A) Representative of the
majority 9do and 14do embryos displaying an LP phenotype; (B) mixed LP/HP phenotype from a 9do
embryo infected with 104 EID50; (C) mixed LP/HP phenotype from a 14do embryo infected with 101

EID50; (D), mixed LP/HP phenotype by IHC and MBCS by DNA Sanger sequencing from body section
but LP phenotype by IHC and retention of the DBCS by DNA Sanger sequencing from the head and
membrane sections of a 14do embryo infected with 101 EID50.
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passaged in CEFs without trypsin and allantoic fluid from EFEs inoculated with CEF supernatants were
analysed for cleavage site variants and compared to results from Sanger sequencing. Variants below
the error level of 1.92% (*).
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Despite the mixed LP/HP phenotype and emergence of MBCS in the embryo tissues,
the corresponding allantoic fluids collected from six of the nineteen (32%) embryos inoculated
with H7N7DB in the repeat experiment still retained the DBCS and showed no evidence of mutation to
MBCS by Sanger sequencing. Deep sequencing of the allantoic fluid for H7N7DB E3 and H7N7DB E10
also showed retention of the DBCS (Table S3).

3.7. Confirming the Phenotype of the HP Progeny Viruses by IVPI

Virus propagation of H7N7DB E3 and H7N7DB E10 tissue homogenates that contained a majority
population of MBCS was attempted in EFEs, however the harvested allantoic fluids contained DBCSs by
Sanger sequencing. A further attempt to isolate a MBCS containing virus from the tissue homogenate
was performed by enriching for MBCS populations in CEFs without trypsin prior to inoculation of
EFEs. Sanger sequencing revealed the presence of an MBCS from the CEF supernatants inoculated
with both tissue homogenates. Upon one further passage in EFEs, the allantoic fluid from H7N7DB

E10 successfully produced the MBCS: PEIPKKKKR/GLF, but allantoic fluid from H7N7DB E3 retained
the DBCS. By deep sequencing, the population of MBCS in the cell supernatant of H7N7DB E3
slightly increased from 53.10% to 59.51%, but when the cell supernatant was inoculated into EFEs and
the allantoic fluid harvested, the population of MBCS decreased to 32.28% (Figure 5 and Table S3).
The DBCS population appeared to have been preferentially selected and amplified to constitute the
majority population at 63.99%. In contrast, the population of MBCS in the H7N7DB E10 sample greatly
increased from 69.24% in the tissue homogenate to 97.64% in the CEF supernatant. When inoculated
into EFEs this only slightly decreased to 94.59% (Figure 5 and Table S3).

The mixed genotype progeny virus from H7N7DB E10, named H7N7DB-MB hereafter, was tested by
IVPI. The final IVPI result was 1.31 and confirms that H7N7DB-MB is a HPAIV in chickens with a greater
IVPI than the H7N7MB (IVPI 1.26) (Figure 2). Mortality of chickens infected with H7N7DB-MB was
slower than H7N7MB, however, 60% (n = 6/10) of chickens infected with H7N7DB-MB died compared to
50% (n = 5/10) infected with H7N7MB.

3.8. Generation of HPAIV from H7N7SB Was Unsuccessful after Multiple Passages in Chicken Embryos

Seventy-two 14do EFEs were inoculated with 101 EID50 H7N7SB, harvested at 72 hpi, and were
classified as an LP phenotype (Figure 7A,B). However, 18 (25%) showed enhanced labelling in the
amniotic epithelium, skin, lung, liver, intestine and bursa epithelium (Figure 7B). Four of the 18 embryos
(22%) that showed the most prominent staining in these organs showed retention of the SBCS by
both Sanger and deep sequencing (Figure 8 and Table S4A–D). The enhanced level of replication in
systemic tissues warranted further investigation by an additional embryo passage. Reserved frozen
embryo tissue from one of these embryos (P1: E14) was re-passaged into fourteen 14do EFEs. Two of
the 14 embryos (14%) showed a mixed LP/HP phenotype by IHC (Figure 7C), essentially as defined
previously. RNA was extracted from both the fresh tissue homogenate embryo half and the FFPE
embryo tissue half. Sanger and deep sequencing from both embryo halves showed retention of the
SBCS (P2: E14, E1 and P2: E14, E11) (Figure 8 and Table S4E–I).

Virus-specific staining in the brain without evidence of a CS mutation prompted one further
passage (P3) to determine whether this genotype could be selected. Tissue homogenates from both
embryos that showed a mixed LP/HP phenotype at passage two were passaged in a further fifteen
EFEs. At P3, only one of 15 embryos (~7%) (P3: E14, E11, E9) showed a mixed LP/HP phenotype
(Figure 7D). Epithelial and endothelial staining was observed in the amniotic membrane and the skin.
A low number of positively stained neurons in the brain, spleen, liver and kidney were observed,
but an SBCS genotype was detected by Sanger and deep sequencing with no evidence of mutation to
an MBCS (Figure 8 and Table S4J–M). Full genome consensus sequencing was performed for three
SBCS passaged tissue homogenates that demonstrated a mixed LP/HP phenotype by IHC (P2: E14, E1;
P2: E14, E11; P3: E14, E11, E9). Non-synonymous mutations resulted in five and eight amino acid
changes at P2 and P3 respectively, but the SBCS remained unchanged (Table 2).
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Figure 7. Immunohistochemistry-stained sections of chicken embryos infected with H7N7SB virus.
Positive influenza A anti-NP stain shown as brown pigment. Images are at original magnification ×
200. (A) Passage 1 representative of the majority embryos displaying an LP phenotype; (B) passage 1
representative of an LP phenotype with enhanced labelling; (C) passage 2 mixed LP/HP phenotype;
(D) passage 3 mixed LP/HP phenotype. DNA Sanger sequencing from all embryo sections showed
retention of the SBCS.
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Figure 8. Cleavage site variant analysis from H7N7SB embryo passaged viruses that were all SBCS by
Sanger sequencing. Four embryo tissue homogenates that showed an enhanced level of replication in
systemic tissues at passage one (A–D). H7N7SB P2: E14, E1 tissue homogenate sequenced from PCR
products (E) and RNA (F). H7N7SB P2: E14, E1 FFPE tissue sequenced from PCR products (G). H7N7SB

P2: E14, E11 tissue homogenate sequenced from PCR products (H) and RNA (I). H7N7SB P3: E14,
E11, E9 tissue homogenate sequenced from PCR products (J) and RNA (K). H7N7SB P3: E14, E11, E9
FFPE tissue sequenced from PCR products from the head and membranes (L) and body (M) sections.
Variants below the error level of 1.92% (*).
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Table 2. Full genome sequence differences of SBCS-passaged tissues with enhanced IHC labelling
compared to A/chicken/England/11406/2008 (England-08).

P2: E14, E1 P2: E14, E11 P3: E14, E11, E9

PB2 0 6 4
PB1 0 0 0
PA 0 8 (A20T, D27N, E59K) 24 (A20T, D27N, E59K, A85T, I100V)

HA * 0 1 (G227E) 1 (G227E)
NP 0 0 0
NA 0 1 (T51K) 1 (T51K)
M 0 0 3 (V15I)
NS 0 0 0

The number of nucleotide mutations is indicated and the non-synonymous mutations are in brackets.
* Reported mutations found outside of the cleavage site, numbering from H7 open reading frame of
A/chicken/England/11406/2008 (England-08).

4. Discussion

An H7N7 HPAIV RG-system was developed to successfully introduce mutations at the CS and in
the HA gene to attempt to study HPAIV emergence. H7N7 viruses containing an MBCS replicated
in vitro in the absence of trypsin, but DBCS- and SBCS-containing viruses required trypsin. There is
very limited prior literature describing H7 viruses possessing a DBCS, and whether an extra basic
amino acid at the CS contributes to enhanced HA cleavage resulting in increased pathogenicity for
poultry. In vitro growth curve assays, measured using molecular tools, demonstrated low-level growth
of H7N7DB and H7N7SB without trypsin (Figure 1b). Accumulation of progeny viral RNA over time
suggested higher viral loads for H7N7DB than for H7N7SB in vitro in the absence of trypsin, although
this was not statistically significant. Replication of LPAIVs in the absence of trypsin has been observed
previously [66,67], with speculation that egg-cultured LPAIV can undergo subsequent replication
in vitro in trypsin-free medium due to carry-over of proteases from the egg fluid [68]. Both H7N7SB

and H7N7DB displayed an LPAIV phenotype and remained trypsin-dependent for plaque formation
and optimal growth. Importantly, both viruses were not pathogenic for chickens (IVPI 0.00).

The successful spontaneous mutation of the DBCS to a MBCS via in ovo passage in this study
suggested that this DBCS may represent an intermediate that is already “primed” to mutate further,
allowing for basic amino acid residue accumulation. The rare detection of wt viruses containing the
DBCS previously described only in waterfowl on two occasions [54,55] suggests that it is unstable
or unfavorable for maintenance in galliforme poultry. Mutation to an MBCS from a DBCS occurs
rapidly following transmission to chickens and is readily selected as the dominant viral population.
Further work to evaluate mutation from LPAIV to HPAIV in different avian species is merited to
explore the hypothesis that DBCS emergence may be restricted to waterfowl as opposed to gallinaceous
poultry. However, whilst the DBCS may represent an intermediate, passaging of the DBCS virus
resulted in an increase in the minority population of SBCS in one embryo (1.25% to 1.41%; Figure 5A)
and whether this is a true result or an increase in sequencing error remains to be determined.

Examining the nucleotide composition encoding the two MBCS motifs, it is proposed that
PEIPKKR/GLF mutated to PEIPKKKKR/GLF first by a duplication insertion event and then mutated
to PEIPKRKKR/GLF by base substitution, although mutation to PEIPKRKKR/GLF directly from
PEIPKKR/GLF cannot be ruled out. Further investigation of the molecular mechanisms involved in the
stepwise mutation of the CS is required. The minimum number of basic amino acids required to result
in an HPAIV phenotype have been investigated [42,69,70]. However, identifying the optimal nucleotide
composition that allows for emergence of an HPAIV phenotype could improve our understanding
on how basic amino acids accumulate at the CS in nature. Evidence from the H7N7 UK outbreak in
2008 was also unclear on which motif occurred first, although PEIPKKKKR/GLF was detected more
often (n = 35) than PEIPKRKKR/GLF (n = 10) by consensus sequencing [26]. This observation was
comparable to the in ovo passage where mutation to PEIPKKKKR/GLF was more frequent (n = 5)
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than PEIPKRKKR/GLF (n = 1). However, the selection and mutational pressures that occurred at
the outbreak (29-week-old layers) are different to those in an experimental in ovo passage with RG
viruses. Whilst it is accepted that live birds, rather than embryos, are key in the selection pathway
from LPAIV to HPAIV, the in ovo embryo culture approach served as an alternative and reduced
in vivo experimentation.

Interestingly, embryo age did not appear to influence the ability of H7N7DB to mutate as this
was seen in both 9do and 14do EFEs. This contrasted with earlier studies where an H5N2 virus
acquired HPAIV status after passage in 14do but not in 8-10-day-old EFEs [45,71]. An increase in in ovo
pathogenicity was observed when H7N7DB was passaged in the EFE model, however it is imperative
to determine whether this can also occur in hatched birds. Passage of H7N7DB in chickens would be
an essential experiment to validate this in ovo model as a substitute for in vivo experiments such as
IVPI. This could contribute to the principles of replacement, reduction, and refinement of animals in
scientific research [72] and provide supporting evidence to refine international approaches for defining
highly pathogenic status [2].

Although the DBCS successfully mutated to a MBCS in the embryo tissue, it remains unclear why
no virus containing an MBCS was detected in the allantoic fluid. Feldmann et al. (2000) described
receptor expression and polar budding as factors that can restrict the spread of HPAIV from endothelial
cells in embryo tissues. There is also the possibility that epithelial cells in the allantoic and amniotic
cavities have already been infected with LPAIV prior to the emergence of HPAIV such that the number
of susceptible cells is reduced (due to cell death), thereby restricting HPAIV spread. This may explain
why no mutation to MBCS was observed when H7N7DB was passaged ten times via the allantoic
cavity. This observation may reflect a unique tropism of the virus or it may indicate that ten sequential
passages in EFEs are insufficient for mutated virus release into the allantoic fluid. Interestingly, previous
studies have shown that HPAIV emergence can occur in allantoic fluid after few EFE passages [45].
Since only the allantoic fluid-derived virus was sequenced, it is plausible that MBCS mutants remained
undetected within the embryo tissues. Possible MBCS emergence during passage in allantoic fluid
cannot be excluded as the pooling of allantoic fluid at each passage in the initial study may have
inadvertently diluted any MBCS mutants, preserving DBCS dominance within the viral population.
Consensus sequence data from allantoic fluid at the 10th passage demonstrated 100% conservation
with input virus across the HA CS. This was further supported through sequencing of the allantoic
fluid of infected embryos that had a mixed LP/HP phenotype. Indeed, it was not until the MBCS virus
population was enriched by selection in vitro without trypsin that the MBCS virus was propagated to
recover an H7N7DB-MB virus. It has been speculated that cellular protease availability may change
during embryo development [73], and that LPAIVs may be degraded in the allantoic fluid of older
embryos (14do) [45], thereby allowing HPAIV minority variants to dominate the population.

Influenza A viruses exist as a collection of closely related viral quasispecies, with reports that
minority HP viral variants can be maintained in a predominantly LPAIV population [71,74]. A significant
impeding impact on H7 HPAIV replication when co-infected with H7 LPAIV has been described
in ovo and in vivo [75], suggesting that there may be a threshold at which a particular population is
preferentially selected for (or outgrows) the other. However, results from the multi-cycle growth curve
demonstrated that neither LPAIVs (H7N7SB; H7N7DB) nor HPAIV (H7N7MB) demonstrated an inherent
replicative advantage in vitro when measuring nucleic acid over time (Figure 2). The emergence of an
HPAIV from an LPAIV can be attributed to spontaneous CS mutation or the selection of minority MBCS
variants in the viral population [44–48,75]. Indeed, both events are likely to occur in nature where
the emergence of HPAIV from LPAIV precursors have been reported. The successful spontaneous
DBCS-to-MBCS mutation demonstrated that the in ovo passage model can support the emergence of an
MBCS and mimics the selection of an HPAIV as seen in the field.

Mutation to an MBCS was not achieved when H7N7SB was passaged in EFEs. One of the
proposed molecular mechanisms for the insertion of multiple basic amino acids is polymerase slippage
at purine bases during viral replication to introduce additional purines that translate into basic
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amino acids [37]. This mechanism may have been involved in the mutation of DBCS to MBCS
and is theoretically plausible with the SBCS, although there was no evidence of naturally occurring
SBCS-containing viruses during the H7N7 outbreak in 2008 [26]. Furthermore, with the RG viruses,
H7N7SB did not change to DBCS or MBCS where >98% of the population retained the same SBCS
(Figure 8 and Table S4). Therefore, the recombinant H7N7SB may require additional consecutive purine
bases to enable polymerase slippage or further adaptation/compensatory mutations to mutate further.
This observation is comparable to investigations of evolution of H5 HPAIV [42], where it was speculated
that viruses containing short CS motifs (≤2 basic residues) are more stable and require intense selection
pressure for a mutational change at the CS compared to viruses that contain mid-length CS motifs
(3–4 basic residues). Indeed, residues other than the MBCS may also be attributed to an increase in
pathogenicity. Recombinant H2, H4, H8 and H14 viruses with engineered MBCS on a H5N1 HPAIV
background could support an HPAIV phenotype [76] in addition to MBCS engineered into H6 and H9
subtypes [67,77].

Full-genome sequencing of the tissue homogenates from embryos infected with H7N7SB that
showed a mixed LP/HP phenotype also had multiple substitutions that could be contributing to
this phenotype in the PA, HA, NA and M proteins (Table 2). The function of these identified
substitutions remains unknown for an avian host. The accumulation of mutations seen from P2
to P3 may suggest that H7N7SB is unstable and is selecting mutations for increased fitness in ovo.
One confounder identified with this embryo model was the unexplained dissemination of LPAIV
in the brain cells, particularly in endothelial cells and neurons. Literature suggests that an MBCS is
required for intracellular cleavage and replication where trypsin-like serine proteases are absent [10,78].
However, replication in endothelial cells was observed in brain tissue harvested from chickens from
an H4N6 LPAIV outbreak [79]. A plausible hypothesis could be that initial infection with LPAIV
altered the permeability of the allantoic and amniotic membrane allowing, the virus to replicate in the
epithelial layer and disseminated to embryo structures bathed by the amniotic fluid such as the skin,
the respiratory and digestive epithelia. The allantoic membrane epithelium extends into the embryonic
coelom connected to the allantoic fluid [80], which may explain how LPAIVs which are unable to
replicate in endothelial cells are transported through by circulating cells to other sites. The mixed
LP/HP phenotypes observed during H7N7DB or H7N7SB infection without an MBCS genotype may be
explained as spillage from replication sites via macrophages that have disseminated into other tissues,
giving the impression of an artefactual extended antigen dissemination. It is unclear whether these
LPAIVs are replicating or if they are circulating in an un-cleaved, non-infectious and immature form
after one round of replication. Determining the exact mechanism by which LPAIVs can enter systemic
organs remains to be investigated. Further work, using relevant ex vivo assays such as chicken tracheal
epithelial cells [81] or chicken tracheal organ cultures [82], is warranted.

In contrast to the H7N7DB and H7N7SB viruses, the H7N7MB virus was virulent in vivo
(IVPI: >1.2), proving that this was an HPAIV according to standard international definitions [2].
Interestingly, different IVPI scores were obtained for H7N7MB and H7N7MB+. It appears that the
substitutions in the HA protein outside of the CS, I77V and A123T, the latter introducing a potential
glycosylation, was sufficient to substantially increase the IVPI from 1.26 to 2.70. The A123T substitution
has been previously characterized as a poultry-adaptation marker [83] and may be principally
responsible for this virulence increase as described in earlier observations [83,84], although the
underlying pathogenicity mechanism remains unclear. However, the H7N7 viruses assessed in this
study are unique and do not contain a glycosylation site at N149, nor do they have a stalk deletion in
the NA protein, which have been associated with increased poultry replication and pathogenicity [85].
Despite H7N7DB+ and H7N7SB+ containing the additional A123T adaptive marker for chickens, it was
insufficient to cause clinical disease in IVPI-inoculated chickens. It appears that while this marker
enhances pathogenicity when coupled with an MBCS, it is not the sole virulence determinant. Banks and
Plowright (2003) analysed 85 H7 and 62 H5 protein sequences for the presence of potential glycosylation
sites, but found no direct correlation between glycosylation near the receptor binding site (RBS) and
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increased pathogenicity. However, after intracerebral passage in one-day-old chickens, additional
glycosylation sites emerged and correlated with increased pathogenicity [86]. This observation is
analogous to the H7N7 2008 UK outbreak viruses where glycosylation at N123 was not naturally
selected in hens, but was selected from a minor variant in a HPAIV sample after EFE passage [26].
This finding indicated that an additional glycosylation site near the RBS is not a prerequisite for HPAIV
evolution from LPAIV precursors, but suggested that they may predispose AIVs to increased virulence.

Chickens which were IVPI-inoculated with the wt England-08 isolate derived from the outbreak
all died by 1 dpi and registered the maximum IVPI of 3.00. By comparison, the genetically identical RG
virus H7N7MB+ caused a more gradual time to death and gave an IVPI of 2.7. These results suggest
that the RG virus was not as fit or virulent as wt England-08, although this difference is unlikely
to be statistically significant. This has been noted previously with other RG viruses [87]. There is
an indication that there is a requirement for quasi-species, a cloud of genetic variants, in the viral
population to enhance virulence as described for other viruses [88–90].

While genetic pressures are believed to play a key role in the mutation from LPAIV to HPAIV,
the immunological status of the host and external pressures such as the environment must also be
considered [91,92]. Whether an intermediate between an LPAIV and an HPAIV is an obligatory
requirement for stepwise mutation remains unknown. Whether this may begin to occur in wild birds or
only in poultry is yet to be fully investigated. Surveillance of AIVs in wild birds and poultry combined
with genetic and epidemiological data may enhance our ability to identify sources of outbreaks and
LPAIV progenitors [3]. Understanding the genetic markers that facilitate evolution of LPAIV into
HPAIV can increase our knowledge of AIVs with pathogenic potential and preparedness for HPAIV.
Influenza A viruses carrying an intermediate DBCS could signal increased risk for mutation to HPAIV
for H5 and H7 subtypes, certainly if maintained in a poultry population.

Identifying the tissue and cell types that are targeted during infection with a particular AIV strain
could provide additional information, such as subtle signs of increased pathogenicity of an LPAIV
leading to the emergence of HPAIV populations. The in ovo embryo tissue culture approach evaluated
in this study may enable a rapid assessment of novel isolates and can also provide predictive value to
inform disease control strategies for different strains of LPAIVs, since current approaches often apply
similar statutory measures for the prevention and control of LPAIV and HPAIV [93]. The rigour of such
controls reflects the perceived risk these viruses pose for mutation to HPAIV. There are economic and
welfare impacts from the imposition of such measures for LPAIV infections in poultry that could be
better informed if it were possible to understand and predict the mutation events with more certainty,
since relatively few viruses appear to carry a high risk if they are not aggressively controlled.
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