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Background. Many studies have defined a critical role for ferroptosis in cancer progression and therapy, but it is unclear how
ferroptosis regulates tumor immunity or tumor microenvironment (TME). Methods. In this study, 24 ferroptosis-regulators
were assessed by nonnegative matrix factorization (NMF) consensus clustering to identify ferroptosis patterns in lower-grade
gliomas (LGGs). Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) method and single
sample gene set enrichment analysis (ssGSEA) were used to quantify immune cell infiltrations. The PCA algorithm was used to
develop the ferroptosis-related score (FRscore) to measure ferroptosis levels. Results. Two LGG subgroups named ferroptosis-
related clusters 1 (FRC1) and 2 (FRC2), with distinct ferroptosis levels, immune infiltrations, and clinical outcomes were
determined in 1,407 LGG samples. A well-designed scoring system was developed to evaluate the ferroptosis levels in LGG
patients based on the FRSig gene profile and divided patients into low- and high-FRscore subgroups. Patients with low
FRscores had lower ferroptosis levels and prolonged survival time and were expected to benefit from immune checkpoint
blockade (ICB) therapy and showed higher sensitivity to TMZ chemotherapy. Findings also showed that the PI3K-AKT-mTOR
pathway is activated by ferroptosis induction in SW1088 cells. Conclusions. This study highlights the critical role of ferroptosis
in TME formation and shaping, and quantitatively assessing ferroptosis levels in individual tumors can help to define the
intratumor microenvironment and formulate precise treatment strategies for LGG patients.

1. Introduction

Ferroptosis is a newly defined type of programmed cell
death (PCD), different from apoptosis and autophagy, that
is characterized by iron-dependent lipid hydro-peroxide
accumulation [1]. Sufficient intracellular iron is needed
for ferroptosis, and blockade of XC

- system (a cystine/glu-
tamate antiporter system) and inhibition of glutathione
peroxidase 4 (GPX4) can break the redox balance and

increase lipid peroxidation, ultimately resulting in ferrop-
tosis [2–4]. Recent studies have focused on the role of fer-
roptosis in the tumor microenvironment (TME) and
shown that it plays a vital but dual function in cancer pro-
motion and suppression. For example, ferroptosis is
induced by erastin, a well-known ferroptosis-inducer mol-
ecule, and impairs the growth vitality of colorectal cancer
cells [5]; however, erastin-induced glioblastoma (GBM)
cells show increased migration, and TMZ-resistant GBM
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cells are more sensitive to ferroptosis [6]. In addition,
research has shown that molecules induced by ferroptosis
can effectively kill pancreatic, liver, and kidney cancer cells
[3, 7–9]. In a previous study, Liu et al. analyzed the role of
FRGs in pan-cancer and designed a ferroptosis potential
index (FPI) to evaluate ferroptosis trends, helping subse-
quent research to better understand the role of ferroptosis
and its regulators in various cancers [10]. However, the
prognostic role of FPI and FRGs in lower-grade gliomas
requires further investigation.

Lower-grade glioma (LGG), comprised of WHO grade II
and III gliomas, is a subgroup of intracranial tumors that are
diffuse-invasive, recrudescent, and drug-fast [11, 12]. LGG
accounts for approximately 29% tumors in the central nerve
system (CNS), and the median survival time of LGG patients
is about 7 years, which is longer than the 5-year survival
time of GBM patients [13–15]. Surgical resection along with
chemotherapy and/or radiotherapy is the general treatment
regimen; however, high recurrence and drug-resistance
ratios or progression to GBM complicates conventional
therapy. Studies show that glioma stem cells (GSC) cause
LGG to be unresectable and that distinctions in the immune
microenvironment of LGG may change treatment respon-
siveness [16].

Gliomas have an immune-suppressive nature which
shapes protumor immunity and dampens the response to
treatment [14, 17, 18]. This may be due, in part, to increase
expression of immunosuppressive factors, like programmed
cell death 1 ligand (PD-L1), interleukin 10 (IL-10), indola-
mine 2,3-dioxygenase (IDO), and transforming-growth fac-
tor β (TGF-β), in the glioma microenvironment [19–22].
In addition, immune checkpoint inhibitors (ICIs) have had
remarkable therapeutic effects in various cancers, but their
application in gliomas has been postponed due to difficulties
in bypassing the blood-brain barrier (BBB) [23, 24]. The spe-
cial immune microenvironment of intracranial glioma has
made immunotherapy challenging. Improving knowledge
of the glioma immune-suppressive microenvironment will
aid in developing effective glioma-specific immunothera-
pies [17].

Due to intraglioma heterogeneity, individual and
detailed therapeutic regimens have been formulated based
on newer molecular characteristics that might have clinical
benefit for LGG patients [25–27]. While ferroptosis is not
fully understood, this method of cell death plays an
important role in various cancers, and studies indicate that
ferroptosis may be a good target for new therapies [4]. In
the study presented here, the effects of FRGs and FPI in
the prognosis and tumor microenvironment of LGGs were
analyzed by integrating the transcriptomic and genomic
information of 1,407 LGG samples from the Cancer Geno-
mic Atlas (TCGA), Chinese Glioma Genomic Atlas
(CGGA), and Gene Expression Omnibus (GEO) datasets.
By the clustering of nonnegative matrix factorization
(NMF) of 24 FRGs, two ferroptosis clusters in LGGs with
distinct immune status and clinical prognosis were identi-
fied. Moreover, individual scoring was developed to reflect
ferroptosis level, prognosis, ICI response, and TMZ sensi-
tivity of LGG patients. Findings also showed that the

PI3K-AKT-mTOR pathway was activated by ferroptosis
stimulation in vitro. These results support an important
role for ferroptosis in the LGG microenvironment and
during resistance to chemotherapy and suggest a potential
function for the PI3K-AKT-mTOR pathway in glioma cell
survival following ferroptosis induction.

2. Methods and Materials

2.1. Public Dataset Acquisition and Preprocessing. Postopera-
tion LGG patients survived longer than 1 month along with
full transcription data were included; totally, 1407 LGG
patients were enrolled for subsequent bioinformatic and sta-
tistical analysis, including those from TCGA-LGG (n = 477),
CGGA-mRNA_seq325 (n = 170), CGGA-mRNA_seq693
(n = 379), GSE16011 (n = 103), GSE61374 (n = 137), and
Rembrandt (GSE108474, n = 141). RNA-seq data of TCGA
dataset were downloaded from UCSC Xena website
(https://xenabrowser.net/), and FPKM (fragments per kilo-
base per million) format data were transformed into TPM
format (transcripts per kilobase million). Corresponding
clinicopathological information of the TCGA cohort was
obtained from cBioPortal website (https://www.cbioportal
.org/). The mRNA expression data and relative clinical data
of the two CGGA RNA-seq cohorts were curated from the
CGGA website (http://www.cgga.org.cn/download.jsp). For
three microarray data cohorts from GEO repository, we
downloaded the raw data of “CEL” files from GEO reposi-
tory (Gene Expression Omnibus, https://www.ncbi.nlm.nih
.gov/gds) and processed them with a robust multiarray aver-
aging (RMA) method to achieve background adjustment
and quantile normalization using the R packages “affy”
[28] and “simpleaffy” [29]. Batch effects existing between
CGGA-RNA-seq cohorts or among GEO microarray
cohorts were adjusted by the “ComBat” function of “sva”
[30] R package, and we got two syncretic LGG cohorts
(meta-CGGA and meta-GEO) in this way. Matched geno-
mic mutation information, including single nucleotide poly-
morphism (SNP) data and copy number variation (CNV)
data, of TCGA-LGG was obtained from the UCSC Xena.
The clinicopathological features of included LGGs are sum-
marized in Table 1.

2.2. Nonnegative Matrix Factorization (NMF) Clustering of
LGGs. We retrieved the 24 ferroptosis regulator genes from
the earlier publications, and the expression matrixes of the
24 FRGs were extracted from the three independent LGG
cohorts, respectively, for subsequent unsupervised NMF
clustering analysis. We performed NMF clustering using
the “NMF” R package (version 0.23.0) [31] on the TCGA-
LGG cohort and the two meta LGG cohorts. The parameters
of “brunet” method and 100 nruns were used to implement
unsupervised NMF clustering, and optimal cluster number k
was determined on the results of cophenetic, dispersion
coefficients.

2.3. Gene Set Variation Analysis (GSVA) and Well-Defined
Biological Process Signatures. We retrieved the gene list of
Hallmark gene sets from the MSigDB database (https://
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www.gsea-msigdb.org/gsea/msigdb/, v7.4) to quantify the
biological states or processes of each LGG sample by using
GSVA algorithm [32]. Mariathasan et al. already established
a series of well-defined gene signatures related with some
typical and crucial biological processes like immune-check-
point, antigen processing machinery (APM), CD8 T-effec-
tor, epithelial-mesenchymal transition markers (EMT1/2/
3), angiogenesis, pan-fibroblast TGF-β response signature
(Pan-F-TBRS), WNT targets, DNA damage repair, mis-
match repair, nucleotide excision repair, DNA replication,
cell cycle, cell cycle regulators, Fanconi anemia, homologous
recombination, FGFR-related genes, and KEGG discovered
histones, and we scored each signature for LGGs using the
method defined in earlier research [33]. The KEGG pathway
analysis for the upregulated genes in FRC2 was determined
by the R package “clusterProfiler” [34].

2.4. Ferroptosis Potential Index (FPI) Calculation. The fer-
roptosis potential index (FPI) was quantified to represent

the ferroptosis levels or trends of LGG samples according
to a previous study [10]. The FPI was constructed based
on the ssGSEA method using the gene expression data of
ferroptosis core positive components (PCs) of ACSL4,
ALOX15, GPX4, LPCAT3, NFE2L2, NCOA4, NOX1,
NOX3, NOX4, NOX5, SLC3A2, and SLC7A11 and nega-
tive components (NCs) of FDFT1, HMGCR, COQ10A,
and COQ10B.

2.5. Tumor Immune Infiltration Evaluation by ssGSEA
Algorithm and CIBERSORT. The infiltrated abundance of
28 types of immune cells in the LGG microenvironment
was evaluated by single sample gene set enrichment analysis
(ssGSEA). Relative characteristic gene sets for quantifying
immune cell abundance were retrieved from a previous pub-
lication [35], and enrichment scores computing by ssGSEA
algorithm were utilized to represent the infiltration levels
of the 28 immune cell types in each LGG sample [36].
Besides, the CIBERSORT method [37], a kind of

Table 1: Summary of clinical characteristics of patients with colon cancer in four datasets.

Characteristic
TCGA
dataset

CGGA_325
dataset

CGGA_693
dataset

GSE16011 dataset GSE61374 dataset Rembrandt dataset

No. of patients 477 170 379 103 137 141

Platform
Illumina
RNAseq

Illumina
HiSeq

Illumina
HiSeq

Affymetrix U133 plus
2.0 array

Affymetrix U133 plus
2.0 array

Affymetrix U133 plus
2.0 array

Age (years)

Range 14-87 10-74 11-69 23-81 21-80 17-87

Median 41 39 40 44 41 42

Gender

Female 216 65 167 36 53 47

Male 261 105 212 67 84 72

Unknown 0 0 0 0 0 22

WHO grade

II 231 97 153 22 61 76

III 246 73 226 81 76 65

IDH mutation status

Yes 389 125 262 45 115

No 85 44 80 37 22

Unknown 3 1 37 21 0

1p/19q codeletion
status

Yes 156 55 122 37 37

No 321 113 255 39 100

Unknown 0 2 2 27 0

Overall survival
(year)

Range 0.10-17.60 0.18-13.18 0.14-13.78 0.19-20.68 0-17.7 0.08-20.69

Median 1.98 6.05 3.98 3.3 4.4 3.16

Progression-free
interval (year)

Range 0.02-14.39

Median 1.54
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deconvolution algorithm to quantify immune cell infiltra-
tion levels, was also utilized to evaluate the infiltration abun-
dance of 22 diverse immune cells using relative mRNA
expression profile of LGG patients.

2.6. Recognition of Differential Expressed Genes (DEGs)
between Different Ferroptosis Phenotype Subgroups. To
determine the DEGs between LGG samples of FRC1 and
FRC2, we normalized the expression data of LGG samples
by “voom” method of “limma” package [38] to transform
RNA-Seq data ready for linear modelling and then calcu-
lated the statistical significance of DEGs using the “eBayes”
function of “limma.” Genes with the adjusted p value less
than 0.001 and jlog 2 ðFold ChangeÞj > 1 were determined
as significant DEGs.

2.7. Establishment of the FRscore. We constructed a
ferroptosis-related scoring scheme for evaluating the ferrop-
tosis trends or levels of individual LGG patients based on the
method of principal component analysis (PCA). Primarily,
we used the univariate Cox regression analysis to screen
the prognostic DEGs between FRC1 and FRC2 LGG sub-
groups. Then, “Boruta” algorithm was used for the dimen-
sion reduction of the prognostic DEGs. Finally, principal
components 1 (PC1) and 2 (PC2) of the PCA model of these
prognostic DEGs were both extracted to establish the
FRscore, which is similar to previous research, and equation
was shown as the below:

FRscore = ΣPC1i + ΣPC2i, ð1Þ

where i is the expression of prognostic DEGs between
FRC1 and 2.

2.8. Response of Immunotherapy Prediction: Tumor Immune
Dysfunction and Exclusion (TIDE) and ESTIMATE. The
Tumor Immune Dysfunction and Exclusion (TIDE) arith-
metic was applied to evaluate the cancer immunologic
escape mechanisms, including two basic factors of dysfunc-
tion of cytotoxic T lymphocyte (CTL) infiltration and exclu-
sion of CTLs by immune suppressors [39]. The algorithm of
ESTIMATE makes use of the special attributes of the tran-
scriptional profiles to deduce the tumor cellularity as well
as the tumor purity [40]. By using the ESTIMATE algo-
rithm, we calculated the immune and stromal scores to pre-
dict the level of infiltrating immune and stromal cells, and
these form the basis to infer tumor purity. Tumor tissues
with abundant immune cell infiltration represented a higher
immune score and lower level of tumor purity.

2.9. Acquisition of ICI Cohorts. To further validate the
immunotherapy predictor role of FRscore, four clinical
cohorts which contain cancer patients treated with ICI were
used: IMvigor210 cohort (cancer patients treated with atezo-
lizumab, anti-PDL1) [41], GSE91061 cohort (51 melanoma
patients treated with nivolumab, anti-PD1) [42],
PRJEB23709 cohorts (41 patients treated with pembrolizu-
mab-nivolumab, anti-PD1 melanoma cohort; 32 patients
treated with pembrolizumab-nivolumab combined with
pembrolizumab, anti-PD1 and anti-CTLA4 melanoma

cohorts) [43], and GSE100797 cohort (25 melanoma
patients treated with anti-CTLA4) [43].

2.10. Prediction of TMZ Sensitivity. Temozolomide sensitiv-
ity data over 835 cancer cell lines (CCLs) and 482 CCLs were
obtained from the Cancer Therapeutics Response Portal
(CTRP version.2.0, https://portals.broadinstitute.org/ctrp)
[44–46] and PRISM Repurposing dataset (19Q4, https://
depmap.org/portal/prism/), respectively. The two databases
offered the area under the curve (AUC) of dose–response
scores, which negatively correlates with the drug sensitivity
(higher AUC values represent lower sensitivity to TMZ). K
nearest neighbor (k-NN) imputation was employed to fill
the lost AUC values by using the R package “impute.” On
account of the data of CCLs in both two databases were
downloaded from the CCLE (Cancer Cell Line Encyclope-
dia) dataset; relative molecular CCLE data were utilized for
subsequent TMZ-sensitivity analysis. Ridge regression, a
model tuning method that is used to analyze any data that
suffers from multicollinearity, was used to predict the AUC
value of TMZ response for each LGG patient by applying
the R package “pRRophetic” [47].

2.11. Cell Culture and Agents. SW1088 astrocytoma cell line
was purchased from the American Type Culture Collection
(ATCC) and cultured in the incubator with filtered air and
100% humidity, using culture medium which consisted of
89% Leibovitz’s L-15 Medium (No. 30-2008; ATCC, USA),
10% fetal bovine serum (FBS) (Gibco, USA), and 1% penicil-
lin and streptomycin (Gibco, USA). The erastin, a well-
known ferroptosis inducer, was purchased from MedChem-
Express company.

2.12. Reverse Transcription-Quantitative Polymerase Chain
Reaction (RT-qPCR). To detect the mRNA expression levels
of the PIK3CA, AKT1, and MTOR of erastin-treated
SW1088 cells, total RNA was extracted and used to synthe-
size cDNA by reverse-transcription reaction. Then, qPCR
analysis was conducted to quantify the mRNA expressions.
The procedure, instruments, and reagents of RT-qPCR anal-
ysis used in this research were in keeping with the previous
research. Primers were obtained from a previous study [48]
and listed as follows: PIK3CA forward: 5′-GGTTGTCTG
TCAATCGGTGACTGT-3′, reverse: 5′-GAACTGCAGTG
CACCTTTCAAGC-3′; AKT1 forward: 5′-TTCTGCAGC
TATGCGCAATGTG-3′, reverse: 5′-TGGCCAGCATA
CCATAGTGAGGTT-3′; and MTOR forward: 5′-GCTT
GATTTGGTTCCCAGGACAGT-3′, reverse: 5′-GTGCTG
AGTTTGCTGTACCCATGT-3′.

2.13. Antibodies and Western Blot. The primary antibodies
of PI3K (1 : 2000, 67071-1-Ig, Proteintech, China), AKT1
(1 : 1000, 10176-2-AP, Proteintech), pAKT1-S473 (1 : 2000,
66444-1-Ig, Proteintech), pAKT1-T308 (1 : 1000, #4056S,
Cell Signaling Technology, USA), mTOR (1 : 5000, 66888-
1-Ig, Proteintech), and GAPDH (1 : 5000, 10494-1-AP, Pro-
teintech) and the secondary antibodies, including horserad-
ish peroxidase- (HRP-) conjugated affinipure goat anti-
rabbit IgG (1 : 2000, SA00001-2, Proteintech) and HRP-
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conjugated affinipure goat anti-mouse IgG (1 : 2000,
SA00001-1, Proteintech), were used in western blot assay.
The reagents and procedure of western blot assay in our
research were in accord with our previous study.

3. Results

3.1. The Prognostic Role of FPI and the Genetic Alteration
Landscape of Ferroptosis Regulators in LGGs. To firstly
uncover the ferroptosis regulators’ functions in LGGs, it is
necessary to investigate their genetic landscape in a multio-
mics aspect. The role of 24 FRGs, including the proferropto-
sis regulators, GLS2, FDFT1, EMC2, DPP4, CS, CARS,
RPL8, ATP5G3, ALOX15, ACSL4, TFRC, SLC1A5, SAT1,
NCOA4, and LPCAT3, and the antiferroptosis regulators,
FANCD2, CISD1, CDKN1A, HSPB1, SLC7A11, NFE2L2,
MT1G, HSPA5, and GPX4, and the ferroptosis potential
index (FPI) were comprehensively investigated in LGGs.
The workflow is summarized in Figure 1. Construction of
FPI is mechanically shown in Figure 2(a) as previously
described [10], with two core parts including positive com-
ponents, LPCAT3, ACSL4, NCOA4, ALOX15, GPX4,
SLC3A2, SLC7A11, NFE2L2, NOX1, NOX3, NOX4, and
NOX5, and negative components, FDFT1, HMGCR,
COQ10A, and COQ10B. Since the prognostic role of FPI
in LGG is not known, survival analysis was performed in
each LGG cohort, and the results indicated that FPI was a
poor prognostic factor for LGG patients (Figure S1A-C).
KEGG pathway enrichment analysis of the 24 FRGs was
conducted using the Metascape webtool, and the
significantly enriched pathways were visualized (Figure 2
(b)) and concluded (Figure S1D). First, the frequency of
somatic mutations in the 24 ferroptosis regulators was
explored, and it was found that only 14 of 506 (2.77%)
LGGs had FRG mutations (Figure 2(c)), suggesting that
they remain at a low level in LGGs. Copy number
variation (CNV) in the 24 ferroptosis regulators was also
not prevalent in LGGs (Figure 2(d)). SLC1A5 had the most
frequent CNV amplification (10%) in LGGs, and the most
deleted ferroptosis regulator was CARS, which reached
about 7.5%. Chromosomal localization of the 24 ferroptosis
regulators was visualized (Figure 2(e)). To further analyze
aberrant expression of the FRGs in LGGs, transcriptional
data of normal brain tissues (NBTs) from the GTEx
dataset were combined with LGG samples from the TCGA
dataset. Results showed that while most FRGs were
upregulated in LGG samples, GLS2 and MT1G were
downregulated, and HSPB1 was similar in LGGs as normal
brain tissues (Figure 2(f)).

Spearman correlation analysis indicated that the profer-
roptosis regulator, ACSL4, was positively correlated with the
antiferroptosis regulators, GPX4 and HSPB1, and negatively
correlated with the proferroptosis regulator, NCOA4. The
proferroptosis regulator, RPL8, and antiferroptosis regula-
tor, SLC7A11, were positively correlated in the three inde-
pendent LGG cohorts (Figure S1E–G). These data show
that the ferroptosis process within LGGs is carefully
regulated. To further evaluate the prognostic role of FRGs,
univariate Cox regression analysis was performed on the

three LGG cohorts. By summarizing results from the three
cohorts, CISD1 and FDFT1 were found to be likely
protective regulators, and TFRC, FANCD2, LPCAT3,
HSPA5, and HSPB1 were risk factors in LGGs
(Figure S1H–J).

3.2. Recognition of Ferroptosis Regulator-Mediated Patterns
in LGGs. To comprehensively illustrate how FRGs mediate
ferroptosis-related function, a ferroptosis regulator gene net-
work was designed using data from the TCGA cohort
(Figure 3(a)). Results indicate that the ferroptosis was home-
ostatically regulated by FGGs in LGGs, and that cross-talk
between pro- and antiferroptosis regulators is likely to play
an important role in LGG tumorigenesis and progression.
Based on these speculations, nonnegative matrix factoriza-
tion (NMF), a group of consensus clustering algorithms,
was performed to stratify LGG samples based on these 24
FRGs in order to find distinct ferroptosis regulator-
mediated patterns. NMF clustering classified LGGs into
two distinguishing clusters in the TCGA cohort, including
369 cases in ferroptosis regulator cluster 1 (FRC1) and 108
cases in ferroptosis regulator cluster 2 (FRC2) (Figure S2A,
B). Clinical survival analysis showed that LGG patients in
FRC2 exhibited better overall survival (OS, p < 0:0001, log-
rank test) and a longer progression-free interval (PFI, p <
0:0001, log-rank test) than patients in FRC1 (Figures 3(b)
and 3(c)). NMF clustering was also carried out in the
meta-CGGA and meta-GEO cohorts, and the results of the
survival analysis were found in the two meta-LGG cohorts
(meta-CGGA: p < 0:0001, log-rank test; meta-GEO: p <
0:0001, log-rank test; Figures 3(d) and 3(e)). The
ferroptosis potential index (FPI) was compared between
the FRC1 and FRC2 LGGs in each cohort, and the FRC2
LGG group showed a significantly higher FPI (Figures 3
(f)–3(h); TCGA: p < 0:0001; meta-CGGA: p = 0:0015;
meta-GEO: p < 0:0001, Wilcoxon test).

Principal component analysis (PCA) used to verify dif-
ferences between FRC1 and FRC2 based on whole tran-
scriptome data could not differentiate between the
subgroups (Figure S2F–H). These findings indicated that
the FRC cluster method provides a novel way to classify
LGGs without a significant difference in transcriptional
characterization.

3.3. Ferroptosis Patterns Are Characterized by Distinct
Immune Landscapes. To further characterize the underlying
molecular mechanisms of ferroptosis-related clusters, gene
set enrichment analysis (GSVA) was implemented to score
hallmark gene sets in each LGG sample. GSVA revealed that
immune activation-associated hallmarks such as the IFN-
gamma/alpha response; allograft rejection and inflammatory
response; classical carcinogenic activation pathways includ-
ing the PI3K-AKT-mTOR, KRAS, and TNF signaling path-
ways; and cancer malignancy phenotypes like glycolysis,
epithelial-mesenchymal transition (EMT), angiogenesis,
and hypoxia were significantly enriched in the LGG FR2
subgroup (Figure 3(i)). To further investigate distinctions
between the innate tumor microenvironments of FRC1 and
2, 28 immune cell infiltration levels were quantified and
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compared between two ferroptosis regulator clusters using
the ssGSEA algorithm (Figure 4(a)). FRC2, the LGG sub-
group with a poor prognosis, showed higher immune cell
infiltration than the FRC1 LGG subgroup (Figure S3A). In
addition, the FRC2 subgroup had higher immune and
stromal scores (Figure 4(b), immune score: p < 0:001;
stromal score: p < 0:001, Wilcoxon test) which is indicative
of higher immune and stromal cell infiltrations in FRC2
and consistent with the ssGSEA results. Thus, the FRC2
LGG subgroup was defined as “higher-immunity” or “hot”
while the FRC1 LGG subgroup was defined as “lower-
immunity” or “cold.” CIBERSORT immune cell infiltration
analysis also showed that FRC2 was significantly more
enriched with immune cells and plasma cells, CD8+ T
cells, T helper cells, M0 and M1 macrophages, and
activated dendritic cells (Figure S3B). The levels of 12
immune checkpoint genes, tumor mutation burden (TMB),

copy number alteration (CNA) burden, and altered LOH
fraction were also higher in the FRC2 subgroup (Figures 4
(c) and 4(d) and Figure S3C). However, the differential
amount of neoantigen between the two FRC clusters was
not statistically significant (Figure S3D), and the stemness
index of the FRC1 cluster was significantly higher than it
was for FRC2 (Figure S3E). These results indicate that
LGGs in the FRC2 cluster are characterized by high
immune infiltration and ferroptosis, high TMB, CNA
burden, altered LOH fraction and immune check-point
gene expression, and low stemness index.

To assess the association between the 24 FRGs and
immune cell infiltration or immune check-point genes
(ICPGs), a Spearman correlation analysis was performed
between each FRG and the proportion of immune cells
and ICPG. SLC1A5 and SAT1 correlated strongly with
immune cell infiltration and ICPGs, while GLS2 and FDFT1

1. Data collection 2. Landscape of  FRGs 3. NMF clustering

4. Immune infiltrations and check-points analysis 5. Modelling the FRscore

6. Prognostic role of  FRscore7. Mutational difference 8. Immunotherapy prediction

IPS TIDE ICI Cohorts

9. TMZ sensitivity analysis

TMZ sensitivity Survival analysis

11. Pathway identification

TCPA databaseGSEA Ferroptosis
stimulation

12. Experimental validation

Glioma cells

Erastin

RNA extraction

Protein extraction

RT-qPCR

Western blot Protein expression

mRNA expression

1 2

1 2 3 4
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ve
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Figure 1: The design and workflow of this study.
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Figure 2: Genetic alteration landscape of ferroptosis regulators in lower-grade glioma. (a) The outline diagram of ferroptosis potential index
(FPI) calculation regulated by positive components and negative components. (b) The Metascape pathway enrichment visualization of the
24 ferroptosis regulators showed the interactions among the enriched terms. (c) 14 of 506 LGG patients showed genomic mutations of 24
ferroptosis regulators, with a frequency of 2.77%, including missense mutations, in frame deletions, nonsense mutations, and multihits. (d)
The bar plot represents the amplification (red) or deletion (blue) percent of the 24 FRGs in TCGA-LGG cohort. (e) The circle plot represents
the locations of the 24 FRGs in the human chromosomes. (f) Comparison analysis showed the expression levels of 24 FRGs between human
normal brain tissues from GTEx database and LGG samples from TCGA database. The labelled asterisk indicated the statistical p value (ns
p > 0:05 and ∗∗∗p < 0:001).
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Figure 3: Continued.
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Figure 3: (a) The correlations between every two FRGs were shown. The FRGs (including promotive or antiferroptosis regulators) were
described with circles with different colors. Proferroptosis regulator, blue; antiferroptosis regulator, red. The size of circle represents the
statistical significance of prognostic effect of each FRG. The dot in the center of circle represents the prognostic role of FRGs, and the
black dot represents risky factor while white dot represents protective factor. The lines between every two FRGs represent the significant
Spearman correlations in different colors. Positive correlation, red; negative correlation, light blue. (b) Kaplan-Meier curves of overall
survival (OS) for 477 LGG patients with two ferroptosis clusters in the TCGA-LGG cohort. The number of patients in FRC1 and FRC2
is 369 and 108, respectively (log-rank test, p < 0:0001). (c) Kaplan-Meier curves of progression-free interval (PFI) for 477 LGG patients
with two ferroptosis clusters in the TCGA-LGG cohort (log-rank test, p < 0:0001). (d) Kaplan-Meier curves of overall survival (OS) for
549 LGG patients with two ferroptosis clusters in the meta-CGGA cohort. The number of patients in FRC1 and FRC2 is 342 and 207,
respectively (log-rank test, p < 0:0001). (e) Kaplan-Meier curves of overall survival (OS) for 381 LGG patients with two ferroptosis
clusters in meta-GEO cohort. The number of patients in FRC1 and FRC2 is 321 and 60, respectively (log-rank test, p < 0:0001). (f–h)
The FPI was compared between FRC1 and FRC2 LGG subgroups in TCGA cohort (Wilcoxon rank-sum test, p < 0:0001), meta-CGGA
cohort (Wilcoxon rank-sum test, p = 0:0015), and meta-GEO cohort (Wilcoxon rank-sum test, p < 0:0001). (i) The heat map shows the
GSVA score of each hallmark in the LGG patients ordered by FRC cluster; the information of IDH-codel subtype and WHO grade was
used for sample annotations. The labelled asterisk indicated the statistical p value (∗∗p < 0:01 and ∗∗∗p < 0:001).
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Figure 4: Continued.
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were negatively associated with both (Figure 4(e)). A previ-
ous study showed that SLC1A5, also named ASCT2, which
encodes the glutamine transporter, activates naive T cell
activation, and SLC1A5 deficiency can inhibit Th1 and
Th17 cell induction and reduce inflammatory T cell
responses in vivo [49]. These data indicate that SLC1A5 is
vital to T cell activation and responses and supports a strong
positive correlation between SLC1A5 expression and Th1/17
cell infiltration.

3.4. Identifying DEGs between Ferroptosis Patterns in LGGs.
FRG-based NMF clustering classified LGG patients into
two ferroptosis and immune phenotypes, but the underlying
fluctuation in expression and genetic malformation between
the two FRC clusters remain unknown. To further investi-
gate the role of ferroptosis in LGGs, potential ferroptosis-
associated transcriptional alterations between the two FRC
clusters were assessed. Of the 2,508 DEGs screened, 2,109
DEGs were upregulated in FRC2 LGGs, and 399 DEGs were
upregulated in FRC1. Enrichment analysis of the KEGG
pathway showed that multiple oncogenic pathways includ-
ing PI3K-Akt, MAPK, JAK-STAT, TNF, and NF-kappa B

signaling were enriched in the FRC2 cluster LGGs
(Figure 5(a)), correlating with GSVA results.

3.5. Establishment and Clinical Relevance of the FRscore. Pre-
vious findings have demonstrated the relevance of immune
infiltration during ferroptosis in LGG, but stratification of
LGG patients was based on a population cohort and lacked
individual patient-level detail. Hence, a marking scheme
was developed named FRscore, based on FRSig genes, to
measure ferroptosis trends in individual LGG patients. The
expression matrices of the 2,508 DEGs were extracted, and
the univariate Cox regression and Boruta algorithm were
combined to develop the FRscore. Ninety-one FRSig genes
were identified and used to construct an FRscore for each
LGG patient. The correlation between ferroptosis levels
and expression of the 91 FRSig genes is shown in the heat
map (Figure 5(b)). To further characterize the association
among the FRCluster, WHO grade, FPI, and FRscore, an
alluvial diagram was designed (Figure 5(c)). Spearman cor-
relations between well-known biological signatures and the
FRscore were assessed, and the results indicated that the
FRscore correlated strongly with immune activation,
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Figure 4: (a) The heat map represents the 22 types of immune cell infiltration levels calculated by ssGSEA algorithm ordered by FRC cluster;
the information of IDH-codel subtype and WHO grade was used for sample annotations. (b) Immune score and stromal score overall levels
between FRC1 and FRC2 were analyzed and visualized. (c) The expression levels of twelve immune checkpoint genes were compared
between FRC1 and FRC2 clusters. (d) The tumor mutation burden (TMB) and copy number variation (CNA) burden were analyzed
between FRC1 and FRC2 clusters. (e) The Spearman correlation heat map shows the correlations between the 24 FRG expressions and
the 22 types of immune cell infiltrations or the 12 immune checkpoint gene expressions. Red represents positive correlation, and blue
represents negative correlation.
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Figure 5: Continued.
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including antigen process machinery (APM), CD8 T effector
and immune checkpoint, and EMT-related (EMT1/2/3) sig-
natures, but was negatively associated with stromal-relevant
signatures (FGFR3-related genes and WNT target). Further-
more, survival results showed that LGG patients with higher
FRscores survived for less time in all three LGG cohorts
(Figures 5(e) and 5(f) and Figure S4A, B; TCGA-overall
survival: p < 0:0001; TCGA-progression-free interval: p <
0:0001; meta-CGGA-overall survival: p < 0:0001; meta-
GEO-overall survival: p < 0:0001; log-rank test), and ROC
curves showed that the FRscore possessed strong
prognostic ability (Figure 5(g)). These data indicate that
the FRscore may be a promising prognostic biomarker for
LGG. In addition, IDH-wild LGG patients exhibited the
highest FRscore, LGG patients with IDH-mutation and 1p/
19q-codeletion status showed the lowest FRscore (Figure 5
(h) and Figure S4C), and higher FRscores were observed in
the FRC2 LGG patients than the FRC1 subgroup
(Figure S4D). In addition, LGG patients with higher
FRscores had a higher FPI index, and the FRscore showed
a strong Pearson correlation with the FPI index in LGGs
(Figure S4D–F). High-FRscore LGGs were also correlated
with higher TMB, higher LOH fraction, higher CNA
burden, and a lower stemness index (Figure S4I–L), and
the neoantigen number was not differentially distributed
between low- and high-FRscore LGG patients (Figure S4M).

These results indicate that the FRscore was significantly
associated with cancer immune activation and the clinical
outcomes of LGG patients. Thus, the independent prognos-
tic role of the FRscore in the TCGA-training and two meta-
validation cohorts were also assessed. LGG patients were

grouped into high- and low-FRscore subgroups using the
best cutoff value in the survival analysis. Univariate and
multivariate Cox regression analyses were used to evaluate
the prognostic ability of the FRscore, and the results showed
that the FRscore was a stronger and more independent risk
indicator of LGGs than other clinicopathological features,
including age of diagnosis, gender, WHO grade, IDH status,
and 1p/19q codeletion status (Figure 6(a)).

3.6. Mutational Landscapes of LGG Patients with Distinct
FRscore Levels. To better understand the association between
genomic alterations and the FRscore, two waterfall plots
were designed to show the gene mutation landscape of the
two LGG subgroups (low-FRscore vs. high-FRscore)
(Figure 6(b)). Results indicated that the low-FRscore LGGs
had higher IDH1 (92% vs. 19%), ATRX (43% vs. 175), and
TP53 (52% vs. 24%) mutational proportions and lower
PTEN (2% vs. 18%) and EGFR (0% vs. 29%) mutations than
the high-FRscore LGGs (Figure 6(c)). These data showed
that several frequent mutational LGG genes were differen-
tially distributed between the low- and high-FRscore LGG
groups and indicated that some mutations might be associ-
ated with sensitivity or resistance of LGGs to ferroptosis.

3.7. Role of the FRscore in Predicting Response to
Immunotherapy. Given that the FRscore was significantly
associated with immune activation signatures, its potential
role in cancer immunotherapy was also assessed. Immune
checkpoint inhibitors, like anti-PD-L1/PD-1/CTLA-4, have
great therapeutic potential in antitumor therapy. As com-
pared to previously identified TMB, MSI, and PD-L1,
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Figure 5: (a) KEGG pathway enriched terms of FRC2 upregulation genes. (b) The heat map showed the expressions of prognostic FRSig
genes, which were screened by univariate Cox regression analysis, between two FRC clusters. The LGG samples were annotated with the
information of age, molecular subtype, and WHO grade. (c) Alluvial diagram of FRC clusters in group with distinct WHO grade, FPI
level, and FRscore. (d) Spearman correlation analysis between FRscore and well-established biological signatures. (e, f) Kaplan-Meier
curves for low- and high-FRscore LGG subgroups in the TCGA cohort showed LGG patients with higher FRscores have shorter OS (e)
and PFI (f) time. (g) A line chart showed the area under curve (AUC) values of FRscore in the three LGG cohorts for predicting the 1–
5-year OS. (h) Distribution of FRscore in distinct IDH-codeletion subtypes in the TCGA cohort, and the FRscore levels between every
two molecular subgroups were compared by Wilcoxon rank-sum test. The labelled asterisk indicated the statistical p value (ns p > 0:05, ∗
p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001).
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Figure 6: (a) Univariate and multivariate Cox regression indicated that the FRscore was an independent prognostic predictor for LGG
patients. (b) Mutational landscape of top 20 somatic mutation genes in TCGA-LGG stratified by low- and high-FRscore. LGG patients
were annotated by FRscore subgroup, FRC cluster, WHO grade, and IDH-codeletion subtype. (c) Fractions of patients with gene mutation
in low- and high-FRscore LGG subgroups. Genes of IDH, ATRX, TP53, PTEN, EGFR, and PIK3CA were analyzed. The labelled asterisk
indicated the statistical p value (∗∗∗p < 0:001). The labelled asterisk indicated the statistical p value (ns p > 0:05 and ∗∗∗p < 0:001).
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artificial predictors like TIDE are extensively used to assess
responses to immunotherapy. Analyses showed that the
FRscore was tightly correlated with the dysfunction and
exclusion scoring of the TIDE algorithm in the three LGG
cohorts (Figures 7(a)–7(c)). A high-FRscore was associated
with higher dysfunction and exclusion scoring, suggesting
that high-FRscore LGGs may benefit less from immunother-
apy than low-FRscore LGGs.

Immunotherapy cohort validation was then conducted
by combining clinical information and transcriptional data
to evaluate the FRscore ability to predict responsiveness to
immunotherapy. The FRscore was calculated for each
patient in the four ICI cohorts based on their transcriptional
profile prior to ICI treatment. Since the IMvigor210 cohort
contains several types of cancer patients, they were divided
into the genitourinary tumor subgroup (n = 248) and other
tumor subgroup (n = 60). Kaplan-Meier survival analysis
showed that the FRscore stratified urologic tumor patients
(Imvigor210 cohort) into two subgroups with distinct clini-
cal outcomes, with the high-FRscore subgroup showing a
poor response to anti-PD-L1 therapy (Figure 7(d), p =
0:013, log-rank test). Similar results were also found in the
other tumor cohort (Figure 7(e),p = 0:0041, log-rank test)
and two melanoma cohorts (Figures 7(f) and 7(g);
GSE91061, anti-PD-1 cohort:p = 0:044; and PRJEB23709,
anti-PD-1 and anti-CTLA4 mixed cohorts:p = 0:01; log-
rank test). These findings showed that the FRscore corre-
lated strongly with responsiveness to immunotherapy and
may be used for the clinical prognosis of cancer patients.

3.8. TMZ Sensitivity Analysis of the FRscore. Given that LGG
immunotherapy is not ecumenical and TMZ is the main-

stream chemotherapeutic drug for LGG, the association
between TMZ sensitivity and ferroptosis patterns was
assessed in LGG patients. The AUC value of each LGG
patient was calculated using ridge regression based on
TMZ sensitivity data from the Cancer Therapeutics
Response Portal (CTRP) and the PRISM Repurposing data-
set. The ferroptosis pattern was significantly associated with
TMZ sensitivity in LGG patients. High-FRscore LGG
patients had higher AUC values than low-FRscore LGG
patients in all LGG cohorts (Figures 8(a)–8(c)), strongly sug-
gesting that LGG patients with higher FRscores may be more
resistant to TMZ therapy. Along with the TMZ therapy
information in the TCGA and meta-CGGA cohorts, the
prognostic ability of FRscore in TMZ-treated and untreated
LGG subgroups was analyzed. Survival analysis indicated
that the FRscore had a prognostic role in both TMZ-
treated and TMZ-untreated LGG subgroups (Figures 8(d)–
8(f)), showing that it can be a robust and accurate prognostic
biomarker for both TMZ-treated and untreated LGG
patients.

3.9. Ferroptosis Alters the PI3K-AKT-mTOR Signaling
Pathway. To better understand the underlying molecular
mechanisms that associate ferroptosis with clinical out-
comes, changes in ferroptosis-induced signaling pathways
were assessed. Yi et al. [50] showed that oncogenic promo-
tion of the PI3K-AKT-mTOR pathway reduced ferroptosis
using SREBP-mediated lipogenesis. Similar to the associa-
tion between the GSVA and KEGG pathways and the
FRC2 LGG subgroup, the PI3K-AKT-mTOR pathway corre-
lated significantly with the FRscore using gene set enrich-
ment analysis (Figure 8(g)). The public transcriptional data
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Figure 7: (a–c) The distributions of dysfunction and exclusion scores were compared between low- and high-FRscore LGG subgroups in the
three LGG cohorts (Wilcoxon rank-sum test). (d) Kaplan-Meier curves for low- and high-FRscore patient groups in urologic tumors
(including bladder, kidney, and ureter tumors) of IMvigor210 cohort (anti-PD-L1) and the fraction of urologic tumor patients with
response to anti-PD-L1 therapy in low- and high-FRscore subgroups of IMvigor210 cohort. (e) Kaplan-Meier curves for low- and high-
FRscore patient groups in other tumors (including liver, lung, and lymph node tumor) of IMvigor210 cohort (anti-PD-L1) and the
fraction of other tumor patients with response to anti-PD-L1 therapy in low- and high-FRscore subgroups of IMvigor210 cohort. (f)
Kaplan-Meier curves for low- and high-FRscore patient groups in GSE91061 cohort (anti-PD-L1, melanomas) and the fraction of
melanoma patients with response to anti-PD-1 therapy in low- and high-FRscore subgroups of GSE191061 cohort. (g) Kaplan-Meier
curves for low- and high-FRscore patient groups in PRJEB23709 cohort (anti-PD-L1, melanomas) and the fraction of melanoma patients
with response to anti-PD-1 therapy in low- and high-FRscore subgroups of PRJEB23709 cohort. The labelled asterisk indicated the
statistical p value (∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001).
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Figure 8: Continued.
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of erastin-treated HepG2 cells was also assessed, and
PIK3CA and AKT1 mRNA expressions increased signifi-
cantly when treated with the ferroptosis inducer, Ersatin
(Figure 8(h)). To measure PI3K-AKT-mTOR protein path-
way expression associated with distinct ferroptosis levels,
TCPA level-3 protein expression was compared to PI3K-
AKT-mTOR pathway protein expression in the low- and
high-FRscore LGG subgroups. TCPA data indicated that
AKT1, pAKT-S473, pAKT-T308, and mTOR protein
expression increased significantly in high-FRscore LGGs
but PI3K-P100a decreased, and PI3K-P85 and pMTOR-
S2488 were not statistically different (Figure 8(i)).

Taken together, these data suggest that the intraglioma
ferroptosis level may affect cellular survival, proliferation,
and drug sensitivity by regulating the PI3K-AKT-mTOR
pathway. The SW1088 cell line was treated with 10μM era-
stin, and PIK3CA-AKT-mTOR mRNA and protein expres-
sions were measured by RT-qPCR and western blot. RT-
qPCR data showed increases in AKT1 and MTOR mRNA
expression. A 6-hour induction with erastin led to a 33-
fold increase in AKT1 mRNA expression; however, PIK3CA

mRNA expression was unaltered by stimulation of ferropto-
sis (Figure 8(j)). To prepare for western blot, SW1088 cells
were cultured and treated with 10μM erastin for 0, 6, 12,
and 24 hours. Results showed that PI3Ka, pAKT1-S473,
and pAKT1-T308 protein expressions increased within 24
hours of ferroptosis induction, but mTOR protein expres-
sion was downregulated during the same time period. To
assess the effect of prolonged ferroptosis stimulation on
LGG cells, SW1088 cells were treated with 10μM erastin
for 72 hours (cell culture medium containing 10μM erastin
was replaced after each 24-hour period). Findings showed
that pAKT1-S473 and pAKT1-T308 protein expressions
were still upregulated (Figure 8(k)).

4. Discussion

Since ferroptosis was first defined, its function in cancer pro-
gression, chemotherapy, and immunotherapy has attracted
great attention [51]. Increasing evidence indicates that
iron-dependent programming death plays a vital role in
shaping the cancer microenvironment and regulating
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Figure 8: (a–c) The boxplots compared the AUC values of TMZ calculated by ridge regression using the two databases of PRISM and CTRP
between low- and high-FRscore in the TCGA (a), meta-CGGA (b), and meta-GEO (c) LGG cohorts (Wilcoxon rank-sum test). (d–f)
Kaplan-Meier curves represent the LGG subgroups of patients with different FRscore levels and TMZ therapy status to reflect the OS (d)
and PFI (e) statuses in the TCGA cohort and OS status in the meta-CGGA cohort (f). (g) GSEA result showed that the hallmark of
PI3K-AKT-mTOR pathway was enriched in the high-FRscore LGG subgroup. (h) The PIK3CA, AKT1, and MTOR mRNA expressions
were compared between HepG2 cells treated with erastin and control cells using data from GSE104462 (Students’ t-test). (i) The PI3K-
AKT-mTOR pathway-associated protein expressions of matched LGG samples from different FRscore subgroups were compared and
visualized by boxplots (Wilcoxon rank-sum test). (j) The bar plots represent the mRNA expression levels of PIK3CA, AKT1, and MTOR
in SW1088 cells treated with 10μM erastin for 0, 6, 12, and 24 hours. (k) The bands showed the PI3K-AKT-mTOR pathway-associated
protein expression levels in SW1088 cells treated with 10μM erastin for 0, 6, 12, 24, and 72 hours. The labelled asterisk indicated the
statistical p value (ns p > 0:05, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001).
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antitumor immunity [52–55]. Many studies have uncovered
complex roles for ferroptosis regulators in modulating the
tumor microenvironment, but their role in regulating fer-
roptosis has not been comprehensively analyzed in LGG
[10, 56]. A thorough study focused on recognizing distinct
ferroptosis patterns in the TME can provide clues about
how ferroptosis regulates antitumor immunity and inform
more creative immunotherapy strategies.

Two LGG clusters characterized by entirely distinct fer-
roptosis levels, immune cell infiltration, and clinical progno-
sis were defined in this study. FRC1 was characterized by an
immune-excluded or desert phenotype, lower ferroptosis
levels, and a favorable clinical prognosis, while FRC2 LGGs
had higher immune cell infiltration with an immune-
inflamed phenotype, higher ferroptosis levels, and a poorer
prognosis. Higher immune and stromal scores also indicated
greater immune infiltration in FRC2 LGGs, along with
higher immune checkpoint gene expression and TMB, sug-
gesting that classification of ferroptosis is associated with
responsiveness to immunotherapy. KEGG enrichment anal-
ysis was conducted to define the underlying mechanisms
that might explain the differences between the two clusters.
Several oncogenic pathways, including PI3K-AKT-mTOR,
MAPK, and JAK-STAT, along with immune processes like
Th1, Th2, and Th17 cell differentiation and natural killer
cell-mediated cytotoxicity, were enriched in FRC2 LGGs. A
previous study [50] showed that activation of PI3K-AKT-
mTOR suppressed ferroptosis in cancer cells; however, this
study showed a strong correlation between ferroptosis and
activation of the PI3K-AKT-mTOR pathway. Thus, it was
hypothesized that ferroptosis could activate PI3K-AKT-
mTOR signaling pathway to suppress ferroptosis induction.
Study findings supported this hypothesis and showed that
SLC1A5, a proferroptosis regulator, is required for induction
of Th1 and Th17 cells, reinforcing the use of KEGG enrich-
ment analysis warrants further study.

The FRscore was developed as an individual scoring
scheme for LGG patients based on 91 identified FRSig genes
and was found to correlate with the status of cancer immunity
as well as LGG prognosis. The ferroptosis potential index
(FPI), a previously identified factor representing the level of
ferroptosis, was also strongly associated with the FRscore; this
indicated that the FRscore could also reflect the ferroptosis
level of LGGs. Further analysis showed that the FRscore corre-
lated with response to immunotherapy and TMZ sensitivity,
indicating that it could be applied to a wider range of clinical
outcomes among LGG patients. Finally, the PI3K-AKT-
mTOR pathway was shown to be involved in ferroptosis
induction in LGG cells, showing that glioma cells could
respond to ferroptosis by inducing intrinsic oncogenic activity.

Different effects caused by distinct ferroptosis levels may
explain its dual role during cancer. When induction is not
enough to cause programmed death, malignant cells can
respond to stimulation by activating intrinsic oncogenic
pathways that withstand ferroptosis pressure; however, suffi-
ciently inducing ferroptosis to cause cell death may be a
promising option for cancer therapy. Immunotherapy has
made progress in clinical trials of glioma patients but devel-
oping methods for managing these patients requires addi-

tional research. The ferroptosis-related scoring system
developed here is a promising indicator for LGG immuno-
therapy. In addition, the use of FRscore to assess responsive-
ness to TMZ and other treatments has promise for LGG
patients. This study showed that a higher FRscore not only
indicated resistance to TMZ therapy for LGG patients but
also represented a poor prognosis in LGG patients either
treated or not treated with TMZ. An increase in erastin-
induced ferroptosis was shown to enhance the migration of
GBM cells, and TMZ-resistant GBM cells were more sensi-
tive to erastin induction [6]. However, the correlation
between ferroptosis and TMZ resistance is not fully under-
stood, and additional research may provide some clues
about the underlying mechanism.

This study comprehensively assessed ferroptosis patterns
among 1,407 LGG patients and showed that the high level of
ferroptosis seen in FRC2 LGG patients was the result of ele-
vated immune cell infiltration that indicated a poor progno-
sis. The FRscore also showed extensive clinical promise for
LGG patients during TMZ chemotherapy or immunother-
apy management. This comprehensive integrated study indi-
cated that intraglioma ferroptosis levels may predict
formation of the immune microenvironment and regulation
of cancer immunity. Calculating the FRscore for individual
patients based on their pathological specimens may help to
predict disease outcomes and responsiveness to treatment.

5. Conclusion

Our research highlights the critical role of ferroptosis in
TME formation and shaping, and quantitatively assessing
ferroptosis levels in individual tumors can help to define
the intratumor microenvironment and formulate precise
treatment strategies for LGG patients.
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Supplementary Materials

Figure S1: (A–C) Kaplan-Meier curves revealed the FPI
could stratified LGG patients into low- and high-FPI sub-
group with distinct prognosis in the TCGA (A, log-rank test,
p < 0:0001), meta-CGGA (B, log-rank test, p < 0:0001), and
meta-GEO (C, log-rank test, p < 0:048) cohorts. (D) The sig-
nificant enriched terms of the 24 FRGs in Metascape enrich-
ment analysis. (E–G) The Spearman correlation heat maps
showed the correlations between every two FRGs in the
TCGA (E), meta-CGGA (F), and meta-GEO (G) cohorts.
(H–J) The forest plots showed the prognostic role of the 24
FRGs in the TCGA (H), meta-CGGA (I), and meta-GEO
(J) cohorts. The red name represents antiferroptosis regula-
tor, and blue means proferroptosis regulator. Figure S2:
(A) The correlation between cophenetic, dispersion, evar,
residuals, rss, silhouette, and sparseness coefficients with
the number of unsupervised NMF clusters. (B) Heat map
of two unsupervised NMF clusters for ferroptosis regulators
in the TCGA-LGG cohort. (C–E) Heat maps depict the
expression levels of 24 ferroptosis regulator genes in TCGA
(C), meta-CGGA (D), and meta-GEO (E) cohorts and anno-
tated with FRCluster, age, gender, and grade information.
(F–H) Principal component analysis (PCA) of the FRC clus-
ters based on the whole transcriptional profile in the TCGA
(F), meta-CGGA (G), and meta-GEO (H) cohorts. Figure S3:
(A) The comparisons of 28 immune cell fractions quantified

by ssGSEA algorithm between FRC1 and FRC2 LGG sub-
groups (Wilcoxon rank-sum test). (B) The comparisons of
CIBERSORT immune cell fractions between FRC1 and
FRC2 LGG subgroups (Wilcoxon rank-sum test). (C–E)
Neoantigen (C), LOH fractions (D), and stemness index
(E) were compared between FRC1 and FRC2 LGG sub-
groups (Wilcoxon rank-sum test). The labelled asterisk indi-
cated the statistical p value (ns p > 0:05, ∗p < 0:05, ∗∗p < 0:01
, and ∗∗∗p < 0:001). Figure S4: (A, B) Kaplan-Meier curves
for low- and high-FRscore LGG subgroups in the meta-
CGGA cohort (A) and meta-GEO cohort (B) present LGG
patients with higher FRscores have poorer prognosis. (C)
Distribution of FRscore in distinct IDH-codeletion subtypes
in the meta-CGGA cohort, and the FRscore levels between
every two molecular subgroups were compared by Wilcoxon
rank-sum test. (D) Comparison of FRscores between FRC1
and FRC2 LGG subgroups in the three LGG cohorts (Wil-
coxon rank-sum test). (E) Comparison of FPI levels between
FRC1 and FRC2 LGG subgroups in the three LGG cohorts
(Wilcoxon rank-sum test). (F–H) Spearman correlation
analysis showed the positive correlation between FPI and
FRscore in the three LGG cohort. (I–M) Tumor mutation
burden (TMB, I), loss of heterozygosity (LOH) fraction (J),
copy number alteration (CNA) burden (K), stemness index
(L), and neoantigen (M) levels were compared between
low- and high-FRscore LGG subgroups (Wilcoxon rank-
sum test). The labelled asterisk indicated the statistical p
value (ns p > 0:05 and ∗∗∗p < 0:001). (Supplementary
Materials)

References

[1] W. S. Yang and B. R. Stockwell, “Ferroptosis: death by lipid
peroxidation,” Trends in Cell Biology, vol. 26, no. 3, pp. 165–
176, 2016.

[2] B. R. Stockwell, J. P. Friedmann Angeli, H. Bayir et al., “Ferrop-
tosis: a regulated cell death nexus linking metabolism, redox
biology, and disease,” Cell, vol. 171, no. 2, pp. 273–285, 2017.

[3] W. S. Yang, R. SriRamaratnam, M. E. Welsch et al., “Regula-
tion of ferroptotic cancer cell death by GPX4,” Cell, vol. 156,
no. 1-2, pp. 317–331, 2014.

[4] H. Yu, P. Guo, X. Xie, Y. Wang, and G. Chen, “Ferroptosis, a
new form of cell death, and its relationships with tumourous
diseases,” Journal of Cellular and Molecular Medicine,
vol. 21, no. 4, pp. 648–657, 2017.

[5] Y. Xie, S. Zhu, X. Song et al., “The tumor suppressor p53 limits
ferroptosis by blocking DPP4 activity,” Cell Reports, vol. 20,
no. 7, pp. 1692–1704, 2017.

[6] H. J. Liu, H. M. Hu, G. Z. Li et al., “Ferroptosis-related gene
signature predicts glioma cell death and glioma patient pro-
gression,” Frontiers in Cell and Development Biology, vol. 8,
p. 538, 2020.

[7] C. Louandre, Z. Ezzoukhry, C. Godin et al., “Iron-dependent
cell death of hepatocellular carcinoma cells exposed to sorafe-
nib,” International Journal of Cancer, vol. 133, no. 7, pp. 1732–
1742, 2013.

[8] C. Louandre, I. Marcq, H. Bouhlal et al., “The retinoblastoma
(Rb) protein regulates ferroptosis induced by sorafenib in
human hepatocellular carcinoma cells,” Cancer Letters,
vol. 356, no. 2, pp. 971–977, 2015.

20 Oxidative Medicine and Cellular Longevity

https://xenabrowser.net/datapages/
http://www.cgga.org.cn/
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://downloads.hindawi.com/journals/omcl/2022/9408886.f1.pdf
https://downloads.hindawi.com/journals/omcl/2022/9408886.f1.pdf


[9] N. Eling, L. Reuter, J. Hazin, A. Hamacher-Brady, and N. R.
Brady, “Identification of artesunate as a specific activator of
ferroptosis in pancreatic cancer cells,” Oncoscience, vol. 2,
no. 5, pp. 517–532, 2015.

[10] Z. Liu, Q. Zhao, Z. X. Zuo et al., “Systematic analysis of the
aberrances and functional implications of ferroptosis in can-
cer,” Iscience, vol. 23, article 101302, 2020.

[11] Cancer Genome Atlas Research Network, D. J. Brat, R. G. W.
Verhaak et al., “Comprehensive, integrative genomic analysis
of diffuse lower-grade gliomas,” The New England Journal of
Medicine, vol. 372, no. 26, pp. 2481–2498, 2015.

[12] T. Jiang, D. H. Nam, Z. Ram et al., “Clinical practice guidelines
for the management of adult diffuse gliomas,” Cancer Letters,
vol. 499, pp. 60–72, 2021.

[13] M. Weller, W. Wick, K. Aldape et al., “Glioma,” Nature
Reviews. Disease Primers, vol. 1, no. 1, article 15017, 2015.

[14] M. Lim, Y. Xia, C. Bettegowda, and M. Weller, “Current state
of immunotherapy for glioblastoma,” Nature Reviews. Clinical
Oncology, vol. 15, no. 7, pp. 422–442, 2018.

[15] T. Jiang, Y. Mao, W. Ma et al., “CGCG clinical practice guide-
lines for the management of adult diffuse gliomas,” Cancer Let-
ters, vol. 375, no. 2, pp. 263–273, 2016.

[16] T. Shibue and R. A. Weinberg, “EMT, CSCs, and drug resis-
tance: the mechanistic link and clinical implications,” Nature
Reviews. Clinical Oncology, vol. 14, no. 10, pp. 611–629, 2017.

[17] S. Xu, L. Tang, X. Li, F. Fan, and Z. Liu, “Immunotherapy for
glioma: current management and future application,” Cancer
Letters, vol. 476, pp. 1–12, 2020.

[18] Z. Wang, G. Su, Z. Dai et al., “Circadian clock genes promote
glioma progression by affecting tumour immune infiltration
and tumour cell proliferation,” Cell Proliferation, vol. 54, arti-
cle e12988, 2021.

[19] O. Bloch, C. A. Crane, R. Kaur, M. Safaee, M. J. Rutkowski, and
A. T. Parsa, “Gliomas promote immunosuppression through
induction of B7-H1 expression in tumor-associated macro-
phages,” Clinical Cancer Research, vol. 19, no. 12, pp. 3165–
3175, 2013.

[20] B. Kaminska, M. Kocyk, and M. Kijewska, “TGF beta signaling
and its role in glioma pathogenesis,” Advances in Experimental
Medicine and Biology, vol. 986, pp. 171–187, 2013.

[21] D. A. Wainwright, I. V. Balyasnikova, A. L. Chang et al., “IDO
expression in brain tumors increases the recruitment of regu-
latory T cells and negatively impacts survival,” Clinical Cancer
Research, vol. 18, no. 22, pp. 6110–6121, 2012.

[22] S. Wagner, S. Czub, M. Greif et al., “Microglial/macrophage
expression of interleukin 10 in human glioblastomas,” Interna-
tional Journal of Cancer, vol. 82, no. 1, pp. 12–16, 1999.

[23] R. K. Oberoi, K. E. Parrish, T. T. Sio, R. K. Mittapalli, W. F.
Elmquist, and J. N. Sarkaria, “Strategies to improve delivery
of anticancer drugs across the blood-brain barrier to treat glio-
blastoma,” Neuro-Oncology, vol. 18, no. 1, pp. 27–36, 2016.

[24] P. Ballabh, A. Braun, and M. Nedergaard, “The blood-brain
barrier: an overview: structure, regulation, and clinical impli-
cations,”Neurobiology of Disease, vol. 16, no. 1, pp. 1–13, 2004.

[25] J. Du, H. Ji, S. Ma et al., “m6A regulator-mediated methylation
modification patterns and characteristics of immunity and
stemness in low-grade glioma,” Briefings in Bioinformatics,
vol. 22, 2021.

[26] K. Yang, Z. Wu, H. Zhang et al., “Glioma targeted therapy:
insight into future of molecular approaches,” Molecular Can-
cer, vol. 21, no. 1, p. 39, 2022.

[27] X. Liang, Z. Wang, Z. Dai, H. Zhang, Q. Cheng, and Z. Liu,
“Promoting prognostic model application: a review based on
gliomas,” Journal of Oncology, vol. 2021, p. 14, 2021.

[28] L. Gautier, L. Cope, B. M. Bolstad, and R. A. Irizarry, “Affy–
analysis of Affymetrix GeneChip data at the probe level,” Bio-
informatics, vol. 20, no. 3, pp. 307–315, 2004.

[29] C. L. Wilson and C. J. Miller, “Simpleaffy: a BioConductor
package for Affymetrix quality control and data analysis,” Bio-
informatics, vol. 21, no. 18, pp. 3683–3685, 2005.

[30] J. T. Leek, W. E. Johnson, H. S. Parker, A. E. Jaffe, and J. D. Sto-
rey, “The sva package for removing batch effects and other
unwanted variation in high-throughput experiments,” Bioin-
formatics, vol. 28, no. 6, pp. 882-883, 2012.

[31] R. Gaujoux and C. Seoighe, “A flexible R package for nonneg-
ative matrix factorization,” BMC Bioinformatics, vol. 11, no. 1,
p. 367, 2010.

[32] S. Hanzelmann, R. Castelo, and J. Guinney, “GSVA: gene set
variation analysis for microarray and RNA-seq data,” BMC
Bioinformatics, vol. 14, no. 1, p. 7, 2013.

[33] S. Mariathasan, S. J. Turley, D. Nickles et al., “TGFβ attenuates
tumour response to PD-L1 blockade by contributing to exclu-
sion of T cells,” Nature, vol. 554, no. 7693, pp. 544–548, 2018.

[34] G. Yu, L. G.Wang, Y. Han, and Q. Y. He, “Clusterprofiler: an R
package for comparing biological themes among gene clus-
ters,” OMICS, vol. 16, no. 5, pp. 284–287, 2012.

[35] P. Charoentong, F. Finotello, M. Angelova et al., “Pan-cancer
Immunogenomic analyses reveal genotype-
immunophenotype relationships and predictors of response
to checkpoint blockade,” Cell Reports, vol. 18, no. 1, pp. 248–
262, 2017.

[36] Q. Jia, W. Wu, Y. Wang et al., “Local mutational diversity
drives intratumoral immune heterogeneity in non- small cell
lung cancer,” Nature Communications, vol. 9, no. 1, p. 5361,
2018.

[37] A. M. Newman, C. B. Steen, C. L. Liu et al., “Determining cell
type abundance and expression from bulk tissues with digital
cytometry,” Nature Biotechnology, vol. 37, no. 7, pp. 773–
782, 2019.

[38] M. E. Ritchie, B. Phipson, D. Wu et al., “Limma powers dif-
ferential expression analyses for RNA-sequencing and
microarray studies,” Nucleic Acids Research, vol. 43, p. e47,
2015.

[39] P. Jiang, S. Gu, D. Pan et al., “Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response,”
Nature Medicine, vol. 24, no. 10, pp. 1550–1558, 2018.

[40] K. Yoshihara, M. Shahmoradgoli, E. Martinez et al., “Inferring
tumour purity and stromal and immune cell admixture from
expression data,” Nature Communications, vol. 4, no. 1,
p. 2612, 2013.

[41] A. Necchi, R. W. Joseph, Y. Loriot et al., “Atezolizumab in
platinum-treated locally advanced or metastatic urothelial car-
cinoma: post-progression outcomes from the phase II IMvi-
gor210 study,” Annals of Oncology, vol. 28, no. 12, pp. 3044–
3050, 2017.

[42] N. Riaz, J. J. Havel, V. Makarov et al., “Tumor and microenvi-
ronment evolution during immunotherapy with nivolumab,”
Cell, vol. 171, article e916, pp. 934–949, 2017.

[43] T. N. Gide, C. Quek, A. M. Menzies et al., “Distinct immune
cell populations define response to anti-PD-1 monotherapy
and anti-PD-1/anti-CTLA-4 combined therapy,” Cancer Cell,
vol. 35, pp. 238–255, 2019.

21Oxidative Medicine and Cellular Longevity



[44] A. Basu, N. E. Bodycombe, J. H. Cheah et al., “An interactive
resource to identify cancer genetic and lineage dependencies
targeted by small molecules,” Cell, vol. 154, no. 5, pp. 1151–
1161, 2013.

[45] M. G. Rees, B. Seashore-Ludlow, J. H. Cheah et al., “Correlat-
ing chemical sensitivity and basal gene expression reveals
mechanism of action,” Nature Chemical Biology, vol. 12,
no. 2, pp. 109–116, 2016.

[46] B. Seashore-Ludlow, M. G. Rees, J. H. Cheah et al., “Harnes-
sing connectivity in a large-scale small-molecule sensitivity
dataset,” Cancer Discovery, vol. 5, no. 11, pp. 1210–1223, 2015.

[47] P. Geeleher, N. Cox, and R. S. Huang, “pRRophetic: an R pack-
age for prediction of clinical chemotherapeutic response from
tumor gene expression levels,” PLoS One, vol. 9, no. 9, article
e107468, 2014.

[48] I. Riquelme, O. Tapia, J. A. Espinoza et al., “The gene expres-
sion status of the PI3K/AKT/mTOR pathway in gastric cancer
tissues and cell lines,” Pathology Oncology Research, vol. 22,
no. 4, pp. 797–805, 2016.

[49] M. Nakaya, Y. Xiao, X. Zhou et al., “Inflammatory T cell
responses rely on amino acid transporter ASCT2 facilitation
of glutamine uptake and mTORC1 kinase activation,” Immu-
nity, vol. 40, no. 5, pp. 692–705, 2014.

[50] J. Yi, J. Zhu, J. Wu, C. B. Thompson, and X. Jiang, “Oncogenic
activation of PI3K-AKT-mTOR signaling suppresses ferropto-
sis via SREBP-mediated lipogenesis,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 117, no. 49, pp. 31189–31197, 2020.

[51] Z.Wang, Z. Dai, L. Zheng et al., “Ferroptosis activation scoring
model assists in chemotherapeutic agents’ selection and medi-
ates cross-talk with immunocytes in malignant glioblastoma,”
Frontiers in Immunology, vol. 12, article 747408, 2021.

[52] W. Wang, M. Green, J. E. Choi et al., “CD8+ T cells regulate
tumour ferroptosis during cancer immunotherapy,” Nature,
vol. 569, no. 7755, pp. 270–274, 2019.

[53] X. Lang, M. D. Green, W. Wang et al., “Radiotherapy and
immunotherapy promote tumoral lipid oxidation and ferrop-
tosis via synergistic repression of SLC7A11,” Cancer Discovery,
vol. 9, no. 12, pp. 1673–1685, 2019.

[54] R. Tang, J. Xu, B. Zhang et al., “Ferroptosis, necroptosis, and
pyroptosis in anticancer immunity,” Journal of Hematology
& Oncology, vol. 13, no. 1, p. 110, 2020.

[55] P. P. Yee, Y. Wei, S. Y. Kim et al., “Neutrophil-induced ferrop-
tosis promotes tumor necrosis in glioblastoma progression,”
Nature Communications, vol. 11, no. 1, p. 5424, 2020.

[56] C. Zeng, H. Tang, H. Chen, M. Li, and D. Xiong, “Ferroptosis:
a new approach for immunotherapy,” Cell Death Discovery,
vol. 6, no. 1, p. 122, 2020.

22 Oxidative Medicine and Cellular Longevity


	Transcriptional Patterns of Lower-Grade Glioma Patients with Distinct Ferroptosis Levels, Immunotherapy Response, and Temozolomide Sensitivity
	1. Introduction
	2. Methods and Materials
	2.1. Public Dataset Acquisition and Preprocessing
	2.2. Nonnegative Matrix Factorization (NMF) Clustering of LGGs
	2.3. Gene Set Variation Analysis (GSVA) and Well-Defined Biological Process Signatures
	2.4. Ferroptosis Potential Index (FPI) Calculation
	2.5. Tumor Immune Infiltration Evaluation by ssGSEA Algorithm and CIBERSORT
	2.6. Recognition of Differential Expressed Genes (DEGs) between Different Ferroptosis Phenotype Subgroups
	2.7. Establishment of the FRscore
	2.8. Response of Immunotherapy Prediction: Tumor Immune Dysfunction and Exclusion (TIDE) and ESTIMATE
	2.9. Acquisition of ICI Cohorts
	2.10. Prediction of TMZ Sensitivity
	2.11. Cell Culture and Agents
	2.12. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)
	2.13. Antibodies and Western Blot

	3. Results
	3.1. The Prognostic Role of FPI and the Genetic Alteration Landscape of Ferroptosis Regulators in LGGs
	3.2. Recognition of Ferroptosis Regulator-Mediated Patterns in LGGs
	3.3. Ferroptosis Patterns Are Characterized by Distinct Immune Landscapes
	3.4. Identifying DEGs between Ferroptosis Patterns in LGGs
	3.5. Establishment and Clinical Relevance of the FRscore
	3.6. Mutational Landscapes of LGG Patients with Distinct FRscore Levels
	3.7. Role of the FRscore in Predicting Response to Immunotherapy
	3.8. TMZ Sensitivity Analysis of the FRscore
	3.9. Ferroptosis Alters the PI3K-AKT-mTOR Signaling Pathway

	4. Discussion
	5. Conclusion
	Abbreviations
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

