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Abstract 
Clinical Bioinformatics is a knowledge framework required to interpret data of medical interest via computational methods. This area 
became of dramatic importance in precision oncology, fueled by cancer genomic profiling: most definitions of Molecular Tumor Boards 
require the presence of bioinformaticians. However, all available literature remained rather vague on what are the specific needs in 
terms of digital tools and expertise to tackle and interpret genomics data to assign novel targeted or biomarker-driven targeted therapies 
to cancer patients. To fill this gap, in this article, we present a catalog of software families and human skills required for the tumor 
board bioinformatician, with specific examples of real-world applications associated with each element presented. 
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Introduction 
Bioinformatics is a mandatory component of Molecular Tumor 
Boards (MTB) [1, 2]. MTBs have been defined in multiple ways, with 
a common ground being multidisciplinary teams able to discuss 
patient data, diagnosis, and results to recommend targeted thera-
pies according to molecular alterations detected via -omics profil-
ing, usually DNA or RNA sequencing [3, 4]. Specifically, employing 
automatized methods to annotate molecular alterations provides 
additional strength to any kind of -omics profiling. The knowledge 
of Clinical Bioinformatics empowers molecular pathologists to 
define tumor drug sensitivity and enables oncologists to consider 
additional lines of therapies based on patient history and molec-
ular background [5]. 

As bioinformaticians became novel pillars of molecular 
research laboratories since the advent of massive-parallel 
sequencing, not the same happened a few years later with the 
introduction of routine cancer sequencing. The main reason for 
this asynchrony lies in the end-to-end engineering of formalin-
fixed paraffin-embedded (FFPE) tumor sequencing solutions 
that enable pathology departments to perform all the multistep 
processes without deep computational knowledge (Fig. 1) [6, 7]. 
At the beginning of the precision oncology era, the number of 
actionable alterations was scarce, and the discrete combinations 
of sensibility or resistance profiles were easily human-intelligible 

without machine-aided annotations. Furthermore, the paucity of 
molecularly aided clinical algorithms led pathology departments 
to employ conditional qPCR instead of next-generation sequenc-
ing to test small indels (insertion/deletion) and mutations, as for 
KRAS, BRAF, and EGFR [8–10]. 

Fortunately, in recent years, the rate of clinical-grade approvals 
for immuno- and targeted therapy increased at a constant pace, 
due to the identification of many genetic aberrations and promis-
ing drug targets [11]. With the clinical and preclinical evidence 
increasing, the average genomic sampling carried out in routinary 
screening and target sequencing increased from up to hundreds of 
kilobases targets, accompanied by a systematic integration with 
other types of omics data. The application of full coding sequenc-
ing increased the data pipeline complexity and the probability 
of somatic and germline incidental findings. This novel scenario 
led on one hand to a series of novel treatment combinations for 
patients, while simultaneously posing strong challenges to hos-
pital staff regarding variant analysis and reporting. The concept 
of variant interpretation itself is not trivial; on the contrary, the 
plethora of possible interpretations requires mastering the skill 
of effective integration and prioritization of variants [12, 13]. 

Interestingly, this molecular data expansion renders the latter 
a source of significant value comparable to clinical trial data. 
Such a phenomenon demands another revolution, the one asso-
ciated with clinical data digitalization and the drive towards data
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Figure 1. High-level representation of software families and the data flows in molecular tumor boards. Colored circles enclosed in boxes indicate the 
technologies and tools that allow for interaction among different entities. Dashed lines provide more details on entities. Keys indicate the mandatory 
fields that are required for database queries. 

FAIR-ness and Federation for a novel era of digital medicine 
and clinical research [ 14]. Another challenge lies in connecting 
genomic alterations with the relevant patient data in Electronic 
Health Records (EHRs): for instance, genomics variants alone do 
not bring the same clinical significance when found in a tissue 
associated with a presurgery, postsurgery, or post–pre-remission 
phase. 

Due to these driving improvements, Cancer Centers have been 
strongly driven by the request to empower both the Bioinformatics 
and the Clinical Informatics workload and to acquire software and 
digital tools accordingly. In this article, we map and define all the 
systems and know-how desiderata required for MTB data analysis 
and management to define the basics of how this new array of 
methodologies is to be integrated into the clinical practice. 

Digital framework 
Software families 
Tools and software frameworks have been clustered into families 
in Fig. 1. Even if overlaps in features may occur across different 
families, the provided clustering is meant to assign specific tools 
to the most critical steps in MTB data processing from both the 
Bioinformatics and Precision Medicine points of view. The overall 
workflow is built with a medium to large-sized Cancer Centre 
setup in mind, stemming from the Italian Alliance Against Cancer 
experience, and other collaborations with European endeavors 
of international clinical genomics applications such as the DRUP 
trial and the DIGICORE consortia [15–18]. 

Certain aspects represent de facto standards, as illustrated in 
Table S1, such as the widely accepted VCF/MAFs formats for 
DNA variants. Meanwhile, others exhibit asymmetry concern-
ing the diversity of biotechnological approaches. Some tools are 
specifically designed for Bioinformaticians and Data Engineers 
and require Unix systems and coding skills, whereas others, com-
monly integrated into user-friendly GUIs, aim to serve a wider 
audience, including the professional figures participating in the 
MTB [19]. 

Variant annotators 
In a variant-calling pipeline, the raw Variant Call Files (VCFs) 
contain all the genomic alterations found on the sample con-
cerning the reference genome or a matched control. The vari-
ant annotation task involves the association of these variations 
to biological consequences [20, 21]. The minimum requirement 
for a variant annotator is the ability to identify and predict 
all the potential effects of mutations, including those caused 
by mutations in coding sequences, splice sites, and regulatory 
sites. Despite the development of various tools for predicting 
mutational pathogenicity at the biochemical level [22–24], their 
widespread adoption and clinical utility remain limited. In the 
context of MTB discussion, the molecular biologist can often 
comment via these results whether the variant lies in the same 
exon of a specific known target drug, or whether the aminoacidic 
change impacts or not protein activity. Furthermore, variations 
in the sequence of a protein-coding gene can impact activity,
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solubility, and cellular localization, and become fundamental in 
the case of a known drug target. 

Literature and the software panorama are quite vast on anno-
tators [25], with a recent interest in tools dedicated to Targeted 
Deep Sequencing analysis [26], while most of the developed soft-
ware was associated with large-scale Whole-Exome and Whole-
Genome sequencing data [27–29]. Most of this software is now 
embedded in the automatized end-to-end pipelines for clinical 
NGS analysis, but they are still of interest when a variant call 
file must be re-analyzed with updated databases for long-term 
storage or clinical research purposes (Table S1). 

Artificial intelligence validation for variant 
calling and variant prioritization 
Artificial intelligence (AI) and machine learning techniques are 
embedded in modern variant callers to improve their sensitivity, 
exploiting the wealth of data produced in the next-genomics era. 
Softwares such as DeepVariant and Clairvoyante utilize AI-driven 
methods to effectively remove artifacts [30, 31], whereas others 
like Mutect2 employ simpler models to accurately detect somatic 
variants, especially amidst tumor heterogeneity and sequencing 
artifacts [32]. In the context of variant annotation and prioritiza-
tion, the abundance of evidence across multiple platforms rep-
resents a significant challenge. Tools such as VAAST and VarSeq 
leverage AI techniques to integrate diverse data sources, encom-
passing functional impact, evolutionary conservation, and clinical 
relevance. This enables molecular investigators to concentrate on 
variants with the greatest potential [33, 34]. 

Transcriptomics 
Other kinds of -omics profiling approaches, predominantly RNA 
profiling, provide insight that can be useful at the clinical level 
for drug sensitivity or resistance, to provide a better-suited 
clinical pathway [35]. However, apart from some transcript-level 
fusion events [36], it remains a marginal diagnostic tool for most 
pathologies [37]. Several attempts have been carried out to distill 
robust biomarkers from high-throughput transcriptomics, albeit 
their level of reliability remains debated [38–41]. The two most 
promising scenarios are risk prediction algorithms to assess 
the utility of adjuvant chemotherapy, such as in the breast 
cancer setting (PROSIGNA) [42], and pan-cancer immunotherapy 
biomarkers, specifically for Immune-Checkpoint inhibitors 
towards solid tumors [40, 43]. On one side, the RNA landscape 
can derive information for both tumor intrinsic and tumor 
extrinsic factors; on the other side, the level of reproducibility 
is hindered at the biotechnological level due to RNA volatility and 
variability over time. Furthermore, an RNA picture suffers more 
from sampling bias than DNA profiling, given the heterogeneity 
of the tissue specimen cancer microenvironment in solid tumors. 
Other transcriptomics-based signatures and algorithms, such as 
neoantigens calling and allele-specific expression, are expected 
to gain more importance with the approval of cancer vaccines. 

Liquid biopsy and other omics data 
Furthermore, other –omics data sources will be fed and analyzed 
by clinical bioinformaticians in the near future. For instance, 
proteomics may include relevant information that may not be 
present in transcriptomics data, and proteome databases provide 
extensive data on molecular mechanisms and modulators 
of targets. The National Cancer Institute’s Clinical Proteomic 
Tumor Analysis Consortium (CPTAC) provided the research 
community with mass spectrometry-based proteomic data to 

highlight the deregulated pathways of several cancer types. These 
web resources enable researchers to query cohorts and compare 
the MTB-derived profiles along with clinical annotations, as well 
as to compare the expected prognoses from -omics profiles. 
However, their applications remain preclinical [44–46]. 

From the metabolomics perspective, personalized therapeutic 
strategies to improve patient outcomes have been developed [47, 
48]. However, several methodological flaws, such as the extreme 
heterogeneity across biological samples, and the lack of standard-
ized technologies for samples and data processing, lead to the 
need to supplement this technique with transcriptomic and/or 
proteomic analyses. As a consequence, the quantity and quality 
of digital tools close to clinical applications for these approaches 
are still scarce. 

Finally, all these biotech techniques have been gaining increas-
ing interest when applied in a larger timeframe thanks to analytes 
tracked in fluids, referred to by the umbrella word liquid biopsy 
[49]. A specific landscape of bioinformatics workflows designed 
for liquid biopsies is usually related to proprietary platforms, 
often related to specific models able to discern vendor-specific 
background noise from signals. Nonetheless, a few tools have 
been developed with a broader application in mind [50–54]. We 
thus envision that with the increasing application of liquid biopsy 
for minimal residual disease monitoring and the improvement of 
liquid cancer screening techniques, novel standardized statistical, 
and engineering frameworks will be developed to be applied in the 
routinary MTB scenario. 

Actionability annotation tools 
Once the molecular variants are annotated at the biological level, 
the next step for the MTB workflow is to provide insights into the 
clinical value of said alterations. This analysis can be carried out 
with the usage of Bioinformatics resources integrating databases 
and annotation systems. We hereby define the boundaries and 
the requirements of said software. An Actionability Annotation 
Tool (AAT) can be defined as a deterministic system that given 
a triplet of a cancer type, a gene symbol, and an alteration, can 
rank all the drug sensitivities and resistances associated with 
that triplet, if available (Fig. 1). Many such frameworks have been 
recently developed [55], but not all harbor Application Program-
ming Interfaces (APIs) to automatically embed said annotations in 
molecular reports, except for OncoKB and the community-driven 
CIViC [56, 57]. A useful feature is a public web portal to enable 
non-bioinformaticians to browse and search for sensitivity levels 
and actionability evidence. A critical separation must be made 
with Actionability Annotation Scales (AAS), which are theoreti-
cal frameworks in which the sensitivity levels are defined into 
multiple steps—usually the first level containing the regulatory 
approved drugs for the specific {Tumour, Gene, Alteration} combo 
and the last level associated with preclinical or in vitro evidence. 
Many scales have been defined but not all of them have been 
automatized in a software system (Table 1). Among the critical 
challenges associated with these tools are the capability of keep-
ing up to date with the associations with regulatory bodies, and 
the ability to represent drug associations in several geographical 
locations. Most of the associations are related to FDA approvals 
that are usually not reflected, or not aligned with other continen-
tal references such as the EMA, although the scales are converging 
towards the same ranking structure (Table 1) [58]. 

MTB management systems 
From the clinical logistics point of view, MTBs are hyperspecialized 
disease management teams with a specific focus on drug
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Table 1. Most employed actionability scales and systems in clinical bioinformatics and regulatory approvals. 

Scale Sensitivity levels Resistance levels Consensus level Efficacy level Regulatory API or web portal 

COSMIC 4 1 No No FDA Yes 
OncoKB 4 2 No No FDA Yes 
CIViC 5 5 5 No FDA Yes 
ESCAT 5 + lack of 

evidence 
No No 3 EMA No 

Sensitivity levels: levels of the evidence supporting the sensitivity hypothesis. Resistance levels: levels of the evidence supporting the resistance hypothesis. 
Consensus level: level of concordance among studies towards a given hypothesis. Efficacy level: level of effectiveness of a treatment. Regulatory: the regulatory 
body for which approvals are listed. API or web portal: whether the system employs application programming interfaces to be easily embedded in other 
workflows and/or a public web portal to be queried. 

regulations and molecular results. According to the cancer 
centre’s size and internal organization, MTB meetings may 
happen weekly, biweekly, or monthly [ 1]. Said meetings are usually 
held in a remote or hybrid setting. In addition to video-calling 
tools that experienced massive development and optimization 
in the postpandemic era [59, 60], management software is 
needed to keep track of meeting minutes, requests for additional 
analyses, and the production of a multidisciplinary report. Some 
of the proposed solutions semiautomatize the production of said 
reports in which the MTB summarizes the molecular and clinical 
evidence, and it recommends, if feasible, a treatment strategy. 

Several software programs are available for this aim, from 
internally developed by OECI cancer centers to commercial ones 
[58, 61, 62]. Some of these tools have evolved into comprehensive 
data management frameworks that also enable radio- and patho-
logical images to be shared and discussed. Since the focus remains 
on tracking cancer molecular evolution, the recent upgrades of 
the cBioPortal framework [63] must be cited. Other than the 
multicohort molecular analysis system that became one of the de 
facto standards thanks to his open-source framework, it recently 
expanded its features into a management system also including 
patient-level timelines and imaging analysis. Additionally, the 
molecular data infrastructure was empowered to also describe 
targeted sequencing panels against the classical Whole-Exome 
Sequencing coverage of TCGA cohorts [64]. 

Molecular tumor registries 
One of the challenges in routinary genomics profiling of cancer 
patients is querying and filtering internal cohorts according to 
their molecular profiles. This step becomes particularly important 
when the MTB is implemented at the regional or national level, 
like a multicenter clinical trial. Additionally, the MTB could ask 
which patients exhibited a noncanonical mutation in an action-
able gene, and how many of them were assigned or responded to a 
specific therapy. Unfortunately, most of the routinary screening is 
saved in static molecular report PDFs containing only actionable 
variants, hindering the value of retrospective genomics cohorts. 
Alternatively, somatic alterations may be digitally stored in 
systems not following basic FAIR guidelines, from Excel tables to 
proprietary databases not allowing batch export and workflow 
analysis transparency. To this aim, cancer centers have started 
developing ‘Molecular registries’ to reanalyze and store in 
databases genomics legacy data [65, 66]. Most of these imple-
mentations have anonymized access for research purposes and 
need to relate to broad informed consent for research use. These 
data are biotechnologically diverse, with several NGS panels of 
specific genomic targets employed over the years, and are not 
always complemented with raw data (FASTQ/uBAMs) or proper 
digitalized annotation. Said registries promise to relate to EHRs 
and internal data warehouses, and when applicable federated 

search to enable data FAIR-ness at the molecular level. Finally, 
said registries could be connected and interoperate with Biobank 
Data centers, to enable easier research for data and samples 
filtered at the molecular levels. 

Knowledge bases 
Linking molecular alterations to clinical trials is a critical step 
for MTBs. This information can be employed to try and find 
patients matching enrolment criteria or to mine past knowledge 
of drug sensitivity that may still not be included in AAS. Knowl-
edge bases (KBs) could feature AI-enhanced search engines that 
via automated Natural Language Processing and Web Crawling 
techniques can summarize thousands of clinical trial records 
related to a ‘  < Gene, Alteration > query’. These frameworks exist 
in stand-alone format [26, 67] and are embedded in some AAS as 
separate features [57]. Many challenges still exist to match human 
parsing specificity, especially for results about toxicity, adverse 
effects, and secondary objectives in Phase 2 trials. 

Bioinformatician contribution to the molecular 
tumor board 
All the aspects mentioned in the software family section of this 
review provide a high-level overview of what are the mandatory 
tools that could be exploited in the MTB context. Before dealing 
with the human skills requirements, we will discuss specifically 
what all the mentioned digital frameworks and topics mean for 
preparation and MTB discussion, including lessons that can be 
learned from the routinary molecular data workup. 

‘Variant annotators’ are pivotal for the interpretation of quality 
metrics of internal or third-party molecular assays. In cases of 
dubious results, bioinformaticians enable the request for raw data 
and reanalysis in case of lack of validation of known alterations, 
or the cases of alterations scores close to thresholds. This aspect 
is of utter importance in cases of ‘copy number variations’ of low-
middle ploidy. In the case of ‘AI’-aided assays, it is fundamental to 
provide an interpretation of the AI subtype embedded in molec-
ular assay analysis. This can range from classical automated 
statistical modeling up to more complex scenarios in the case of 
deep learning or neural network predictors. The explanation of 
the AI-derived molecular biomarkers’ robustness can be provided 
for internal and especially for external, third-party parties, and 
commercial assays. 

Regarding RNA and ‘transcriptomics’, a useful contribution is 
the interpretation and quality check of clinical-grade RNA data, 
mostly RNA fusions that have different kinds of thresholds and 
coverage metrics than DNA-based alterations and usually lack a 
universal baseline. On larger RNA-based assays, up to large and 
full transcriptomics, bioinformaticians are the MTB participants 
most aware of the complexity of RNA measurement, normaliza-
tion, and unit of measurement. The questions hereby raised can
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be related to the kind of internal or external artificial spike-in 
normalizers to reach an absolute value of a certain analyte or the 
relative abundance measured in classical transcript per million 
(TPM) levels. 

When dissecting the type of mathematical and digital analy-
sis embedded in a ‘liquid biopsy’ assay, a bioinformatician can 
better interpret the normalization strategy carried out for the 
background signal. If is a proprietary platform, explain specifically 
the type of validation carried out and how wild-type or mutated 
molecular tags are measured. Also in this case, when LB or 
minimal residual disease assays fail to predict recurrence or their 
results fall close to interpretation thresholds, dealing with raw 
data can provide an explanation and a better validation of the 
overall process. 

When associating putative drugs to alteration via ‘actionability 
annotation tools’, which can be exploited via web interfaces and 
by nonbioinformaticians, a digital savvy expert can provide an 
interpretation of how actionability levels are associated across 
scales. These aspects lie at the intersection of clinical data acces-
sibility and general data FAIRness, such as ‘Molecular Tumor 
Registries’ that enable the exploration of internal and external 
casuistries, and provide an estimate of the penetrance, frequency, 
and co-occurrence of molecular alterations with other DNA/RNA 
events, on the same amino acid, codon, or gene/protein target. In 
the same context, KB’s can be exploited by the bioinformatician 
before the discussion to provide a specific amount of clinical 
validation and clinical research currently laid out for a specific 
gene or variant, via automated mining of clinical trials. 

Human skills requirements 
Most MTB definitions list a bioinformatician along with their 
minimal requirement but do not provide a specific list of skills 
that these bioinformaticians must have. Given the multifaceted 
definitions of Bioinformatics and Computational Biology [68– 
71], we hereby define a list of hard and soft skills required for 
the tumor board Bioinformatician (Table S2). The skill catalog 
starts from issues in Biobanking and sample storage towards 
more Bioinformatics and Data Engineering issues of results 
interpretation. 

Firstly, tissue storage is a pivotal matter to be considered 
when dealing with Cancer Genomics, which still heavily relies 
on FFPE tissues, that, albeit heavily improved in quality and 
standardization thanks to Biobanking advancements, still repre-
sent a strong source of noise and false positives in mutational 
calling [72–74], well known to molecular pathology departments 
(Table S2). Additionally, strategies for sequencing panel design and 
optimization are critical to understanding how to track molec-
ular alteration with a high signal-to-noise ratio. As an example, 
the usage of UMIs has strongly increased in Biotech to reduce 
duplication biases and better impute the specific molecule source 
in low-material sequencing, which was not part of the stan-
dard biotechnological package at the beginning of the targeted 
sequencing era (Table S2.2). After sequencing, raw analysis of data 
is required to transform reads into processed matrixes for down-
stream annotation. This step is increasingly treated as a com-
modity by Biotech/Pharma companies, while the art of creating 
an optimized workflow on a computing platform was a manda-
tory process for most bioinformaticians working on Genomics. 
The revolution of end-to-end virtualization techniques such as 
Docker and singularity enabled improved reproducibility of these 
complex workflows that would need to be finely understood, 
whether any problem arises in processed data results [75, 76] 
(Table S2.3, Table S2.10). Of note, the protection of raw sequence 

data is not part of the classical IT department skillset, and it 
needs to be integrated with the bioinformatician support, after 
the advent and application of GPDR regulation in Europe and sim-
ilar legal frameworks internationally. After all the pre-processing 
and computing steps, it is required to annotate and interpret 
germline and somatic variations at the biological level. This part 
is already at the intersection of medical knowledge, but basic and 
intermediate technical concepts such as variant and population 
allele frequency, coverage, and intersection with available GWAS 
results must be in the Bioinformatician toolbox (Tables S2.4, S2.5, 
and S2.7). An additional task that is still required to interpret 
variants of uncertain significance that do not fall in hotspot 
regions is the manual inspection of reads via dedicated software 
like the integrative genome browser [77]. Manual inspection is an 
action complementary to AI-curated high-quality variant calling, 
which enables tracking artifacts when variants fall, for instance, 
in amplicon flanks or pseudogenes. This task is usually parti-
tioned among the bioinformatician and the digital-savvy clinical 
biologist. 

Apart from the actionability evidence levels that need basic 
translational knowledge to be interpreted, Biostatistics comes 
into the field when in need of interpreting clinical trials results 
associated with a particular target drug or complex biomarker 
(Table S2.8). Furthermore, classical pharmacogenomics is still 
not part of cancer routine workup, but it will become increas-
ingly popular when whole-exome and whole-genome analyses 
are employed. Finally, with the increasing application scenarios 
of AI in precision medicine application, the clinical bioinformat-
ics framework must feature workflows of increasing complexity, 
which employ machine learning models to link alterations with 
putative clinical utility [78–80]. The application of said frame-
works must be handled by personnel able to discern evidence 
levels stemming from models having a level of embedded nonde-
terminism when handling evidence about the preclinical, in silico 
domain. 

Digital skills education perspectives 
Interdisciplinary contexts pose challenges in the education field. 
Students or personnel in training, interested in playing a role at 
the intersection of personalized medicine and computer science, 
would be likely uncertain of the main tracks to follow. 

All the skills can be clustered into three macroareas processing, 
engineering, and interpretation (Fig. 2). With processing, we refer 
to the path that links the sample and the patient to data, engi-
neering to large-scale analytics that requires high computational 
power and the whole data life cycle, and finally, interpretation 
with the processing of genomics information that ends up with 
results usable at the medical and biological level. 

Depending on the minor-bachelor background of the Bioin-
formatician, the student can decide to invest time in improving 
one of these macrodomains with specific academic courses and 
online training. For processing and interpretation, many online 
and onsite courses are provided at the European Level by Research 
Infrastructures such as BBMRI-ERIC (Biobanking and Processing) 
and ELIXIR (variant analysis and interpretation) [81–84]. Inter-
pretation courses can be found at EMBL [85], while the main 
bioinformatics education platform remains GOBLET [86]. 

Other more specifically digital skills have a steep ladder of 
complexity, from basic programming and scripting up to dealing 
with operating systems and virtualization techniques to ensure 
end-to-end reproducibility of the MTB process. All these aspects 
can be found both in academia and in other noninstitutional 
training platforms like Codeacademy [87].
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Figure 2. Graphical representation of the required human skillset, following sample processing, analysis, and interpretation. Color coding follows skill 
clustering as in Table S2. 

From a general perspective, two main kinds of Bioinformatics 
skill sets can be identified. The first is more related to Data 
Science and Interpretation, which requires deep knowledge of 
one scripting language along with its framework and the second 
profile is closer to Genomics raw data processing, in that case 
operating systems and engineering techniques are required to 
transform massive-scale datasets into structured data matrixes. 

The two kinds can co-exist in the same professional skillset, 
but a specialization could be required for facilities, hospitals, and 
MTBs that process a large number of biotechnological diverse 
assays. 

The skill catalog is not meant to be comprehensive nor strictly 
minimal, and we acknowledge the variability of academic and 
professional trajectories that could end up in this workforce. 
Indeed, many bioinformaticians start from a molecular biology 
background and can become highly proficient in computational 
skills after their Master’s degree, while for tasks closer to the Infor-
mation Technology domain an Engineering or Computer Science 
foundation may be more fitting. All these aspects become a deli-
cate matter when computational skills are intertwined in clinical 
decisions. Given these considerations, and since interdisciplinary 
professions follow different rules inside and outside Europe, we 
do not hereby provide a specific list of university degrees asso-
ciated with these skills. To conclude, whether the Medical field 
will consider clinical bioinformaticians as mere technicians or 
higher level professionals with a specific path qualification of 
specialization still must be decided and defined in many European 
countries. 

Conclusions 
Clinical Bioinformatics is a novel interdisciplinary clinical frame-
work and skillset that requires better definition, given its delicate 
intersection with the medical field. A critical risk to be avoided is 
to leave this whole field as a technical nuance to be subcontracted 
to Biotech and Pharma: this would lead to a critical loss of know-
how and decision power of the whole biomedical field, in a 
critical moment where AI is starting to play an important and 
unprecedented role. Importantly, many of these novel tools will be 
regulated as medical devices. We thus envision that novel 
decision-makers in biomedicine must contain both computational-
savvy medical doctors and clinical bioinformaticians. 

Key Points 
• Bioinformatics is a mandatory component of Molecular 

Tumor Boards. 
• Digital tools and software frameworks are required 

for managing the complexity of Cancer Genomics and 
enable reproducible analysis and interpretation in the 
clinical setting. 

• We cluster and describe the needed software and 
databases for Molecular Tumor Board Data Analysis and 
Management. 

• We define for the first time a minimal skillset of human 
skills in MTB Clinical Bioinformatics, from Biobanking 
theory to IT Engineering. 

• Educational and specialized training programs are nec-
essary to equip future bioinformaticians with the 
required knowledge. 
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