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Abstract
Background: Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) 
drives tumorigenesis of various human cancers. However, the association between 
MALAT1 variants and gastric cancer (GC) risk is unknown. We performed a case-
control study to evaluate the possible association between rs619586 and rs3200401 
SNPs in MALAT and GC risk.
Methods: Samples from 458 patients with GC and 381 controls were genotyped 
using the TaqMan genotyping assay.
Results: In stratified analyses, we observed that rs3200401 CT in the codominant 
model and CT+TT in the dominant model were associated with increased GC risk 
in male patients (CT: odds ratio [OR] = 1.81, 95% confidence interval [CI] = 1.09–
3.01, p = 0.022; CT+TT: OR = 1.74, 95% CI = 1.07–2.83, p = 0.026), and the dif-
ferentiated (CT: OR =1.79, 95% CI = 1.18–2.73, p = 0.007; CT+TT: OR = 1.76, 
95% CI = 1.17–2.64, p = 0.007), and intestinal (CT: OR = 1.67, 95% CI = 1.11–2.49, 
p = 0.013; CT+TT: OR = 1.68, 95% CI = 1.14–2.47, p = 0.009) GC subgroups.
Conclusion: MALAT1 rs3200401 increases GC susceptibility and might affect GC 
development. Further studies are needed to validate our results in large populations 
and different ethnic groups.
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1 |  INTRODUCTION

Gastric cancer (GC) was the fifth most common cancer and 
the third leading cause of cancer-related deaths worldwide 
in 2018. Although GC incidence and mortality rates have 
decreased in recent decades, the rates remain high in Asia. 
In Korea, GC is the third most common cancer, with 30,504 
new cases and 8264 deaths recorded in 2016 (Bray et al., 
2018; Jung et al., 2019). Long noncoding RNAs (lncRNAs) 
are non-translated RNAs longer than 200 nucleotides. They 
play pivotal roles in tumorigenesis as proto-oncogenes (Li 
et al., 2009, 2014) and tumor suppressors (Zhao et al., 2015, 
2016) that regulate cell proliferation, invasion, and metasta-
sis (Cruickshanks et al., 2013; Gupta et al., 2010; Liu et al., 
2015; Qiu et al., 2015; Zhao et al., 2015, 2016). Recently, ge-
nome-wide association studies have demonstrated that a num-
ber of single-nucleotide polymorphisms (SNPs) in lncRNAs 
are related to cancer susceptibility (Cheetham et al., 2013; 
Chen et al., 2013). According to recent genome-wide associ-
ation studies, disease-related SNPs are located in noncoding 
regions consisting of intronic, intergenic, and regulatory re-
gions (Freedman et al., 2011; Hindorff et al., 2009). SNPs in 
the regulatory regions of lncRNAs affect lncRNA expression 
by enhancing or disrupting the binding of transcription fac-
tors to DNA (Guo et al., 2016; Huang et al., 2014).

Metastasis-associated lung adenocarcinoma transcript 
1 (MALAT1) is an intergenic lncRNA >800 nucleotides in 
length located on chromosome 11q13. MALAT1 was first 
identified as a prognostic marker for non-small-cell lung 
cancer (NSCLC), and is associated with NSCLC metas-
tasis (Ji et al., 2003). Multiple studies have demonstrated 
that aberrant expression of MALAT1 is involved in the 
proliferation, migration, invasion, and metastasis of sev-
eral human cancers, such as breast cancer (BC), hepato-
cellular carcinoma (HCC), GC, and esophageal squamous 
cell carcinoma (ESCC) (Ellis et al., 2012; Hu et al., 2015; 
Lai et al., 2012; Okugawa et al., 2014). Moreover, recent 
studies have shown that genetic variations in MALAT1 are 
associated with the risk of various cancers, including col-
orectal cancer (CRC), NSCLC, BC, papillary thyroid can-
cer (PTC), ESCC, and HCC (Li et al., 2017; Peng et al., 
2018; Qu et al., 2019; Wang et al., 2017; Wen et al., 2019; 
Yuan et al., 2019). Recent evidence in the context of GC 
has shown that plasma levels of MALAT1 are higher in 
patients with GC with distant metastases than in those 
with no metastases and healthy controls; that upregulated 
MALAT1 expression enhances the proliferation, migra-
tion, and invasion of GC cells through the phosphoinos-
itide 3-kinase/protein kinase B pathway (PI3K/AKT); and 
that MALAT1 promotes metastasis by suppressing tumor 
suppressor protocadherin 10 (PCDH10) via targeting by 
the MALAT1–EZH2 complex (Xia et al., 2016; Zhu et al., 

2019). Although a number of control-case studies have 
evaluated possible associations between lncRNA SNPs 
and GC risk, no studies have reported an association be-
tween an SNP in MALAT1 and GC risk.

We hypothesized that MALAT1 SNPs might affect genetic 
susceptibility to GC. Therefore, we performed a case-control 
study to explore the association between SNPs in MALAT1 
and GC risk in a Korean population. We further evaluated the 
impact of MALAT1 SNPs on GC risk in combination with 
various characteristics and clinical features, including age, 
sex, tumor differentiation, histologic type, T classification, 
lymph node metastasis (LNM), and tumor stage.

2 |  MATERIALS AND METHODS

2.1 | Study subjects

This case-control study population consisted of 458 GC 
patients and 381 controls. GC patients were recruited from 
the outpatient clinic at the Chungnam National University 
Hospital and classified according to Lauren's classification 
(Lauren, 1965). The control group was randomly selected 
among healthy volunteers visiting the Chungnam National 
University Hospital; only individuals who had no history of 
cancer were included. The blood samples used in this study 
were provided by the Chungnam National Hospital Biobank, 
a member of the National Biobank of Korea, which is sup-
ported and audited by the Ministry of Health and Welfare of 
Korea. All individuals enrolled in this study provided writ-
ten informed consent before blood collection. This study was 
approved and reviewed by the Ethics Committee of the in-
stitutional review board of Chungnam National University 
Hospital (IRB#201707023).

2.2 | SNP selection and genotyping

Two SNPs (rs619586 and rs3200401) in MALAT1 were se-
lected based on previously reported to be associated with can-
cer risk (Peng et al., 2018; Qu et al., 2019; Wang et al., 2017; 
Wen et al., 2019; Yuan et al., 2019). Genomic DNA was iso-
lated from peripheral blood samples of all subjects using the 
QIAamp DNA Blood Mini Kit (Qiagen GmbH), according 
to the manufacturer's instructions. MALAT1 rs619586 and 
rs3200401 SNPs were genotyped by the Applied Biosystems 
TaqMan SNP Genotyping Assay using predesigned primer/
probe sets (assay ID C_1060479_10 and C_3246069_10, 
respectively). PCR was performed using the StepOnePlus 
Real-time PCR System (Applied Biosystems) according to 
the following conditions: one cycle at 95°C for 10 min; 45 
cycles at 92°C for 15 s and 60°C for 90 s.
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2.3 | Statistical analysis

Hardy Weinberg equilibrium (HWE) for each SNP in the con-
trol groups was assessed using the Chi-square t-test. Linkage 
disequilibrium (LD) between SNPa pair was analyzed by 
calculating D′ and r2 values obtained using Haploview soft-
ware version 4.0 (the Broad Institute). Differences in age 
and gender between the GC and control groups were cal-
culated using the two-sided Pearson chi-square test and the 
Mann–Whitney U-test. The association was analyzed with 
three genetic models, including codominant (ht or mt vs. wt), 
dominant (ht + mt vs. wt), and recessive (mt vs. wt + ht) 
models. A binary logistic regression was used to estimate 
the GC risk according to odds ratios (ORs) and 95% confi-
dence intervals (CIs). The association analysis was adjusted 
by age and sex, which were included in the model as covari-
ates. Stratified analyses by age, gender, and clinical features 

(Tumor differentiation, histological type, LNM, T classifica-
tion, and tumor stage) were performed. All statistical analyses 
were performed using the SPSS (SPSS Inc.), version 20.0 for 
Windows. p < 0.05 was considered statistically significant.

3 |  RESULTS

3.1 | Characteristics of the study subjects

The characteristics and clinical features of the 458 patients 
with GC and the 381 controls are shown in Table 1. There 
were significant differences in the age and sex distributions 
of the GC group and control group (p < 0.001 and p < 0.001, 
respectively). The mean age was 65.2 ± 10.1 years for the 
patients and 55.6 ± 10.9 years for the controls. The propor-
tion of male subjects (70.1%) was higher than that of female 

Variables

Gastric cancers Controls

pN (%) N (%)

Age (years) (mean ± SD) 458 (65.2 ± 10.1) 381 (55.6 ± 10.9) <0.001a 

<60 198 (43.2) 197 (51.7) 0.014b 

≥60 260 (56.8) 184 (48.3)

Gender (%)

Male 321 (70.1) 122 (32.0) <0.001b 

Female 137 (29.9) 259 (68.0)

Tumor differentiation

Differentiated 222 (48.5)

Undifferentiated 195 (42.6)

Missing 41 (8.9)

Histological type (%)

Intestinal 259 (56.6)

Diffuse 145 (31.7)

Mixed 54 (11.7)

T classification (%)

T1 233 (50.9)

T2 66 (14.4)

T3 16 (3.5)

T4 143 (31.2)

Lymph node metastasis (%)

Negative 283 (61.8)

Positive 175 (38.2)

Tumor stage (%)

I (A + B) 273 (59.6)

II (A + B) 54 (11.8)

III (A + B + C) 131 (28.6)

Abbreviation: SD, standard deviation.
aMann–Whitney U-test. 
bTwo-sided Pearson χ2 test. 

T A B L E  1  Characteristics and clinical 
features of the GC and control groups
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subjects (29.9%) in the GC group, whereas the percentage of 
female subjects (68.0%) was higher than that of male subjects 
(32.0%) in the control group (67.2%). The majority of the 
GC patients was classified into differentiated tumor (48.5%), 
intestinal type (56.6%), T1 (50.9%), LNM-negative (61.8%), 
and tumor stage I (59.6%).

3.2 | Association of SNPs with GC risk

To evaluate associations between MALAT1 SNPs and GC risk, 
we genotyped rs619586 and rs3200401 SNPs in MALAT1, 
which have previously reported association with cancers. 
The distributions of the rs619586 and rs3200401 genotypes 
in the control group were in HWE (p = 0.906 and p = 0.908, 
respectively). LD coefficients (|D′|) were estimated for two 
SNPs, and an absolute LD (|D′| =1 and r2) was not found for 
any pair-wise combination of the two SNPs using Haploview 
4.0 software. We used three genetic models to determine if 

the rs619586 and rs3200401 SNPs were associated with GC 
risk. However, there was no significant association between 
rs619586 and rs3200401 in MALAT1 and GC risk (Table 2).

3.3 | Stratification analysis for rs619586 and 
rs3200401 SNPs

As shown in Tables 3 and 4, we performed stratified analy-
ses based on various clinical features, including age, gender, 
LNM, T classification, and tumor stage, to further evaluate 
possible associations between the rs619586 and rs3200401 
SNPs and GC risk in the GC subgroups. After adjusting for 
age and gender, in a stratified analysis by gender, rs3200401 
showed significant associations with increased GC risk in 
the GC male subgroup in the codominant (CT) and dominant 
(CT  +  TT) models when compared with the CC genotype 
(OR = 1.81, 95% CI = 1.09–3.01, p = 0.022 and OR = 1.74, 
95% CI = 1.07–2.83, p = 0.026, respectively). In a stratified 

Genotype

CON GC GC vs. CON

N (%) N (%) AOR (95% CI)a pa 

rs619586

Codominant

AA 334 (87.7) 396 (86.5) 1

AG 46 (12.1) 59 (12.8) 0.95 (0.61-1.49) 0.836

GG 1 (0.3) 3 (0.7) 2.82 (0.26-31.07) 0396

Dominant

AA 334 (87.7) 396 (86.5) 1

AG + GG 47 (12.3) 62 (13.5) 1.05 (0.66-1.66) 0.848

Recessive

AA + AG 380 (99.7) 455 (99.3) 1

GG 1 (0.3) 3 (0.7) 3.84 (0.35-42.21) 0.272

HWE 0.906 0.886

rs3200401

Codominant

CC 280 (73.5) 312 (68.1) 1

CT 92 (24.1) 133 (29.0) 1.32 (0.94-1.85) 0.104

TT 9 (2.4) 13 (2.9) 1.38 (0.53-3.54) 0.496

Dominant

CC 280 (73.5) 312 (68.1) 1

CT + TT 101 (26.5) 146 (31.9) 1.33 (0.96-1.84) 0.088

Recessive

CC + CT 372 (97.6) 445 (97.1) 1

TT 9 (2.4) 13 (2.9) 1.28 (0.51-3.26) 0.600

HWE 0.908 0.967

Abbreviations: AOR, adjusted odds ratio; CI, confidence interval; CON, control; GC, gastric cancer; HWE, 
Hardy-Weinberg equilibrium.
aAdjusted for age and gender. The significant results are in bold. 

T A B L E  2  Genotype and allele 
frequencies of MALAT1 polymorphisms in 
subjects and their associations with GC risk
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analysis by tumor differentiation, rs3200401 was signifi-
cantly associated with enhanced GC risk in the GC subgroup 
with differentiated tumors in the codominant (CT) and dom-
inant (CT  +  TT) models compared with the CC genotype 
(OR = 1.79, 95% CI = 1.18–2.73, p = 0.007 and OR = 1.76, 
95% CI  =  1.17–2.26, p  =  0.007, respectively). In addi-
tion, according to a stratified analysis by histological type, 
rs3200401 was significantly associated with increased GC 
risk in the subgroup with intestinal-type GC in the codomi-
nant model (CT) and dominant model (CT + TT) compared 
with the CC genotype (OR  =  1.67, 95% CI  =  1.11–2.49, 
p = 0.013 and OR = 1.68, 95% CI = 1.14–2.47, p = 0.009, 
respectively). However, rs619586 showed no significant as-
sociations with GC risk in any of the analyses stratified by 
age, gender, and clinical features.

4 |  DISCUSSION

MALAT1 is one of the first lncRNAs identified as a proto-
oncogene in early stage NSCLC (Ji et al., 2003), and it pro-
motes cancer proliferation, migration, and metastasis (Bi 
et al., 2017; Li et al., 2009; Wu et al., 2014). We performed 
the first investigation of the association between the rs619586 
and rs3200401 SNPs in MALAT1 and GC susceptibility in 
a Korean population. Although we did not observe statisti-
cally significant associations between MALAT1 rs619586 or 
rs3200401 and overall GC risk, we found significant associa-
tions between rs3200401 and GC risk in stratified analyses 

by gender, tumor differentiation, and histological type. In our 
stratified analyses, we found that the rs3200401 CT genotype 
in the codominant model and the CT + TT genotype in the 
dominant model were significantly associated with 1.81- and 
1.74-times higher GC risk in the male subgroup, 1.79- and 
1.76-times higher GC risk in the differentiated GC subgroup, 
and 1.67- and 1.68-times higher GC risk in the intestinal-type 
GC subgroup than the wild-type genotype. Furthermore, the 
rs3200401 CT genotype was associated with the highest GC 
risk (1.81 times greater than the wild-type genotype) in the 
male subgroup. Consistent with our results, Qu et al. (2019) 
showed, through stratified analysis, that the rs3200401 CT, 
TT, and CT  +  TT genotypes in the dominant model were 
associated with increased ESCC risk in the group that never 
smoked compared with the CC genotype. In contrast to our 
results, Wang et al. (2017) found that the rs3200401 CT and 
CT + TT genotypes were associated with decreased risk of 
death by NSCLC, and Peng at al. (2018) also showed that the 
CT genotype was associated with decreased BC risk in the 
subgroup >50 years old compared with the CC + TT gen-
otype. MALAT1 interacts with serine/argine-rich (SR) pro-
teins thus regulates the alternative splicing of pre-miRNAs 
(Tripathi et al., 2010). The rs3200401 SNP locates in the re-
gion M of MALAT1 (6008-7011 nts), one of the binding sites 
to SRSF2 (Miyagawa et al., 2012). The rs3200401 variation 
may regulate the expression of cancer-related genes thus in-
fluence cancer development. Further studies are needed to 
elucidate the different roles of rs3200401 SNP in different 
cancers. Wen et al. (2019) and Yuan et al. (2019) evaluated 

T A B L E  3  Stratified analysis of the MALAT1 SNPs rs619586 and rs3200401 by age and gender in GC patients and controls

Variables

GC vs. CON

Codominant (ht/wt) Dominant (ht+mt/wt)

GC CON OR (95% CI)a pa GC CON OR (95% CI)a pa 

rs619586

Age (years)

<60 29/169 20/176 1.30 (0.65-2.61) 0.460 29/169 21/176 1.25 (0.62-2.48) 0.534

≥60 30/227 26/158 0.91 (0.49-1.70) 0.771 33/227 26/158 1.01 (0.55-1.86) 0.966

Gender

Male 48/271 15/107 1.26 (0.68-2.34) 0.470 50/271 15/107 1.31 (0.71-2.44) 0.391

Female 11/125 31/227 0.65 (0.31-1.35) 0.246 12/125 32/227 0.68 (0.34-1.38) 0.288

rs3200401

Age (years)

<60 58/134 51/144 1.39 (0.83-2.33) 0.214 64/134 53/144 1.51 (0.91-2.51) 0.108

≥60 75/178 41/136 1.42 (0.88-2.29) 0.155 82/178 48/136 1.30 (0.83-2.05) 0.257

Gender

Male 98/215 24/95 1.81 (1.09-3.01) 0.022 106/215 27/95 1.74 (1.07-2.83) 0.026

Female 35/97 68/185 1.03 (0.63-1.67) 0.913 38/97 74/185 1.07 (0.68-1.71) 0.765

Abbreviations: CI, confidence interval; CON, controls; GC, gastric cancer; ht, heterozygous; mt, mutant; OR, odds ratio; wt, wild-type.
aAdjusted by age and gender. The significant results are in bold. 
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possible associations between rs3200401 and PTC and HCC 
risks, respectively, but found no associations. Moreover, we 
found no association between rs619586 and GC risk, even 
in stratified analyses. However, in contrast to our results, 
four studies observed an association between rs619586 and 
cancer risk. Peng et al. (2018) found that the rs619586 AG 
and AG + GG genotypes were associated with decreased BC 

risk, Wen et al. (2019) found that the rs619586 GG genotype 
was associated with decreased PTC risk, Qu et al. (2019) ob-
served that the rs619586 GG genotype was associated with 
decreased risk of ESCC in the subgroup that never drank al-
cohol, and Yuan et al. (2019) showed that the rs619586 AG 
and AG + GG genotypes were associated with decreased risk 
of HCC in the subgroup of patients <55 years old.

T A B L E  4  Associations of the clinical features of GC with the MALAT1 rs619586 and rs3200401 SNPs in GC patients and controls

Variables

GC vs. CON

Codominant (ht/wt) Dominant (ht + mt/wt)

GC CON OR (95% CI)a pa GC CON OR (95% CI)a pa 

rs619586

Tumor differentiation

Differentiated 27/193 46/334 0.96 (0.54-1.69) 0.878 28/193 47/334 0.98 (0.56-1.72) 0.937

Undifferentiated 25/169 46/334 1.00 (0.58-1.73) 0.999 27/169 47/334 1.07 (0.63-1.83) 0.799

Histological type

Intestinal 31/226 46/334 0.91 (0.53-1.57) 0.741 32/226 47/334 0.93 (0.54-1.59) 0.784

Diffuse 19/125 46/334 1.01 (0.56-1.83) 0.971 21/125 47/334 1.12 (0.63-1.98) 0.708

Lymph node metastasis

Negative 38/243 46/334 1.06 (0.64-1.75) 0.822 40/243 47/334 1.11 (0.68-1.83) 0.671

Positive 21/153 46/334 0.87 (0.48-1.57) 0.640 22/153 47/334 0.89 (0.50-1.59) 0.695

T classification

T1/T2 37/260 46/334 0.97 (0.58-1.61) 0.902 39/260 47/334 1.04 (0.58-1.87) 0.902

T3/T4 22/136 46/334 1.02 (0.62-1.68) 0.939 23/136 47/334 1.06 (0.60-1.89) 0.842

Tumor stage

I (A + B)/II 
(A + B + C)

41/284 46/334 0.98 (0.60-1.61) 0.948 43/284 47/334 1.03 (0.63-1.67) 0.910

III (A + B + C) 18/112 46/334 1.03 (0.55-1.93) 0.925 19/112 47/334 1.06 (0.58-1.97) 0.845

rs3200401

Tumor differentiation

Differentiated 73/142 92/280 1.79 (1.18-2.73) 0.007 80/142 101/280 1.76 (1.17-2.64) 0.007

Undifferentiated 53/138 92/280 1.18 (0.78-1.78) 1.175 57/138 101/280 1.16 (0.77-1.73) 0.481

Histological type

Intestinal 82/168 92/280 1.67 (1.11-2.49) 0.013 91/168 101/280 1.68 (1.14-2.47) 0.009

Diffuse 38/104 92/280 1.20 (0.76-1.89) 0.436 41/104 101/280 1.19 (0.76-1.85) 0.349

Lymph node metastasis

Negative 85/192 92/280 1.43 (0.98-2.09) 0.066 91/192 101/280 1.38 (0.95-1.99) 0.090

Positive 48/120 92/280 1.27 (0.82-1.97) 0.286 55/120 101/280 1.34 (0.88-2.04) 0.172

T classification

T1/T2 89/204 92/280 1.37 (0.94-1.99) 0.101 95/204 101/280 1.33 (0.93-1.92) 0.123

T3/T4 44/108 92/280 1.33 (0.84-2.10) 0.219 51/108 101/280 1.39 (0.90-2.14) 0.140

Tumor stage

I (A + B)/II 
(A + B + C)

99/220 92/280 1.41 (0.98-2.03) 0.067 107/220 101/280 1.38 (0.97-1.96) 0.077

III (A + B + C) 34/92 92/280 1.20 (0.73-1.97) 0.465 39/92 101/280 1.26 (0.78-2.01) 0.345

Abbreviations: CI, confidence interval; CON, controls; GC, gastric cancer; ht, heterozygous; mt, mutant; OR, odds ratio; wt, wild-type.
aAdjusted by age and gender. The significant results are in bold. 
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There were a few limitations to our study. First, the 
sample size was too small to have statistical power for the 
stratification analysis. Second, cases and controls were not 
matched on age and gender. Therefore, binary logistic re-
gression models with adjustment for age and gender were 
used to reduce the effect of covariate. Third, we failed to 
explore the association between the SNPs and other clini-
cal features, such as Helicobacter pylori infection, smok-
ing, and drinking, due to a lack of data from both the GC 
and control groups. Finally, our findings cover only a spe-
cific ethnic group.

In conclusion, we suggest that the MALAT1 rs3200401 
SNP is associated with increased GC risk in male patients, 
and those in the differentiated and intestinal tumor subgroups. 
The SNP may contribute to GC development as a proto-onco-
gene by altering MALAT1 expression, as has been observed 
in other cancers. Further studies are required to validate our 
findings in large populations and different ethnic groups.
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