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Computed tomography is nowadays an indispensable tool in medicine used to diagnose multiple diseases. In
clinical and emergency room environments, the speed of acquisition and information processing are crucial.
CUDA is a software architecture used to work with NVIDIA graphics processing units. In this paper a method-
ology to accelerate tomographic image reconstruction based on maximum likelihood expectation maximiza-
tion iterative algorithm and combined with the use of graphics processing units programmed in CUDA
framework is presented. Implementations developed here are used to reconstruct images with clinical use.
Timewise, parallel versions showed improvement with respect to serial implementations. These differences
reached, in some cases, 2 orders of magnitude in time while preserving image quality. The image quality
and reconstruction times were not affected significantly by the addition of Poisson noise to projections.
Furthermore, our implementations showed good performance when compared with reconstruction methods
provided by commercial software. One of the goals of this work was to provide a fast, portable, simple, and
cheap image reconstruction system, and our results support the statement that the goal was achieved.

INTRODUCTION
X-ray computed tomography (CT) is a nondestructive technique
in which a source of X-rays (ionizing radiation) revolves around
an object of interest, generating axial images of its structure. CT
is today an indispensable tool in medicine for the diagnosis of
multiple diseases (1). Since its introduction in 1970, there are
about 30,000 CT scanners in the world and its number continues
to increase exponentially (1). Even if CT techniques represent one
of the greatest developments in the field of X-rays in the past
50years (1), there is still room for improvement. Some of the pro-
posed lines of work to achieve this objective include reduction of
patient exposure time, reduction of acquisition and processing
times, development of new techniques with new functionalities,
and cost reduction (2). Some of the solutions to these points have
so far focused on the development of higher performance hard-
ware that will lower costs for and dose delivery to patients with-
out compromising the effectiveness of the diagnosis. Work has
also been done on the use of iterative methods for image recon-
struction, reducing processing times and reducing the dose nec-
essary for the acquisition of images with diagnostic value.

Current CT scanners use filtered back projection (FBP) for
regular image reconstruction (3, 4). This technique is mathe-

matically based on the radon transform (RT) (5, 6). In this tech-
nique, the image of an object is reconstructed from a set of X-ray
projections of the aforementioned object (7). There are many
computational algorithms that can be used to solve the RT. The
theoretical framework of reconstruction methods can be found in
the literature (2, 8, 9). Nevertheless, these are usually classified
into 2 methodologies: analytical reconstruction methods and/or
iterative reconstruction methods. In the first method, the use of
FBP algorithms has been the standard to date (10), because it is a
simple and fast reconstruction algorithm with low computational
cost. However, it is prone to the appearance of artifacts and
sometimes has low spatial resolution. In addition, it requires a
large number of projections without noise for the reconstruction
solution to be of quality. This is far from real-life situations, in
which only a finite set of projections will be available. Moreover,
“approximate” reconstruction methods are also known as itera-
tive algorithms. These are less sensitive to incomplete sets of
data, noise, and artifacts (10, 11). This translates into better qual-
ity of the reconstructed images. In addition, by requiring less in-
formation for reconstruction, they can use fewer projections/
radiation by reducing the doses delivered in a study to a patient.
For a review of the mathematics behind these methods, see the
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literature (12). The most common between them is maximum likeli-
hood expectation maximization (MLEM) (13). Nevertheless, the
main limitation of these techniques with respect to analytical recon-
struction methods is their high computational cost.

One way to deal with the limitation of long computational
times is to parallelize the reconstruction of an image. To this end,
the graphics processing unit (GPU) can be used in combination
with the parallel programming environment CUDA (compute
unified device architecture) (14-16), same that allows to handle
and process data in GPUs. It is made up of execution units, called
streaming multiprocessors, which in turn are formed by comput-
ing cores called streaming processors, or CUDA cores. It is these
nuclei that execute the instructions. That is, the mathematical
operations or the routing and transfer of data in memory. The pro-
gramming model of graphic cards involves both the central proc-
essing unit (CPU) and the GPU. The sequential part of the
applications is executed in the CPU (Host), and the intensive com-
puting part is accelerated by using the GPU (Device) in parallel.
This technology is basic for the use and application of GPUs in
fields as diverse as: bioinformatics, computational chemistry, com-
puter imaging and vision, climate, numerical Analysis, etc. (17).

Medical image processing is one of the first fields in which
GPUs were used (18, 19). Tatarchuk et al. (20) presented a set of
methods that allowed interactive exploration of medical data sets
in real time. Flores et al. (21, 22) presented the development of a
fast algorithm implemented in GPUs to reconstruct high-quality
images from projected, sampled, and noisy data. Belzunce et al.
obtained a parallel implementation under CUDA for nuclear
medicine data (SPECT and PET). An acceleration factor of up to
85 times was achieved with respect to a single-wire CPU imple-
mentation (23). Xie et al. proposed a way to synchronize the ac-
quisition of CT data with the GPU analysis. This reduced the
computational analysis time between 10 and 16 times (24).
Finally, Xing et al. (25) showed more applications on the use of
GPUs in this area.

In this study, medical CT images will be reconstructed using
an iterative method that will solve the MLEM reconstruction
algorithm. (13) This will be done using GPUs and CUDA to paral-
lelize the analysis and reduce its computational costs. This analy-
sis will be performed under nonideal noise conditions and their
results will be compared with those of commercial medical imag-
ing programs. Another objective of this study is that the work
scheme developed can be implemented in a commercial laptop
with a graphics card compatible with CUDA. This way and using
a system with minimal computing requirements; a fast, simple
and low-cost image reconstruction platform can be provided.
The article is structured as follows: the next section presents the
methodology used in the processing of the images comprising
the structure of the algorithm modules, the quality metrics
applied to the reconstructions obtained, and the software and
hardware used. This is followed by the results section in which
the benefits of the CUDA implementation of the MLEM algorithm
is presented and compared.

METHODOLOGY
First, the MLEM algorithm was implemented in series, both in
MatLab® (MathWorks, Natick, MA) and in C. Second, the same

algorithm was implemented in parallel using CUDA. Third, dif-
ferent image quality parameters were calculated for a series of
clinical and phantom images based on the reconstruction time
and the number of iterations. In a couple of cases Poisson noise
was added to blur the original images and perform an evaluation
of the effect of noise on the different reconstruction parameters.
Finally, results of the reconstructed images were compared with
those of commercial software.

MLEMAlgorithm
Lange et al. (26) presented the MLEM reconstruction algo-
rithm for emission and transmission tomography. The MLEM
algorithm was derived from the following mathematical
expression:

xrþ1
j ¼ xrj

oM

i¼1aij
oM

i¼1
aijyi

oN

l¼1ailx
r
l

(1)

Here xrj is a pixel, j is the image x in the r-th iteration, yi is
the interval i of the projection measured given by the CT scanner,
aij is the system matrixM � N whose coefficients connect the xj
values of the image with projections yi and describe the probabil-
ity of detecting a photon in píxel j for the i bin.

All algorithm implementations developed in this study
required of an aij system matrix that was used in the resolution
of the MLEM algorithm given in the literature (1). Creating a sys-
tem matrix aij depended on the number of projection lines yi, the
number of projection angles and the size of the image to be
reconstructed n� n. This matrix could be calculated in different
ways, and in this project, the methodology given in the literature
(27-29) was used to generate and model the matrix in MatLab.

Implementation of the Algorithm for CT Image
Reconstruction
As already mentioned, to compare processing times and perform-
ance, the MLEM algorithm was implemented, first serially, in
MatLab and C languages, and then in parallel using CUDA on the
graphics card.

Serial Implementations. Two versions of the MLEM algorithm
were developed, one in MatLab and one in C (Serial-MatLab and
Serial-C, respectively). The different processes that are part of the
programmed algorithms are described as follows:

1. Input Data: In a first step, the files provided by the CT
scanner were loaded. This included the system matrix aij
and the measured projections yi. These structures were
called matrix and vector, respectively. The aij matrix and
the vector yi provided information such as the number of
rows and columns of the system matrix or the number of
elements of the projection vector yi.

2. Initial Image Estimation: To reduce the number of itera-
tions, an initial estimate of the image was used—x0l . It was
created either with all its values equal to the average of the
projection data or by setting its values at an intensity
between 1 and 255 (grayscale).

3. Forward-Projection: The first iteration was performed on
the image with an initial estimate that simulated the pro-
jections of a given x0j . This was required for the calculation
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of ysimulated
i ¼ol

ailx0l to determine the corresponding pro-
jection values.

4. Comparison with the measured data: The comparison
step was performed by dividing the original projection
data yi with the data from simulated projections ysimulated

i ,
obtaining a relation Yi ¼ yi

ysimulatedi
. Here Yi formed a multipli-

cative correction factor for each projection.
5. Back-Projection: The calculated Yi was back-projected to

obtain a correction factor Xj for the initial image. This was
done with the following system calculation Xj ¼oM

i¼1aijYi
.

6. Normalization: The correction factor Xj was normalized
before being multiplied by x0j . It was divided by a weight-
ing term based on the systemmodel to apply the desired in-
tensity of each image correction factor. This produced
e j ¼ Xj=oM

i¼1aij, where e j represented the normalized cor-
rection factor.

7. Image Update: The initial estimation of image x0j was mul-
tiplied by the normalized correction factor e j; obtaining
the new image estimation x1j ; which was then fed into the
algorithm in the initial image estimation step.

These processes were executed iteratively until the relative
error between the estimated and the actual image reached a value
<5%. To verify that this behavior was maintained, up to 1000
iterations were performed.

From the serial implementation of the algorithm, the per-
formance was measured for each of the processes. It was found
that the processes that consumed the most resources were the
steps of Forward-Projection and Back-Projection. Between them,
they used�75% of computational time.
Parallel Implementations. Two versions were developed: par-

allel using GPU (Parallel-GPU) and parallel using GPU but opti-
mizing data transfer (Parallel-OpT). Both implementations
resolved equation (1) using both C and CUDA. CUDA was used to
exclusively develop the Forward-Projection and Back-Projection
processes, known for being the ones that consume the most com-
puting resources.

The calculations performed on the data structures were
handled in C by four kernels (Back-Projection, Forward-Projection,
Normalization, Image Update), which distributed the data to the
blocks of threads. This was done in similarity to the serial case. The
different processes of the parallel versions are described as follows:

1. Forward-Projection module: To this end, a Forward-
Projection module, using resources from the cuBLAS
library from CUDA, was programmed (30, 31). No
Forward-Projection or Back-Projection modules exists per
se in cuBLAS, so they were developed specifically by
authors for this project. Matrix aij was loaded to the Host
and transferred to the Device; vector x0l was generated in
the Host and also transferred to the Device. Matrix aij was
partitioned in grids of threads blocks. Each thread read a
row of the aij matrix and multiplied it by vector x0l to
obtain a vector in the Device. The resulting ysimulated

i vector
was then transferred to theHost.

2. Back-Projection module: As in the previous process, the
Back-Projection module was launched on the Device. This
module required most of the computational resources for

the entire reconstruction process, as it consisted of 2 opera-
tions: calculation of the transposition of aij and that of its
product with vector Yi.

3. Optimization of GPU computing time. The main data
transfers between Host and Device were carried out when
the Forward-Projection and Back-Projection processes
were executed. To improve the performance of the pro-
grams, the transfer of data between the RAM of the CPU
and the global memory of the GPU was handled by joining
the Forward-Projection, comparing the measured data and
Back-Projectionmodules in one function, and maintaining
data calculations in the GPU. This created the optimized
parallel version (Parallel-Opt).

As in the serial case, these processes were executed itera-
tively until the relative error between the estimated and the
actual image reached a value<5%.

ImageQuality Parameters
In this study, 2 clinical CT images were initially reconstructed
along with a 512� 512 image of the Shepp–Logan phantom (SLP)
(32). The first clinical image was an axial cut of the brain that cov-
ered the cerebellum, as well as the nasal and auditory cavities (33).
The second clinical image represented an abdominal axial cut
through the lungs, heart, pancreas, and liver (33). The matrices of
both CT images were 512� 512 with a dynamic range of 8 bits per
pixel, with a system matrix of 23944 � 262144 and a vector pro-
jection of 23944 � 1 for a 5° sweeping angle.

To evaluate the quality of the reconstructed images, different
image quality parameters were used. The main parameters stud-
ied were: contrast-to-noise ratio and signal-to-noise ratio (34).
The first indicated how well 2 neighboring tissues could be dis-
tinguished. The latter how strong a signal was with respect to
background noise. Other image quality parameters evaluated
were: mean squared error (MSE) (35), peak signal-to-noise ratio
(PSNR) (36) or structural similarity index (SSIM) (37). MSE pro-
vided a measurement of the differences between a reconstructed
image and a reference image. The lower the MSE value, the better
the result. The PSNR described the relationship of the maximum
possible power of a signal with the power of noise corruption. It
was represented on a decibel scale, and a high PSNR value meant
that the reconstruction was of high quality. Finally, the SSIM
evaluated the following 3 image parameters: luminance, con-
trast, and structural correlation. The SSIM was used to measure
the similarity between 2 images, namely, original CT image and
reconstructed images. SSIM values were normalized between 0
and 1; being 1 the situation in which both images were equal.

All image quality parameters were measured for all the CT
images and for the 4 implementations of the algorithm developed
and the two versions of TIGRE. In addition, 2 scenarios were con-
sidered, in which 5% Poisson noise was added to the images
under study to assess the impact of noise on the reconstruction
time and quality.

Comparisonwith Commercial Software
To compare the implementations developed in this work for the
MLEM algorithm with those of an external (commercial) code,
the TIGRE MatLab library was used (38). From it, 2 iterative
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tomographic reconstruction toolboxes based on GPUs were used,
namely, the OS-SART algorithm that is used to solve reconstruc-
tions of the conical beam CT images using simultaneous alge-
braic reconstruction techniques with ordered subsets, and the
ASD-POCS algorithm that is based on the most pronounced
adaptive descent projection in convex subsets (39).

Hardware and Software
Serial and parallel implementations were developed and exe-
cuted on a laptop with an Intel Core i7-5500U processor running
at 2.40GHz and equipped with an NVIDIA GeForce 840 M
graphics card, with a global memory of 2048 MB and 384 CUDA
cores on an Ubuntu operating system 15.04 (40). MATLAB
R2017a was used (27) as well as GCC 4.9.2 (41) for the serial part.
CUDA C 7.5 (31) was used for the parallel calculations. The Open
Source Computer Vision library (OpenCV 3.2.0) was used to cal-
culate image quality measurements (42, 43).

RESULTS
Computer algorithms and code developed here will be available
after petition to authors.

Figures 1 to 3 present the results obtained for the 4 imple-
mentations of the algorithm developed here (Serial-MatLab,
Serial-C, and the 2 parallel versions) and the external test soft-
ware (2 versions).

Images in Figure 1 correspond to a reconstruction with
Parallel-OpT software with a maximum of 1000 iterations. In the
first row, SLP and two 512� 512 CT images are presented. In the
following row 4 128� 128 regions of interest of the previous
images are presented. These regions were selected randomly by
authors. The original image of the SLP (first column) is shown in
the first row of Figure 1. In the second column, the reconstructed
image “iteration 64” is shown, which will be referred from now
on as “the best” and called iteration64. Number 64 just quantifies
the number of iterations necessary to reach it. In the third col-
umn, the reconstructed image called “functional” is shown. In
this case it is called “iteration 35,” and it is characterized by the
fact that the differences in its quality parameters with those of
the “the best” are <5%. The last column shows the “functional”
image with the Poisson noise. The CT images of the central row
correspond to the axial section of the brain, while the abdominal
axial section is presented in the last row of Figure 1. The data of
the last 2 rows are presented in the same scheme as in the SLP
image.

Figure 1. Comparison of original
and reconstructed computed to-
mography (CT) images using the
maximum likelihood expectation
maximization (MLEM) algorithm,
Parallel-OpT. Shepp-Logan phan-
tom: In (I) Original image CT, (A)
ROI Original CT image, (B) ROI
The best, (C) Functional ROI, (D)
Functional ROI with Poisson noise.
Axial head cut: In (II) Original
image CT, (E) ROI Original image
CT, (F) ROI The best, (G) Functional
ROI, (H) Functional ROI with
Poisson noise. Abdominal axial
section: In (III) Original CT image,
(I) ROI Original image CT, (J) ROI
The best, (K) Functional ROI, (L)
Functional ROI with Poisson noise.
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The values of the different quality parameters of each image
are presented in Table 1. The minimum number of necessary iter-
ations to obtain the given image quality value and the time taken
to achieve it are also presented.

Figure 2 shows the mean values for the different quality pa-
rameters of the reconstructed images of Figure 1: MSE, PSNR,
and SSIM. Table 2 vs. number of iterations presents the quantifi-
cation of these values. Images obtained from reconstruction had
512� 512 matrices formed from CT projections that varied
between 0° and 180° in 5° steps (views). Initially, the quality val-
ues of the reconstructed images were calculated for all serial and
parallel implementations; however, the differences in the abso-
lute values of these quality parameters were<0.001%.

In addition, the dependence between the optimal number of
views/projections for image reconstruction in the implementa-
tions was studied. These results are presented as complementary
material (see online supplemental Figure 1). In this analysis, the
image quality parameters, as well as the time calculations, were
compared based on the number of iterations and the number of
views. It was found that the use of jumps of 5° per view to cover
the entire field of vision, as well as 50 to 100 iterations, produced
reliable results without extending the calculation time while
obtaining high-quality image parameter values.

It is worth mentioning that when the field of view was cov-
ered either with projections that varied between 0°–180° and 0°–
360°, the reconstructions of the different programs produced
very similar results (regarding image quality parameters).
Because of this and from this point, only reconstructions with a
system matrix that varied from 0° to 180° were taken into
account.

Figure 3 presents the average computation time for the 4
implementations/programs developed by the authors, as well as
the 2 versions based on TIGRE. It also shows the results with
added Poisson noise. The data are presented versus the number
of iterations.

It can be observed that the differences in computation
time between the Parallel-OpT and Serial-C implementations
were of the order of 12 times faster for the parallel solution.
The Parallel-OpT was 170 times faster than Serial-MatLab.
Parallel-OpT and Parallel-GPU implementations differed by
a factor of 2 when computer processing time was considered.
It was observed that the calculation times of the ASD_POCS
version of TIGRE were comparable with those of the Serial-C
and �10 times slower than Parallel-OpT. In contrast, TIGRE
OS-SART was the fastest of all, being 2 times faster than the
Parallel-OpT implementation in CUDA. When the data were
analyzed with aggregate noise, no differences were found in
the computation time with respect to Paralell-OpT. This was
for the reconstruction of the 3 images studied. Finally, it is
worth noting that the relationships between the calculation
times of implementations of the MLEM algorithm were con-
stant and remained independent of the number of iterations
or added noise.

As mentioned earlier and as seen in Figures 2 and 3,
Parallel-OpT was up to 13 times faster than ASD_POCS and 7%
better in image quality. The OS-SART was, in contrast, 50%
faster, but with lower image result quality. The MSE was 720%
worse; the PSNR was 7.5% worse

These differences are highlighted in Figure 4. In Figure 4, a
general comparison between Parallel-OpT and the 2 chosen from
the TIGRE library are shown. The best quality/time ratio can be
appreciated from the first implementation.

Finally, to test the stability and effectiveness of these pro-
grams, data from a clinical study were reconstructed using the
Parallel-OpT implementation. Further 101 CT images, corre-
sponding to a single axial cut of the pelvis were obtained from
each volunteer. Data were downloaded from The Cancer Genome
Atlas Sarcoma database (TCGA-SARC) (33); therefore, no ethical
permission was needed to perform this study on our side. In each
image the SSIM was calculated as in previous sections. The SSIM

Table 1. Quality Parameters from Figure 1 E

Shepp–Logan Phantom

CNR SNR SSIM PSNR MSE Iterations Time (s)

Original 0.98 5.17

The best 5.10 0.99 31.49 46.1 64 408.31

Functional 4.90 0.99 28.85 84.8 35 55.99

Functional þ Noise 0.98 28.60 88.0 35 54.96

Head

Original 0.35 3.54

The best 3.51 0.98 27.84 107.0 46 295.01

Functional 3.60 0.97 25.43 186.2 28 44.93

Functional þ Noise 0.96 24.52 229.6 28 47.24

Abdomen

Original 0.98 4.63

The best 4.79 0.98 41.65 4.45 24 155.62

Functional 4.71 0.98 41.50 4.60 24 39.04

Functional þ Noise 0.96 39.36 7.53 24 39.18
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Figure 2. Image quality pa-
rameters: MSE, PSNR, and
SSIM versus number of itera-
tions. Image parameters were
obtained after reconstruction
with Parallel-OpT. (A) mean
squared error (MSE), (B) peak
signal-to-noise ratio (PSNR),
and (C) structural similarity
index (SSIM).
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data are presented in Figure 5 (using MatLab Distribution Fitter
app software). SSIM values reached a maximum of 0.9. Data pre-
sented a normal distribution form of 0.902 6 0.019 (mean 6
SD). This was confirmed by conducting a Shapiro–Wilk test cal-
culated with SPSS software (P < .05). All data, except one,
exceeded the threshold value of 0.85 SSIM, a standard limit for
good image quality.

DISCUSSION AND CONCLUSIONS
This work shows the parallel implementation of the MLEM
reconstruction algorithm using graphic card capabilities.
Software solutions developed here were compared with
reconstructions of clinical images using several image qual-
ity parameters (CNR, SSIM, MSE, etc.). Computer time used

for image reconstruction in CUDA-based programs was
shorter than that associated with serial solutions. Acceleration
factors that varied between 2 and 170 times were obtained. In
comparison with the TIGRE software, images were obtained
of similar quality, but in some cases and for some specific
image quality factors, images were 7 times better for our
CUDA programs. The addition of 5% noise to signals did not
increase the reconstruction time proportionally; in fact, it
left it almost unaltered. Moreover, image quality decreased in
general by a 5% factor (except for the PSNR parameter that
lost 30% of its maximum value in some scenarios). The clini-
cal study results showed that calculations were consistent
and reproducible. Furthermore, the quality of image recon-
struction was conserved even at short reconstruction times.

Table 2. Quantification of Data Presented in Figure 2 E

MSE PSNR SSIM

Min. Iteration Time (s) Min. Iteration Time (s) Max. Iteration Time (s)

Shepp–Logan 32.2 1000 1548 33 1000 1548 0.992 77 119.7

Shepp–Logan þ Noise 58.95 1000 1595 30.42 1000 1595 0.980 35 56.55

Abdominal CT 0.842 146 227.4 48.8 146 227.4 0.986 146 227.4

Abdominal CT þ Noise 7.46 22 35.98 39.4 22 35.98 0.967 16 26.39

Head CT 100 1000 1586 28 1000 1586 0.987 268 426.5

Head CT þ Noise 139.1 1000 1612 26.69 1000 1612 0.959 43 43.94

Shepp–Logan with OS_SART 262.2 30 26.8 23.94 30 26.8 0.900 30 26.8

Shepp–Logan with ASD_POCS 272.6 40 795.8 23.77 40 795.8 0.925 40 795.8

Figure 3. Calculation of computing times for different implementations developed in this study as well as TIGRE algo-
rithms. An enlarged image of the first 200 iterations is presented in the lower right corner.
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All these results imply that the MLEM implementations in
CUDA using GPUs’ capabilities presented here were reliable
and fast.

With respect to image acquisition, it was shown that to
generate the system matrix, only projections in the range of 0°
to 180° were needed. This contrasted with the acquisition of
full-field projections (from 0° to 360°). This is a well-estab-
lished fact in the field, so no data or images were presented to
support this fact in this work. In general, acquisitions over
small angles (1°, 2°, or 3°) at 1000 iterations took up to 5000
seconds. This amount of time was obviously greater than
reconstructions in steps of 5° or larger. Measurements with
larger angles were described in the online supplemental Figure
1. There it could be appreciated that the 5° measurements pre-
sented a perfect compromise between reconstruction quality
and reconstruction time. Therefore, this value was the one
selected for reconstruction in this study.

Figure 2 showed how the different image quality metrics
(MSE, PSNR, SSIM) decreased first and then increased rapidly as
the number of iterations increased. This allowed to deduce an
“ideal” range of iterations for image reconstruction for this soft-
ware implementation that was set between 50 and 100.
Therefore, as it can be seen in Figure 2B, the PSNR parameter for
the SLP and the abdominal image reached a local maximum
value within the range of 50 to 100 iterations. For the head
image, this effect was similar but less prominent. Obviously
when larger number of iterations were performed, values of this
last parameter were larger and therefore better. Nevertheless, the
time used to improve 5% of this parameter could be easily 5–10
times larger. That made this approach of larger iterations less
attractive for practical purposes. The maximum values of the
SSIM metric for the SLP, the head, and the abdominal images
were 0.992, 0.987, and 0.986, respectively. These maximum val-
ues were reached within the proposed range of iterations (see
Figure 2C). After the maximum, the values remained stable and
were not affected by a greater number of iterations. As indicated
before in the text, values of SSIM over 0.85 represented images
of good clinical quality.

Once the iteration interval and the degrees between projec-
tions used to acquire the images were established, the processing
times of the different implementations developed were compared
(Figure 3). It was found that the difference in time between
Serial-C and Parallel-OpT to achieve the same result was
�1000 seconds at 50 iterations (12 times more) and 9000 seconds
in 1000 iterations (170 times more). These results showed that
implementations of the MLEM algorithm based on CUDA could
perform good image reconstructions in shorter times than tradi-
tional CPU-based methods. Surprisingly, the addition, the Poisson
noise did not affect the reconstruction times of the Parallel-OpT
implementation. When compared with the results from TIGRE
implementations, equal or better time performances were
achieved, always with better image quality reconstruction.

If the reader considers that one of the basic ideas behind this
work was to implement the MLEM algorithm in a novel way by
using the GPUs’ capabilities in commercial/low capability com-
puting systems, he/she can observe that this was accomplished.
Therefore, the solution for image analysis presented here could
be used in institutions or health systems with low financial

Figure 4. SSIM versus number of iterations
versus time for: (A) Parallel-OpT, (B)OS_SART,
and (C) ASD_POCS. Embedded in the image,
the color code indicates the effect of time on
SSIM values.
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Figure 5. Histogram of SSIM values of reconstructed images from a clinical study. The data present an equally normal-
ized distribution of values. (A) Parallel-OpT, (B) TIGRE 1, and (C) TIGRE 2.
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resources in a reliable way, conserving image quality and main-
taining reconstruction times as low as possible.

Supplemental Materials
Supplemental Figure 1: https://doi.org/10.18383/j.tom.2020.00011.
sup.01
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