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Brief Summary 

The Activin/Follistatin-axis is significantly deregulated in the context of COVID-19 

pathophysiology.  FACT-CLINYCoD, a novel scoring system based on peripheral blood Activin 

A, B and Follistatin assessment in conjunction with classical biomarkers permits dynamic 

prediction of COVID-19 outcome supporting real-time clinical decision. 
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Abstract  

Background: Activins are members of the TGFβ-superfamily implicated in the pathogenesis 

of several immuno-inflammatory disorders. Based on our previous studies demonstrating 

that over-expression of Activin-A in murine lung causes pathology sharing key features of 

COVID-19, we hypothesized that Activins and their natural inhibitor Follistatin might be 

particularly relevant to COVID-19 pathophysiology. 

Methods: Activin-A, Activin-B and Follistatin levels were retrospectively analyzed in 574 

serum samples from 263 COVID-19 patients hospitalized in three independent centers, and 

compared with common demographic, clinical and laboratory parameters. Optimal-scaling 

with ridge-regression was used to screen variables and establish a prediction model.  

Result: The Activin/Follistatin-axis was significantly deregulated during the course of COVID-

19, correlated with severity and independently associated with mortality. FACT-CLINYCoD, a 

novel disease scoring system, adding one point for each of Follistatin>6235pg/ml, Activin-

A>591pg/ml, Activin-B>249pg/ml, CRP>10.3mg/dL, LDH>427U/L, Intensive Care Unit (ICU) 

admission, Neutrophil/Lymphocyte-Ratio>5.6, Age>61, Comorbidities>1 and D-

dimers>1097ng/ml, efficiently predicted fatal outcome in an initial cohort (AUC: 0.951; 

95%CI: 0.919-0.983, p<10-6). Two independent cohorts that were used for validation 

indicated similar AUC values.  

Conclusions: This study unravels strong link between Activin/Follistatin-axis and COVID-19 

mortality and introduces FACT-CLINYCoD, a novel pathophysiology-based tool that allows 

dynamic prediction of disease outcome, supporting clinical decision making.  

 

Key words: COVID-19, SARS-CoV-2, Activin, Follistatin, outcome  
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Introduction 

COVID-19 pandemic constitutes presently the most prominent public-health issue 

worldwide [1]. The disease follows a bimodal pattern. The initial phase of COVID-19 

relates to viral pathogenic effects and is characterized by mild “flu-like” symptoms 

[2]. However, approximately one week after onset-of-symptoms, ~20% of patients 

develop moderate to severe acute respiratory distress syndrome (ARDS), thereby 

increasing substantially in-hospital mortality [2–5]. Various comorbidities and aging 

negatively affect COVID-19 outcome [3,6]. Accumulating evidence indicate that 

excessive activation of innate-immunity, deregulated neutrophils and thrombotic 

microangiopathy characterize the maladaptive host-response that drives  the 

pathophysiology of severe COVID-19 [7–11]. These pathomechanisms lead to rapid 

progression of hypoxemic respiratory failure and protean clinical manifestations that 

involve almost every organ [12,13]. Monitoring hospitalized COVID-19 patients, in 

the midst of multiple continuously changing parameters is challenging [2,3,5,13]. 

Therefore, development of novel therapeutic strategies and bed-to-bench tools 

permitting day-to-day prediction of patient outcome is of utmost importance for 

such dynamically evolving and clinically heterogeneous disease [12,14–16]. 

Activin-A and Activin-B are members of the Transforming Growth Factor-β (TGF-β)-

superfamily implicated in the regulation of numerous aspects of inflammation 

and/or tissue remodeling [17–19]. Follistatin, a physiological Activin inhibitor, binds 

to them, induces endocytosis and proteolytic degradation and modulates their 

bioavailability [20]. Activins and Follistatin, are synthesized continuously in healthy 

tissues [21]. However, in immuno-inflammatory conditions, epithelial, endothelial, 



Acc
ep

ted
 M

an
us

cri
pt

 

5 
 

interstitial stroma cells and immune cells secrete higher levels that can be detected 

in serum as biomarkers of local or systemic stress [17–19]. 

We have previously described over-expression of Activin-A and Follistatin in 

bronchoalveolar lavage (BAL) of ARDS patients [18,22]. Moreover, we showed that 

ectopic expression of Activin-A in murine lungs causes ARDS-like pathology [22], 

which shares cardinal features of COVID-19 pathophysiology. These include, 

neutrophils infiltration in the lung, alveolar epithelial and endothelial cell damage, 

systemic hyper-coagulant state and a deregulated cytokine response [5,7,8,18,23]. 

In view of these findings we hypothesized that the Activins might be particularly 

relevant to COVID-19. To validate this hypothesis, we analyzed sera from COVID-19 

patients and found that Activin-A, Activin-B and Follistatin, herein referred to as the 

Activin-Follistatin-axis (A/F-axis) were significantly upregulated during the crucial 

period when patients tend to deteriorate. Of note, these A/F-axis components were 

independently associated with disease severity and in-hospital mortality. Based on 

that, we developed and validated a scoring-system for prediction and monitoring of 

COVID-19 outcome in real-life using Activins, Follistatin and common 

clinical/laboratory parameters. 

Materials and methods 

Study design 

This is a retrospective study with a single endpoint, the final outcome (survival or 

death). Three national reference hospitals from distant regions of Greece 

participated in the study (Supplementary Figure 1A). An initial cohort of 117 

consecutive COVID-19 patients hospitalized at University Hospital, Alexandroupolis 

and “AHEPA” Hospital, Thessaloniki from March 10, 2020 and had an outcome until 
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July 7, 2020 was endorsed and 314 randomly acquired samples were analyzed (Table 

1 and Supplementary Figure 1B). Two independent validation cohorts belonging to 

the “second COVID-19 wave” between end of July and early October 2020 were 

introduced: The first included 28 consecutive COVID-19 patients derived from a 

distinct hospital (“Attikon” Hospital, Athens) contributing 35 samples and the second 

included 118 consecutive patients derived from Alexandroupolis and “AHEPA” 

hospitals contributing 225 samples (Supplementary Table 1). Activin-A, Activin-B, 

Follistatin, and standard-of-care (SOC) laboratory parameters including absolute-

neutrophil-count (ANC), absolute-lymphocyte-count (ALC), neutrophil/lymphocyte-

ratio (NLR), C-reactive protein (CRP), lactate dehydrogenase (LDH), ferritin and D-

dimers, were analyzed. All laboratory variables were measured concomitantly in 

serum (or citrated plasma in case of D-dimers) samples derived from the same 

venipuncture. Measurements of Activins/Follistatin levels were performed with the 

leftover sera. The study conformed to the TRIPOD statement [24] and is aligned with 

the Helsinki declaration. The study protocol design was approved by the Local 

Scientific and Ethics Committees and Institutional Review Boards of the University 

Hospital of Alexandroupolis (Ref. No. 803/23-09-2019 and Ref. No. 87/08-04-2020), 

AHEPA University Hospital of Thessaloniki (Ref. No. 1789/2020) and ATTIKON 

University Hospital of Athens (Ref. No. 487/3-9-2020). Patients' records were 

anonymized and de-identified prior to analysis so confidentiality and anonymity 

were assured.  
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Immunoassays 

Activin-A, Activin-B and Follistatin serum levels were measured using enzyme-linked 

immunosorbent-assay (ELISA) (Ansh-Labs, Webster, TX, USA) according to 

manufacturer’s instructions. 

Statistical analysis 

To elucidate the role of A/F-axis molecules, we carried out an analysis based on 

samples and not on patients; for that purpose, we initially used three separate 

general linear models, each one incorporating outcome as binary dependent variable 

(survival/death), as well as Activin-A, Activin-B, Follistatin and either multiplicity of 

sampling, or period of sampling, or reference hospital as independent variables to 

discriminate whether the latter three variables were potential confounders or true 

predictors. Having validated the prognostic value of A/F-axis molecules as predictors 

of outcome, we further examined their independent prognostic value across 14 

variables of interest, including potential confounders, which were transformed to 

binary ones through nominal optimal scaling along with discretization to two groups.  

Imputing of missing data was added using the CATREG automated selection function 

of SPSS, ridge-regression was selected for regularization and 10-fold cross-validation 

was added. Results were adapted to a point-system scoring, where one additive 

point was given for each parameter included in the unfavorable category as 

suggested after discretization; binary-regression was utilized to mathematically 

approach outcome probability. Evaluation of the scoring systems was based on Area-

Under-Curve (AUC) as determined from Receiver Operating Characteristic (ROC) 

analysis. Optimal-Scaling procedure was utilized to detect whether the scoring 
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systems could predict response to certain treatment options. More details regarding 

the Materials and Methods is provided in Supplementary Materials. 

Results  

The Activin/Follistatin axis is highly deregulated in COVID-19 non-survivors 

To validate the hypothesis that the A/F-axis is linked to COVID-19 pathophysiology 

we analyzed serum levels of Activin-A, Activin-B and Follistatin in a cohort of 117 

COVID-19 patients. The day-of-symptom-onset (disease-day) was used to align the 

data derived from serum samples. Activin-A, Activin-B and Follistatin, were 

substantially increased, particularly in samples from non-survivors (Figures 1 and 2, 

and Supplementary Table 2).  Increased levels of these proteins were observed 

approximately 7-28 days from onset of symptoms (Figures 1, 2). Classical parameters 

such as ANC, ALC, NLR, CRP, LDH and D-dimers were increased within the same time 

window (Figure 1). However, whereas CRP, neutrophils and NLR were elevated 

already from first week of disease and D-dimers were gradually increasing over time, 

A/F-axis proteins and LDH were upregulated during the second week, when COVID-

19 leads to hospitalization (Figure 2). Interestingly, comparative analysis of A/F-axis 

components and classical parameters in survivors vs non-survivors on the basis of 

disease-status at serum sampling (Supplementary Figure 2) demonstrated 

upregulation of Activin-A, Activin-B and Follistatin in sera from both severe and 

critical, disease status (DS) 3 and DS4, non-survivors. Neutrophils, CRP and D-dimers 

were upregulated in samples from DS3 non-survivors, as well as, DS4 survivors and 

non-survivors; LDH levels were particularly elevated in DS4 non-survivors. 

To assess whether the basis of analysis (per sample/per patient), the day of sampling 

(disease-day at sampling) as well as the origin of patients (hospital of admission) 
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might constitute confounders that blur the results, three discrete general linear 

models including Activin-A, Activin-B and Follistatin as dependent variables and 

outcome along with either multiplicity of samples per patient or sampling period (1-

7/8-14/15+ day of sampling) or reference hospital as independent ones were 

introduced. These models demonstrated that Activins and Follistatin did not 

correlate with any of these potential confounders (Supplementary Table 3). 

Therefore, our efforts to construct a predictive model were based on the analysis of 

all the samples of the initial cohort rather than the analysis of independent patients. 

Thus for subjects where several samples were drawn at different disease stages, 

each sample was treated as an independent entry and its score was computed 

separately. 

 

The Activin/Follistatin-axis in the dynamically shifting phenotypic heterogeneity of 

COVID-19 

COVID-19 is characterized by clinical heterogeneity and a dynamically changing 

phenotype [2,3,5,12]. We hypothesized that this behavior must be mirrored by 

analogous fluctuations in the expression profiles of key biomarkers. We therefore 

investigated the correlations between different biomarkers and final outcome in our 

sample collection. The correlation of Activin-B levels to LDH, and Activin-A levels to 

CRP and NLR are shown as representative comparisons (Figure 3 and Supplementary 

Figure 3). In Activin-B vs LDH and Activin-A vs CRP, some samples exhibited good 

correlation but others did not and in Activin-A vs CRP or NLR comparisons, the 

parameters did not correlate at all. To understand better this finding, we highlighted 

in similar plots the groups of samples derived from non-survivors AL022, AL034, 
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AL035, AL062, AL063 and AX112 for which multiple serial samplings were available 

(Figure 3 and Supplementary Figure 3). This depiction highlighted the marked and 

dynamic phenotypic heterogeneity among patients and samples of the same patient 

collected at different disease-days. For example, for patients AL022 and AL035, 

disease progression and eventual death were associated with concordant changes in 

Activin-B and LDH levels. However, patients AL063 and AX112, were characterized by 

substantial changes in Activin-A, Activin-B and CRP levels and for patients AL035 and 

AL062 disease progression was associated with eventual CRP and NLR reduction. 

Interestingly, patient AL022, who received a dose of Tocilizumab one day after 

admission, exhibited for ~10 days transient reduction of LDH, CRP, NLR, Activin-A and 

Activin-B, before reverting and dying on disease-day 28. Therefore, in addition to 

patient intrinsic phenotypic variability, treatments could also influence biomarker 

profile during hospitalization. From all the above we concluded that a broader 

spectrum of biomarkers, including both early and later modulated ones, had to be 

integrated to develop a meaningful disease scoring/monitoring-system. 

 

The FACT-CLINYCoD score for dynamic monitoring of COVID-19 outcome and 

treatment  

Considering the heterogeneous phenotypic changes characterizing COVID-19 

progression, we aimed to build a simple and clinically meaningful scoring system to 

discriminate survivors from non-survivors. To this end, we first demonstrated that 

Follistatin, Activin-A, Activin-B, CRP, LDH, ICU-admittance, NLR, age, comorbidities 

and D-dimers performed well in predicting disease outcome, as judged by ROC 

analysis (Supplementary Figure 4). Notably, among all these parameters, Follistatin 
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exhibited the highest AUC (0.857). We then converted all these continuous variables, 

which could independently predict outcome, to binary through selection of optimal 

cutoffs using optimal-Scaling procedure along with ridge-regression (Supplementary 

Figure 5 and Supplementary Table 4). Based on these data, we constructed a ten-

point scoring-system where one additive point was arbitrarily given for each 

parameter included in the unfavorable category as suggested after discretization, 

namely if Follistatin>6235 pg/ml, Activin-A>591 pg/ml, Activin-B>249 pg/ml, 

CRP>10.3 mg/dL, LDH>427 U/L, ICU admission, NLR>5.6, Years of Age >61, 

Comorbidities>1 and D-dimers>1097 ng/ml (Table 2, Supplementary Table 4). We 

evaluated this score with ROC analysis, yielding to an AUC value of 0.951 (95% CI: 

0.919-0.983) (p<10-6), that indicates outstanding discrimination in foretelling 

survivors from non-survivors (Figure 4A). This score was titled FACT-CLINYCoD, being 

an acronym of F(ollistatin), ACT(ivins), C(RP), L(DH), I(CU admission), N(LR), Y(ears of 

age), Co(morbidities) and D(-dimers). Every additive point increases the odds ratio 

(OR) for dying 3.781 times (Supplementary Table 5). A score ≥4 has 90.8% sensitivity 

and 87.5% specificity to predict fatal outcome, whereas a score ≥5 has 81.5% 

sensitivity and 95.7% specificity. The FACT-CLINYCoD score distinguishes survivors 

from non-survivors at admission and outcome and monitors accurately disease 

progression independently of disease-day or status (Figure 4B,C,D). The probabilities 

of death at different disease-days in non-surviving patients AL022, AL034, AL035, 

AL062, AL063 and AX112 are shown in Figures 3 and Supplementary Figure 3, next to 

each sample analyzed. Interestingly, some of these patients had very high scores 

already at first sampling. However, others, such as AX112 and AL035 had low scores 
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at admission and either gradually or rapidly deteriorated and eventually died. The 

latter type of patients highlights the value of continuous monitoring for COVID-19.  

Considering that various treatment modalities might affect the value of FACT-

CLINYCoD score to predict final outcome, we performed ROC analysis separately for 

samples corresponding to each treatment (Supplementary Figure 6). Interestingly, all 

relevant AUCs were similar, thus indicating that the predictive value of FACT-

CLINYCoD score was not affected by current therapies.  Therefore, this scoring 

system may be used for monitoring response to treatment. 

 

Validation of the FACT-CLINYCoD score during the second wave of COVID-19 

The FACT-CLINYCoD score was at first validated using an independent cohort of 28 

consecutive patients contributing 35 random samples. Although this small cohort 

differed significantly from the initial regarding mortality rate, age, disease-status, 

treatments, sampling approach, and day-from-disease-onset (Supplementary Table 

1), a similar AUC was observed (0.958, 95%CI: 0.872-1.000, P=0.032, Figure 4A). A 

second independent validation cohort of 118 consecutive patients contributing 225 

samples, differing significantly regarding sex-ratio, number of comorbidities, disease-

status, treatments, and sampling approach (Supplementary Table 1) was again found 

to exhibit an AUC of 0.924 (95%CI: 0.890 - 0.958, P<10-6, Figure 4A). Both validation 

cohorts shared similar AUCs with the initial cohort (P=0.880 and 0.256, respectively). 

Contribution of the A/F-axis in the predictive power of FACT-CLINYCoD 

To further substantiate the significance of Activins and Follistatin for the predictive 

power of the FACT-CLINYCoD scoring system we performed an ad-hoc analysis in all 

574 samples derived from both initial and validation cohorts using area under 
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precision-recall curves (AUPRC) (Supplementary data). As a result, we found that 

FACT-CLINYCoD score is superior to the “F/A axis-depleted (CLINYCoD) score; the 

difference between the relevant AUPRCs is 4.8% (95% CI: 2.6%-7.5%), P<0.05 

(Supplementary Figure 7A). Moreover, FACT-CLINYCoD score is even superior to 

“Activins-depleted” (F-CLINYCoD) score; the difference between the relevant AUPRCs 

is 1.5% (95% CI: 0.3%-3.2%), P<0.05 (Supplementary Figure 7B). These results 

demonstrate the contribution of all three A/F-axis proteins in the predictive power of 

the FACT-CLINYCoD scoring system. 

 

The value of FACT-CLINYCoD score to guide timely treatment 

Optimal-Scaling procedure was performed along with ridge-regression to investigate 

whether FACT-CLINYCoD score could guide timely administration of current SOC 

treatments [25] such as low-molecular-weight heparin (LMWH), remdesivir and 

dexamethasone (or equivalent doses of alternative glucocorticoids) on data available 

from 574 samples after pooling the initial and validation cohorts. Both LMWH 

(P<0.001) and dexamethasone (P=0.026), when administered in FACT-CLINYCoD 

score ≤2 (P<0.001), were independently correlated with favorable outcome. This was 

not the case for remdesivir (P=0.071), most possibly due to the limited number of 

available samples (Supplementary Table 6). Although the utility of FACT-CLINYCoD in 

guiding timely treatment administration and predicting therapeutic responses looks 

promising, the relatively small number of patients dictates caution in interpreting 

these findings.  
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Discussion 

This study provides evidence suggesting that inflammation and tissue stress-related 

proteins Activin-A, Activin-B, and Follistatin (A/F-axis) are tightly associated with 

severity and outcome of COVID-19. Their upregulation was prominent in non-

survivors and was independently related to in-hospital mortality. Of note, 

combination of A/F-axis components with common clinical and laboratory 

parameters permits prediction of COVID-19 outcome throughout the course of the 

disease. 

Identification of high-risk patients and death-prediction are of particular importance 

especially in strained health-care systems. Hence, several studies attempted to 

develop scoring systems to predict timely disease severity and mortality 

[4,6,14,15,26–28]. Most of these models were based on demographic parameters 

and instantaneous evaluation of subjective symptoms (i.e. dyspnea) combined with 

single measurements of common laboratory markers, such as neutrophil or 

lymphocyte counts, LDH, CRP and several proinflammatory cytokines 

[4,6,14,15,26,28,29]. These models are undoubtedly useful; however, they 

emphasize prediction of final-outcome at admission and thus may fail to predict 

some non-survivors most likely due to the complex and often erratic development of 

COVID-19 and the downregulation of key biomarkers at late disease-stages (Figure 3 

and Supplementary Figure 3).  

Considering the above, we exploited the findings presented herein to develop a 

more dynamic COVID-19 monitoring-system. Specifically, we utilized the 

measurement of Activin and Follistatin levels, based on their deregulation described 

herein and their previous implication in sepsis/ARDS, neutrophil-mediated 
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inflammation, coagulopathy, endothelial cell stress, angiogenesis and post-

inflammatory pulmonary fibrosis/remodeling, all of which are key characteristics of 

COVID-19 pathophysiology [7,8,18,22,30]. Moreover, we reasoned that upregulation 

of A/F-axis could indicate tissue-damage in the lung, vasculature or other vital 

peripheral tissues, thus complementing information derived from other biomarkers 

reporting tissue-damage (i.e. LDH) or coagulation/vascular injury (i.e. D-dimers) 

[2,15,27,28]. Finally, taking into consideration the differences in kinetics of A/F-axis 

components and other clinical biomarkers like NLR, CRP, LDH and D-dimers (Figure 2) 

we combined them all to develop a more generalizable monitoring-system that will 

not only make early predictions but will rather allow readjustment of predictions 

during disease progress [31]. 

In the pre-COVID-19 era, the A/F-axis was evaluated as predictor of outcome in 

critical-care patients [32]. Increased levels of Activin-A and Activin-B in sera from ICU 

patients with acute respiratory failure could predict 90-days and 12-months survival 

with reasonable accuracy (~80%). Follistatin did not provide any extra predictive 

value [32]. A/F-axis components were measured also in critically-ill, influenza-A 

(H1N1), patients, but no significant association with disease severity was established 

[33]. However, while preparing the current manuscript, consistent with our 

conclusions, a preprint study reported Follistatin among the circulating markers of 

endothelial damage associated with in-hospital mortality in a small number of 

COVID-19 patients [34]. 

Although the exact mechanism linking Activins to COVID-19 pathogenesis remains 

unknown, the importance of A/F-axis in the disease is reflected on the predictive 

value of FACT-CLINYCoD score, the superiority of which was demonstrated by the ad-
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hoc analysis vs the “F/A axis-depleted” CLINYCoD and “Activin-depleted” F-CLINYCoD 

scores (Supplementary Figure 7A,B). The FACT-CLINYCoD model, which depends on 

A/F-axis by 3/10, demonstrates an almost perfect AUC (0.951±0.032) as well as a 

very satisfactory sensitivity (81.5%) and specificity (95.7%) of scores ≥5 to predict 

fatal outcome. In agreement with this, the key role of A/F-axis components, in 

particular Follistatin, in the prediction of fatal outcome at any time of disease course 

(Figure 4B,C) is underlined by the relevant ROC analysis (Supplementary Figure 4) 

and ridge-regression (Supplementary Figure 5). The FACT-CLINYCoD score constitutes 

a balanced, robust and flexible tool efficiently intertwining pathophysiology of A/F-

axis, clinical profile (by means of NLR, LDH, D-dimers and CRP) and key parameters 

that are well established to affect mortality (ICU admission, age, and comorbidities), 

capable of providing dynamic outcome prediction. 

An obvious emerging question is whether the A/F-axis is a suitable target for COVID-

19 therapeutics. Indeed, several studies have proposed Follistatin or soluble Activin 

type-II receptors as therapeutics for sepsis, ARDS and fibrotic disorders [18,35]. 

Although increase of Activin-A and -B could be interpreted in favor of utilizing such 

therapeutics, the dramatic increase of Follistatin, often at stoichiometry that 

surpasses substantially the sum of Activins-A and -B in serum, could argue against it. 

Neutrophils can release preformed Activin-A upon arrival in inflamed tissues [18,36], 

whereas, other inflammatory cells such as monocytes, CD4+ T cells and tissue 

resident cells can secrete Activin-A later on [18,21,37]. Neutrophils do not secrete 

Activin-B and therefore this factor must be produced by other cells, probably acting 

as a biomarker of vascular stress and hypoxia [38,39]. Follistatin can be produced 

locally or released systemically from distant organs such as liver [18]. The tissue 
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origin of the increased A/F-axis components in sera of COVID-19 patients and the 

actual Activin/Follistatin stoichiometry in the affected tissues are unknown. 

Therefore, the suitability of the A/F-axis as therapeutic target for COVID-19 warrants 

further careful investigation.  

Another promising aspect of this study is the potential utility of FACT-CLINYCoD to 

monitor response to various treatments targeting SARS-CoV-2 (antivirals) or hyper-

inflammatory host reactions (heparin, corticosteroids) since the value of this scoring 

system to predict mortality was not disturbed by various treatments. Our 

preliminary results showed favorable outcome when LMWH and dexamethasone 

was commenced at FACT-CLINYCoD score ≤2. This is consistent with emerging clinical 

data linking reduced mortality with early administration of LMWH in all hospitalized 

COVID-19 patients [40] and supports the detrimental role of immunothrombosis in 

COVID-19 [7]. Moreover, current clinical data derived from randomized clinical 

studies recommend administration of dexamethasone as early as the patient needs 

oxygen supply [25]. 

Finally, the postulated implication of the A/F-axis in other infectious diseases 

associated with in-hospital mortality [17–19,22], leaves open the possibility that the 

FACT-CLINYCoD score may be applicable to other diseases in addition to COVID-19.  

Overall, potential limitations of this study could be considered. First, the possible 

inherent weaknesses due to the retrospective nature of our findings, although they 

were well-validated. Second, the applicability of the FACT-CLINYCoD score requires 

the implementation of Activins/Follistatin measurements in daily laboratory routine. 
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In conclusion, A/F-axis dysregulation is tightly associated with poor outcome of 

COVID-19. FACT-CLINYCoD, a novel pathophysiology-driven monitoring-system, 

enables dynamic prediction of disease outcome and may support real-time medical 

decision. Prospectively, large-scale, multinational validation of this calculator, as well 

as investigation of the mechanisms linking A/F-axis to COVID-19 pathogenesis is 

definitely warranted.  
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FIGURES LEGENDS 

Figure 1. Activin/Follistatin-axis components are upregulated in the serum of 

COVID-19 patients during the critical period when patients deteriorate. Serum 

levels of A/F-axis components and other key inflammatory parameters in the blood 

of COVID-19 patients plotted over time according to the days of symptom onset. 

Vertical dotted lines indicate time-windows of first, second and more than two-week 

intervals used for statistical analysis.  Horizontal dotted lines indicate the thresholds 

determined by optimal scaling (Supplementary figure 5 and Supplementary table 4). 

Figure 2. Levels of A/F-axis components are upregulated selectively in non-survivor 

severe or critically-ill COVID-19 patients during the critical second week from 

disease onset. Concentrations of Activin/Follistatin-axis components in serum and 

levels of other key inflammatory parameters in the blood of COVID-19 patients 

plotted over time according to the days of symptom onset and grouped per week. 

Data are expressed as mean±SEM analyzed using one-way analysis of variance with 

Tuckey’s post-hoc test. Asterisks represent comparison of the indicated group vs the 

survivors of week 1 (0-7 days from onset of disease). Asterisks above a horizontal 

line represent comparison between the groups under the line segment (*P<0.05, 

**P< 0.01, ***P < 0.001 and 
ns

non-significant) 

Figure 3. The dynamic phenotypic heterogeneity of COVID-19 patients is evident 

when serum relative levels of A/F-axis components are plotted against classical 

biomarkers. A) Correlation between Activin-B and LDH (upper panel) or Activin-A 

and NL-ratio levels (lower panel) in all acquired serum samples from our cohort.  B)  

Serial samples collected from the indicated non-survivor patients ALO63 and ALO22. C) Serial 
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samples collected from non-survivor patients ALO35, ALO62 and AX112. Vertical and 

horizontal dotted lines indicate the thresholds determined by optimal scaling 

(supplementary figure 5 and Supplementary table 4). 

Arrows indicate the direction of disease progression towards death. Numbers within 

the circular points indicate disease-day. Percentages indicate the probabilities of 

death estimated by the FACT-CLINYCoD scoring system developed herein. TOCI: 

Tocilizumab 

Figure 4. The FACT-CLINYCoD scoring system may enable prediction of day-to-day 

prognosis of disease outcome and real-time clinical decision making. ROC analysis 

for FACT-CLINYCoD score of the initial and two validation cohorts (A). The 

FACT/CLINYCoD scoring system distinguishes survivors from non-survivors both at 

admission and at the final outcome (B), irrespectively of disease-day (C) and disease 

status (D). Data are expressed as mean±SEM analyzed using one-way analysis of 

variance with Tuckey’s post-hoc test. Asterisks above a horizontal line represent 

comparison between the groups under the line segment. Asterisks without a line 

underneath in C and D represent comparison of the indicated group with the 

survivors in the first group of the corresponding graph (*P<0.05, **P< 0.01, ***P < 

0.001 and 
ns

non-significant). 
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Table 1. Characteristics of patients (n=117) and samples (n=314); “numbers in 

parenthesis correspond to percentages (%)” 

Parameter patients (n=117) samples (n=314) Ρ 

Age (years)    

Mean  (±SD) 61.3±15.9 61.6±15.7 0.863 

Sex    

Male 63 (53.8) 161 (51.3) 
0.635 

Female 54 (46.2) 153 (48.7) 

Number of comorbidities    

0 28 (24.0) 69 (22.0) 

0.813 

1 33 (28.1) 79 (25.2) 

2 26 (22.7) 72 (22.9) 

3 21 (17.9) 60 (19.1) 

4 6 (5.1) 28 (8.9) 

5 3 (2.6) 6 (1.9) 

Disease status (DS) at sampling    

DS1 39 (33.4) 95 (30.2) 

0.363 
DS2 27 (23.1) 74 (23.6) 

DS3 32 (27.4) 71 (22.6) 

DS4 19 (16.2) 74 (23.6) 

Treatment at sampling    

Hydroxychloroquine 58 (49.6) 98 (31.2) 

0.358 

Azithromycin 69 (59.0) 125 (39.8) 

Antibiotics (other) 103 (88.0) 257 (81.8) 

Lopinavir/Ritonavir 57 (48.7) 112 (35.7) 

Remdesivir 4 (3.4) 10 (3.2) 

Tocilizumab 3 (2.6) 5 (1.6) 

Anakinra 12 (10.3) 31 (9.9) 

LMWH 91 (77.8) 254 (80.9) 

Corticosteroids 20 (17.2) 52 (16.6) 

Colchicine 8 (6.8) 14 (4.5) 

CVVDHF 1 (0.9) 4 (1.3) 

Final Outcome    

Survival 93 (79.5) 233 (74.0) 
0.256 

Death 24 (20.5) 81 (26.0) 

Sampling approach    

Single 40 (34.2) 40 (12.7) 
<0.001 

Multiple 77 (65.8) 274 (87.3) 

Day from disease onset at sampling    

Day 1-7 37 (31.6) 55 (17.5) 

0.004 Day 8-14 43 (36.8) 124 (39.5) 

Day 15+ 37 (31.6) 135 (43.0) 

Follow-up period    

Median (IQR) 19.0 (14.3-26.0) 19.0 (15.0-18.0)  0.070 

Hospital    

Alexandroupolis 68 (58.1) 194 (61.8) 
0.488 

AHEPA 49 (41.9) 120 (38.2) 

CVVDHF: continuous venovenous hemodiafiltration; Corticosteroids: dexamethasone or equivalent 

doses of alternative glucocorticoids; LMWH: low molecular weight heparin 
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Table 2. FACT-CLINYCoD scoring and predictability of outcome. 

 
Samples from 

survivors 

Samples from non-

survivors 

Probability of death 

(%) ‡ 

FACT-CLINYCoD score 

0 44 0 0.2 (0.1-0.3) 

1 54 2 0.8 (0.5-1.1) 

2 42 0 2.8 (2.0-3.6) 

3 43 4 9.9 (7.2-12.6) 

4 17 6 29.4 (22.7-36.1) 

5 7 13 61.6 (52.6-70.6) 

6 1 10 85.6 (80.7-90.5) 

7 1 13 95.7 (94.1-97.3) 

8 0 11 98.8 (98.4-99.2) 

9 0 6 99.7 (99.6-99.8) 

10 0 0 99.9 (99.8-100.0) 

‡approximation as derived from probability equation based on corresponding binary 

regression model along with ±95% CI in parentheses. 
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Figure 1 

 

  



Acc
ep

ted
 M

an
us

cri
pt

 

28 
 

Figure 2 
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Figure 3 
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Figure 4 

 


