
sensors

Article

NLP-Based Approach for Predicting HMI State
Sequences Towards Monitoring Operator
Situational Awareness

Harsh V. P. Singh 1,2,* and Qusay H. Mahmoud 1

1 Department of Electrical, Computer and Software Engineering, Ontario Tech University,
Oshawa, ON L1G 0C5, Canada; qusay.mahmoud@ontariotechu.ca

2 Computers, Controls and Design Department, Ontario Power Generation, Pickering, ON L1W 3J2, Canada
* Correspondence: harsh.singh@ontariotechu.net

Received: 27 April 2020; Accepted: 29 May 2020; Published: 5 June 2020
����������
�������

Abstract: A novel approach presented herein transforms the Human Machine Interface (HMI)
states, as a pattern of visual feedback states that encompass both operator actions and process states,
from a multi-variate time-series to a natural language processing (NLP) modeling domain. The goal
of this approach is to predict operator response patterns for n − ahead time-step window given
k− lagged past HMI state patterns. The NLP approach offers the possibility of encoding (semantic)
contextual relations within HMI state patterns. Towards which, a technique for framing raw HMI
data for supervised training using sequence-to-sequence (seq2seq) deep-learning machine translation
algorithms is presented. In addition, a custom Seq2Seq convolutional neural network (CNN) NLP
model based on current state-of-the-art design elements such as attention, is compared against
a standard recurrent neural network (RNN) based NLP model. Results demonstrate comparable
effectiveness of both the designs of NLP models evaluated for modeling HMI states. RNN NLP
models showed higher (≈ 26%) forecast accuracy, in general for both in-sample and out-of-sample test
datasets. However, custom CNN NLP model showed higher (≈ 53%) validation accuracy indicative
of less over-fitting with the same amount of available training data. The real-world application of
the proposed NLP modeling of industrial HMIs, such as in power generating stations control rooms,
aviation (cockpits), and so forth, is towards the realization of a non-intrusive operator situational
awareness monitoring framework through prediction of HMI states.

Keywords: Human Machine Interface (HMI); human-in-the-loop (HITL); natural language processing
(NLP); situational awareness (SA); sequence-to-sequence (seq2seq)

1. Introduction

Several severe industrial and aviation accidents have brought grave lessons around minimizing
operator error, strengthening lax safety culture, and improving Human Machine Interface (HMI)
system designs. Previous nuclear power (NPP) accidents such as Three Mile Island (TMI) NPP,
USA, and Chernobyl NPP disaster, USSR, have been classified high on the severity rating (ranging
between 5 to 7) IAEA International Nuclear Event Scale (INES) [1]. At TMI (INES-5), poorly designed
ambiguous control room indicators introduced operator error to override the emergency cooling water
supply causing a partial meltdown of Unit 2 (TMI-2) reactor core containment on 28 March 1979.
In the Chernobyl disaster, USSR (INES-7), where confounding human factors and inherent design flaws
led to a catastrophic reactor Unit 4 explosion and release of radioactivity on 26 April 1986. Efficacy of
such adverse event(s) bear tidings of compromised command inputs by highly trained control room
nuclear operators (CNOs) owing to inaccurate cognitive model of dynamic unit evolutions and

Sensors 2020, 20, 3228; doi:10.3390/s20113228 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0339-4909
https://orcid.org/0000-0003-0472-5757
http://dx.doi.org/10.3390/s20113228
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/11/3228?type=check_update&version=2

Sensors 2020, 20, 3228 2 of 33

normalization to deviance to poor nuclear safety culture. Similarly, recent aviation industry accidents,
such as Lion Air Flight 610 outbound from Jakarta, Indonesia, crashed on 29 October 2018. The root
cause was attributed to a single point vulnerability in the last design update, associated with a single
malfunctioning sensor on the Boeing 737 Max 10. This flaw falsely triggered the Manoeuvring
Characteristics Augmentation System (MCAS) system. A failure mode unbeknownst to its pilots,
repeatedly pushed the aircraft’s nose down, causing it to crash tragically.

Such accidents indicate a common theme of confounding factors that challenge human operator
performance owing to human factor engineering-related design flaws in the HMI system. Key accident
precursors as evident from post-accident reports [2,3] also reveal—(1) reduction in situational
awareness owing to human factors related deficiencies in legacy HMI design; (2) normalization
to deviance to lax nuclear safety culture; (3) information overload (looking-but-not-seeing effects [4])
owing to the rapid rate at which information was presented to CNOs via the control room HMIs (panel
indications, annunciations, etc.); and (4) incorrect mental model of highly dynamic unit evolutions
resulting in cognitive errors, owing to conflicting plant information supplied by failed or faulty sensors,
as some of the root-causes of such accidents.

CNOs and pilots must rely on manual effort and acquired cognitive skills to overcome
the fundamental limitation inherent in the conventional operator based command-control-feedback
architecture (Figure 1A), vis-á-vis errors injected by human command inputs via HMIs either due
to reduction in situational awareness or misinformation being displayed by the HMI due to some
malfunction. While rigorous operator training does minimize human command input errors, in reality,
system faults continue to fatigue the human brain owing to sensory overload thus, increasing chances
of human-in-the-loop cognitive errors.

Figure 1. Command-Control-Feedback architecture is ubiquitous to most industrial and transportation
operations. (A) The operator in the control loop visually acquires most plant process information via
Human Machine Interface (HMI) states, perform required command actions and receive feedback
via the displayed HMI states. (B) The novel EYE-on-HMI [5] system framework addresses
cross-validation of visual feedback (HMI states) against expected operator actions and process
information. Thereby achieving an independent and non-intrusive supervisory monitoring system
in order to detect human-in-the-loop error precursors.

The above challenge is addressed by the previously proposed EYE-on-HMI [5] framework
(EYE: Expert supervisorY systEm framework for industrial control room HMIs.), which integrates
a closed-loop independent cross-validation supervisory checks in the conventional operator based
command—control—feedback architecture (Figure 1B). Cross-validation can be achieved by verifying
what operator is visualizing (HMI visual feedback) on the HMI, truly matches the plant process state.
Closed-loop logging and verifying operator command input patterns in response to the current HMI
state closes the loop between process and operator actions. EYE-on-HMI proposes to achieve this by
incorporating machine-learned models to predict the most likely sequence of operator actions n-steps
ahead into the future, based on process and HMI state patterns at few steps in the past.

Sensors 2020, 20, 3228 3 of 33

Several unique solutions may be possible to realize a system based on this proposed framework.
However, the main goal of this work is to introduce a Natural Language Processing (NLP) modeling
approach as a more generalized modeling technique over the previously proposed multi-variate
time-series modeling techniques [6]. The objective is to learn both operator action patterns
in conjunction with HMI state patterns (outputs). Predicting both HMI states and corresponding
operator actions is a vital step towards achieving the primary objective of the proposed EYE-on-HMI
framework, towards monitoring situational awareness in real-time, as discussed above.

For instance, if the predicted HMI output is different from the actual future HMI state patterns,
it may be the reason to expect a deviation in predicted operator response. Conversely, if the predicted
HMI output aligns with actual process states, but the predicted operator inputs vary, it may indicate
a potential anomaly to be alarmed (addressed as future work). The challenge lies in modeling
the HMI state patterns, including complex contextual dependencies between various HMI state
features (parameters) to predict HMI states (including operator actions) accurately.

Why explore NLP using machine translation (MT)? Our motivation is based on the very nature of NLP,
which makes it inherently non-deterministic and computationally NP-hard. Nevertheless, it also yields
“interesting” machine translation algorithms that attempt to encompass several nuances of natural
language translation more effectively. These include (but not limited) working with large dictionary
of word spaces, morphology (word forms), syntax (grammar), and pragmatics (context-based) rules.
MT deep learning algorithms offer a more generalized approach over multi-variate time-series
anomaly detection models, despite recent advancement in using attention context for improving
temporal patterns [7] forecasting. HMI visual feedback states are mixed mode processes consisting of
both temporal and stateful parameters, hence requiring a modeling technique that is both expressive
and scalable. Expressive model, refers to capturing complex multi-dimensional HMI indication and
operator action pattern interactions in the context of several plant process parameters (scalable).
Therefore, the proposed application of NLP MT (deep-learning) models to capture effectively complex
HMI state transitions for gauging operator situational awareness and predicting human-in-the-loop
(HITL) errors is novel.

The paper is organized as follows: Section 2 provides background and related work review
of Situational Awareness monitoring and state-of-the-art works for NLP using machine translation
algorithms. Section 3 presents a systematic problem formulation. Section 4 outlines design aspects
of the proposed and other NLP models evaluated herein. Section 5 discusses the experimental setup
for evaluating the model prototypes. Section 6 provides a discussion of results. Finally, Section 7
concludes the paper and offers future research directions.

2. Background and Related Work

2.1. Situational Awareness

Situational awareness (SA) generally refers to the level of alignment of the human operator’s
cognitive state with actual process states. Modeling situational awareness is an active area of research
in cognitive sciences. Operator mental awareness of the current process state and being able to
anticipate future process states based on past experience and training is the highest SA an operator can
possibly maintain at all times. Numerous SA cognitive models have been suggested from the widely
accepted three-level Endsley model [8] (perception, comprehension, and projection stages of SA),
to more recent Holistic framework [9] and Causal model [10]. However, as per Endsley model, SA
is related to the task workload, information rate, system design, and complexity of tasks, requiring
multivariate analysis.

Notably, the level of automation in HMIs also affects operator SA in a systemic fashion.
For instance, in the automation and situational awareness report [11] enlisted are several aviation
accidents that were caused due to accidental failure of legacy automated systems which pilots had come
to rely on. These events highlight the concern with an inevitable increase in the level of automation

Sensors 2020, 20, 3228 4 of 33

in complex HMI systems. Furthermore, this conjecture can conservatively be assumed relevant to
modern automation design approaches, where human operators are increasingly being placed out
of the loop (such as in autonomous or unmanned operations). It [11] states—“In examining these
failures, it becomes apparent that the coupling of human and machine in the form of observer and
performer is far from perfect in terms of optimizing the overall functioning of the joint human-machine
system”. Therefore, a monitoring system that independently monitors the interaction between human
operators and HMIs would be a definite improvement in catching human errors in complex automated
HMI systems.

Previous techniques for monitoring SA, as addressed by various works [12], recognize it to be
a multivariate data analysis challenge. As notably indicated by Endsley model [8], SA may be measured
using objective measures, often requiring intrusive monitoring of operator physiological parameters
(e.g., eye-movement tracking, frequent real-time queries, self-rating, etc.) or subjective measures via
operator questionnaires when an event scenario is frozen during training. In addition, former objective
techniques (e.g., SAGAT, SART [13,14] scores) that offer a real-time measure of SA by comparing
the operators current cognitive state to an expected normal state, does so via intrusive monitoring
which is quite burdensome. Therefore, using objective monitoring as the basis of monitoring SA,
the proposed approach of EYE-on-HMI [5] rather relies on a non-intrusive monitoring technique by
modeling HMI indication patterns encompassing operator response sequence.

2.2. Validation Using Naturalistic Data

The previously proposed EYE-on-HMI [5] framework relies on collecting naturalistic trial
data available as visual feedback from industrial HMI control panels. This data may be collected
non-intrusively via cameras pointed towards operator control panels, in order to ultimately model
operator and HMI interaction patterns under various real-plant scenarios in an operator training
simulator. This approach aligns with the Naturalistic Driving (ND) data collected using unobtrusive
sensors to reliably collect human driver pattern data while operating vehicles in real-world driving
scenarios. The resulting high-fidelity big data is an example of naturalistic experimentation.
For example, driver visual glance patterns at signalized and unsignalized intersections [15] and
difference in driver cognitive attention behaviour during traffic congestion and post-congestion
driving scenarios [16], based on eye movement tracking and brain EEG signal data. Validation using
this data has shown to reliably model operator behaviour patterns, as shown by Strategic Highway
Research Program (SHRP 2) [17], modeling driver lane-changing behaviour in rainy weather [18].
However, the challenge remains to effectively utilizing this big data without necessarily curtailing
its features, such as suggested by mapping this data using geographic information system [19].
Furthermore, ND aids in correctly characterizing the false-positive and false-negative behaviour
of the model. The proposed NLP based HMI modeling approach is poised to address this
challenge using non-intrusive naturalistic trial HMI data. The adopted modeling technique draws
on the concepts from distributional encoding and attention mechanisms of language translation
algorithms, as discussed below.

2.3. Word Embedding for HMI State Encoding

Natural Language Processing (NLP) using Machine Translation (MT) is a multidisciplinary and
an active area of research under computational linguistics having several applications spanning
engineering and business domains such as gene mapping, video/image analysis (image captioning),
sentiment analysis, conversational agents (chatbots), market intelligence surveys, and so forth. NLP MT
algorithms generally depend on key supportive technologies: word embedding, attention mechanism,
and deep learning models [20]. A leap forward from traditional statistical NLP tasks to the current use
of deep learning models was made possible by efficient word embedding techniques. Overcoming
the curse of dimensionality in NLP while learning joint probability models for modeling complex
language models was essential.

Sensors 2020, 20, 3228 5 of 33

Word embedding architectures such as CBOW(continuous bag of words) and skip-gram have been
used by word2vec [21], GloVe(Global Vectors for word representation) [22] algorithms, and so forth,
to generate lower-dimensional denser vector representation of words using shallow feed-forward
neural network. These embeddings take advantage of distributional semantic [23–25] similarity
between the words in a given set of corpus space to produce a vector space, where words with similar
meanings are located in closer proximity to yield a lower cosine (dot product) similarity score.

In addition to distributional semantics in word embeddings, further enrichment is achieved
by incorporating additional context-specific information, which has been demonstrated by other
works [26,27] to be useful in further improving NLP predictions. The limitations of the word-level
embeddings (e.g., word2Vec) is that these do not quite produce vector representations of special
word sequences or phrases which mean something more than just the words put together (polysemy),
for example, “brown out,” “phase in,” and so forth. The latter is relevant to natural language
translation tasks and may be useful for modeling complex context dependencies in system state
patterns, (e.g., system state sequence S1→ S2 could invoke different user response in the presence of
another context state S3).

In the current scope of this work, due to a relatively smaller vocabulary size of HMI state space
as compared to that encountered in human NLP tasks, existing word embedding was not utilized
in order to keep the initial model design simpler. Nevertheless, distributional encoding shall be
a vital consideration when the controller needs to scale up to more complex industrial HMI designs.
Moreover, positional encoding in the proposed model is implicit by constructing the training data set
using a shifted sliding window (described in detail in below Section 5.3).

2.4. Attention for NLP Models

Attention mechanism was initially introduced in 2014, to build efficient computer vision
algorithms, mimicking human vision. It works by learning to use selective concentration on smaller
parts of a larger scene to derive features [28] for recurrent neural network (RNN) based image
classification. However, first applications of AM in NLP (machine translation) tasks did not come about
until early 2015 [29,30], where global (Figure 2a) and local (Figure 2b) AM types were first introduced.
The global AM approach uses contribution from all source tokens (encoder hidden states) in jointly
learning to align the decoder (hidden state) to produce an output token. On the other hand, the local
AM uses limited source tokens in order to reduce training computational load. Attention mechanism
(AM) (Figure 10 described in Section 4.1.3) has been used to over come the information bottleneck
in classic encoder-decoder models (Figure 7) for NLP seq2seq applications.

AM has significantly improved NLP performance for alignment and translation tasks: alignment
refers to learning parts of the input sequence that are relevant to each output target token and translation
is learning to use relevant contextual information between source tokens to select the appropriate
output token. This overcomes the information bottleneck in classic encoder-decoder models (Figure 7)
for NLP seq2seq applications.

The encoder extracts the similarty between various input source tokens (Key or Value) and
an expected output token (Query). The decoder learns through training, to selectively attend or focus on
various positions in the input sequence based on the tokens predicted so far [29] in order to accurately
predict the next token in target language.

Self-attention or intra-attention is also another specific case of AM which finds relationships
between positions of a single sequence to compute a compressed feature representation of the same
sequence. In essence self-attention is Self-Attention(Q,K,V) where, Q = K = V and means attention is
applied to each token of the sequence [31] with other tokens of the same sequence. Self-attention has
been used in image description and text sentiment analysis applicaitons [31]. However, self-attention
layers can also be stacked together in both encoder-decoder models to aid in machine translation tasks as
demonstrated by the transformer [26] model which is further discussed below. Self-attention is also
unique in resulting only a constant (O(1)) longest path dependency between source tokens for any

Sensors 2020, 20, 3228 6 of 33

length of sequence, compared to other AM (e.g., linear O(n) for RNN seq2seq models). This effectively
allows the model to focus on the semantic dependency relationships between the tokens rather than
based on encoding distances between them.

(a) Global (soft) Attention (b) Local (hard) Attention

Figure 2. (a) Generates variable length (same as input sequence) context vectors [c1, c2.., c6] which
capture attention weights ([a1, a2.., a6]) from all input tokens (K); (b) Generates a fixed length context
vector [c1, c2.., c6] which capture fixed number of attention weights ([a1, a2, a3], etc.) from select input
tokens selected by a context window which is centred at token index position pt (determined by
the model separately).

2.5. NLP Models

2.5.1. Transformer

Even though the transformer NLP seq2seq model has been analyzed in numerous
works [32,33] previously, it is worth reviewing the architectural highlights in brevity due to its
contribution of establishing a unique and dominant modeling paradigm in machine translation
applications, since its introduction in 2017. The model (Figure 3) demonstrated a feasible alternative
to existing RNN and CNN based seq2seq models to models for which authors claimed, Attention is
all you need. It demonstrated using just a few stacked multi-headed self-attention layers with fully
connected dense layers to achieve state-of-the-art performance in NMT [32,34].

Key architectural highlights include, firstly a parallelized self-attention similarity function:
the Scaled-dot product (Figure 3). It first calculates similarity score using inner product between
each (either encoder or decoder) hidden state vectors Q ([q1, q2, . . . , qn]) against all other hidden state
Key or Value pairs ([(k1, v1), (k2, v2), . . . , (km, vm)]) of the same sequence (K = V): K>. The resulting
matrix is then scaled with

√
dk, where dk is the dimensionality of the Key (source or target token) word

embedding, that prevents the inner product to become too large (1). Followed by application of softmax
operation to normalize the 2d (n×m) similarity score matrix resulting in the attention weight matrix
of same shape. Lastly, an inner product of the attention weight matrix is performed with the Value
vector (m× dk). This effectively results in a 2d matrix (n× dk) containing weighted sum of all Values
for each Query (Qt), where the weight assigned to each Value (Vi) is the attention weight.

Sensors 2020, 20, 3228 7 of 33

Scaled-Dot Product

Attention(Q, K, V) = so f tmax(
QK>√

dk
)V,

(1)

where:
m,n—source and target sequence length containing words (tokens) respectively,
dk—word (token or state) embedding dimension,
Q ∈ Rn×dk —Query (decoder input) target sequence hidden vector shape,
K ∈ Rm×dk , V ∈ Rm×dk —Key/Value (encoder input) source sequence hidden vector shape.

Figure 3. Transformer Model Architecture. Transformer Architecture [26] is parallelized for seq2seq
applications which is neither CNN nor RNN based. Encoder-decoder branches consists of stacked
multi-headed self-attention layers with scaled-dot product function.

Secondly, it uses N = 6 parallel stacks of multi-headed self-attention Equation (2) sub-layers
for both encoder and decoder branches of the model (Figure 3). Each layer computes h different linear
transformation of (Q,K,V) controlled by a learned parameter W. Each representation of Q,K,V go
through h scaled-dot attention computations, each of which is referred to as an attention head, thus its
called h-headed self attention. Finally, all h iterations of the Scaled-dot attention heads are concatenated
and fed to another parametrized (WO) linear transformation to output the final context vector (Z).

Transformer Multihead Self-Attention

MultiHead(Q, K, V) = [head1; . . . ; headh]WO,
(2)

where:
headi = Attention(QWQ

i , KWK
i , VWV

i),
WQ

i , WK
i , WV

i , &, WO
i —are parameter matrices to be learned.

Each transformer encoder and decoder attention layer combines by addition of self-attention output
Z with the original positional encoded input sequence (Q) and normalizes the results. The addition
operation is similar to adding residual connections within each layer to reduce over-fitting and learning
saturation. The output of add and norm operation is then fed to a feedforward (FF) neural network
(auto-encoder), which re-shapes the output in the desired dimension for a yet another final add and
norm operation.

Sensors 2020, 20, 3228 8 of 33

The only difference between transformer encoder and decoder branches is the latter includes
an additional multi-headed self-attention sub-layer, which merges the decoder input and encoder
input attention based representations together as input to the subsequent multi-headed self-attention
sub-layer in decoder. Final transformer output is simply a linear dense layer followed by softmax
operation to emit the target token class probabilities.

2.5.2. BERT and SNAIL

Other notable model architectures that have extended the basic transformer architectures are:
BERT and SNAIL.

BERT [35] (Bidirectional Encoder Representations from Transformers) has shown to achieve
(2018) state-of-the-art performance for various NLP tasks such as in question answering (SQuAD
v1.1 database) [36], natural language inference (NLI) [37]. This architecture utilizes the transformer
encoder to allow transfer learning. In that, it demonstrated developing a pre-trained deep NLP
model, which can be fine-tuned with the addition of just one output layer to customize to a various
range of applications without any added training overhead compared to other existing transfer
learned models [38]. Furthermore, BERT adopts using a non-directional language learning model,
unlike other NLP models that learn sequences sequentially (either left-to-right or right-to-left),
thereby proposing two learning regimes: Masked Language Model (MLM) and Next Sentence
Prediction(NSP). This allows BERT to easily be fine-tuned as its pre-trained with the learning goal to
not just predict the next token in sequence, but learning the token-level context from both direction
crucial to question answering tasks.

Even though transformer model has shifted away from using RNN and CNN for capturing
inter-sequence dependencies, despite it using positional encoding to retain the sequence information.
Transformer model may sometimes fall short for applications where a very long sequence of tokens
exist, such as in meta-token sequence learning are required.

The SNAIL (Simple Neural Attentive MetaLearner) [39] architecture prioritizes capturing
the sequential information in sequences by using temporal convolutions with causal attention layers.
This is in contrast totransformer architecture that can draw context relationships from infinitely
long sequences due to self-attention in which Query and Key-Value pair, are treated as unordered
tuples lacking positional dependence. This can be undesirable, especially for reinforcement learning,
where the observations, actions, and rewards are intrinsically sequential [39].

3. Problem Formulation

The initial problem at hand task is to (1) establish a theoretical model for generic HMI indication
sequences that is sufficient to capture both HMI information and user actions (2) identify the key
assumptions and limitations of this generic HMI model (3) how this generic HMI model can be
transformed into a model conducive for NLP using machine translation techniques.

Based on the above, an HMI state-space model is initially developed below to aid in generalizing
time-series patterns generated by a typical HMI system. Such patterns are intended to capture both
the indications and operator actions. Moreover, there are two key assumptions that enable us to
formalize the proposed generic HMI state-space model, as discussed below.

The key challenges addressed herein are (1) Formally mapping the generic HMI state-space model
(conducive for regression-based modeling) into a discrete event system (DES) model (conducive for
NLP based modeling). (2) Demonstrate and evaluate the utility of machine translation deep learning
models for the HMI DES model.

3.1. HMI State Space Features

Conceptually, HMI states (Figure 4) for any typical plant process may be captured by two
categories of state features: process output (PROCESS: X1) and human input (HMI_USER: X2) vector.
Each feature vector variable can be a tuple of binary-valued states (e.g., indication lamp states,

Sensors 2020, 20, 3228 9 of 33

pushbuttons states, etc.) and/or a finite range of analogue valued states (e.g., rotary dial indicators,
digital setpoint displays, etc.).

Figure 4. Conceptual data model for a typical industrial HMI (Control Panel), which is represented
by two multidimensional feature vectors for Process outputs and Operator Action (X1 and X2).
Process output for each output devices, for example, Indication lamps, digital displays, rotary dials
states or values, corresponding to particular dimensions of X1. Operator actions that are indicated by
push button, hand switches or setpoint display states corresponding to particular dimensions of X2.
All above HMI states are available as visual feedback.

For example, in Figure 4, Process outputs: q1, q2, q3 are analogue variables associated with each
rotary dial value and q4, a 4-bit binary word, can capture indication patterns of all four lamp string.
Similarly, Human operator inputs: i1, i2, i3, i4 as digital variables, can be associated with each push
buttons and i5 unsigned integer variable can be associated with a setpoint indicator. An ensemble of
such multi-type variables (or features) can sufficiently capture all states of the HMI. Trending the HMI
state features yields multi-variate time series data.

3.2. HMI Model Assumptions

Two key assumptions for HMI state patterns to be modeled for time-series prediction are
rationalized below.

Firstly, a HMI process may not yield a data series that is white noise (ε)—a series that is generated
by random variables that are independent and identically distributed, that is, having zero mean
(µ = 0), with identical finite variance (σ2 < ∞) that are serially uncorrelated E[εtεk] = 0 for all t 6= k
Equation (3).

Otherwise, a HMI displaying white noise state patterns would suggest an error or malfunction
in the external process displayed by the HMI system.

White Noise

xt = εt,
(3)

where:
εt ∼ (0, σ2) with σ2 < ∞, and E[εtεk] = 0 for all t 6= k.

The second assumption is that a majority of HMI state transition can be modeled as stochastic
processes that yield a weak stationary (Figure 5) multi-variate time-series in most practical scenarios.
A weakly stationary process must satisfy three conditions as listed in Equation (4) and yields
a time-series (Figure 5) where (1) mean (µ < ∞) (2) variance (σ2 < ∞) are approximately finite
and constants for all t windows (i.e., these do not vary with time), while (3) the auto-covariance
(γ(t, k)) between any observed values at two time slices of a stochastic process is finite and constant for
all τ, that is, the auto-covariance of a weakly stationary time series (TS) only depends on the temporal
distance (τ = |t − k|) between any two time points (t and k). Auto-covariance, when normalized

Sensors 2020, 20, 3228 10 of 33

by the standard deviation of each observation of TS, results in auto-correlation function (ACF),
which makes the measurement metric unitless. ACF Equation (5) is calculated for various lagged
versions of the TS, which show the degree of similarity of TS with a lagged version of itself indicating
the presence of various patterns that can be modeled linearly.

Figure 5. Depiction of an arbitrary Weakly stationary time-series traces (X,Y,Z) all generated from
a stochastic process whose statistical properties are time invariant between various runs: implying
the means (µk, µt) and variances (σ2

k ,σ2
t) are finite and relatively constant over various time slices.

Moreover, auto-covariance (γ(τ)) between various time slices is finite and is only a function of
temporal distance τ = |t− k|.

Weakly Stationary Requirements

µ < ∞ for all t,

σ2 < ∞ for all t,

γ(t, k) = γ[τ] < ∞, where τ = |t− k|, for all t 6= k.

(4)

Auto-Covarriance and Auto-Correlation Funtions

γ(t, k) = Cov(Xt, Xk) = E[(Xt − µt)(Xk − µk)],

ACF(τ) = ρ(t, k) = Corr(Xt, Xk) =
γ(t, k)
σtσk

,

(5)

where:
−1 < ρ(t, k) < +1, for all t 6= k.

The rationale supporting the above two assumptions is based on the fact that human-machine
interfaces primarily display the process values and accept operator inputs as commands. The process
parameter values are ultimately governed by underlying process control laws modeled by a system of
differential equations that vary in a tight allowable band (range bounded). Moreover, the operator
inputs also change in some correlation to the process values. Therefore, process values and operator
inputs ought to display causality effects (i.e., either the process information having influence on
operator actions or vice-versa). For most practical scenarios, the range of operator inputs is found not
to vary indefinitely. Otherwise, those scenarios would require operator actions outside their normal
range of trained behaviour (e.g., driving a vehicle on a freeway has set of rules every human driver
normally adheres to). Hence, chances of any HMI state transition resembling that of a random-walk
stochastic process is minimal, and therefore is not currently addressed in the scope of this work. Above,
weakly stationary assumptions for the HMI generated time-series patterns make it possible to develop
either linear regression-based forecast models based on ARIMA [6] or using non-linear recurrent
networks such as LSTM.

Sensors 2020, 20, 3228 11 of 33

3.3. HMI DES Modelling for NLP

Previously stated, weakly stationary assumption implies finite system state transitions,
which allows treating the HMI system as a framework of a finite-automaton (FA) (either
deterministic or non-deterministic). This model is broadly identified as a Discrete Event System
(DES). DES, by definition, is an event-driven system where its state transition occurs with discrete
events, and there is no restriction on the nature of state-space (Q) of a DES to be either discrete
or continuous or mixed. Such basic qualities of DES aligns with the previously stated HMI model
assumptions (Section 3.1).

Under the Ramadge and Wonham (RW) framework [40], a HMI DES plant model P can be
obtained by a formal language generated by a “generator” FA (G), whose alphabet consists of the (finite)
set of events (∑). The generator is defined using 5-tuple (6) parameters and can be depicted as a HMI
DES directed graph (Figure 6) with its the nodes as DES states fromQ set and edge set defined by pairs
(q, q′), such that δ(q, σ) = q′ for some σ ε ∑. That is, an edge between states q and q′ can be labelled
with event σ that transitions the HMI DES from state q to q′.

Figure 6. HMI System modelled as a Discrete Event System (DES).

The ∑ (6), is interpreted as the alphabet set corresponding to a finite set of events or directed edges
in Figure 6, which maps to a particular value of a HMI feature vector X =< X1, X2 > (Figure 4).
The HMI DES state transition sequence is specified by δ, a partial function δ(q, σ) that is not required
to be specified for all q (states) in Q and all σ (events) in ∑. In fact δ (6) is the function that must be
learned and approximated by natural language processing (NLP) algorithm.

It is noteworthy to restate that RW framework only expects a finite set of HMI state transitions
(∑) but not necessarily a finite HMI state (Q) set. This implies that the NLP model can be trained with
a finite set of HMI events (alphabet) or dictionary of events, each corresponding to a point in HMI
feature space X. A non-finite HMI state set implies HMI DES can have several sequence of events
(s) or strings. This is the key realization that enabled us to consider evaluating NLP deep learning
algorithm to model HMI DES.

Furthermore, HMI DES language model can be formally specified Equation (7) under RW
framework as a language L(G) over an event set ∑, as any subset ∑∗ which captures all (finite)
strings s built using elements in ∑.

Sensors 2020, 20, 3228 12 of 33

HMI DES Model

G = (Q, ∑, δ, q0,Qm)

Q : States set,

∑ : Events set,

δ(q, σ) = ∑×Q → Q,

(6)

where:
q εQ, σ ε ∑,
(q0,Qm)—(initial state, final marker state).

L(G) = {s : s ε ∑∗ ⊆ ∑ & δ(s, σ) is defined} (7)

Lastly, HMI DES model under RW framework also inherently addresses scalability as DES can
be expanded by incorporating sub-systems, or sub-processes G1, . . . ,Gn that are asynchronous and
independent as long as each Gi alphabet set ∑i are disjoint. That is the complete model of a HMI
DES plant can be specified by shuffling the languages of HMI sub-systems (e.g., indication lamps,
meters, pushbuttons, and so forth, with corresponding operator inputs) L1 . . .Ln which is denoted
by L1 ‖ L2 ‖ . . . ‖ Ln and defined by Equation (8). Where, s ↑ i is the projection of s on ∑i that only
keeps alphabets or events belonging to ∑i. This implies, the complete HMI DES language model can be
obtained by appending discrete event symbol and pattern sets from other HMI sub-systems.

In other words, shuffling Equation (8) property of HMI DES model addresses the scalability
of the proposed NLP modelling approach by mapping favourably to current advancements [41]
in transfer learning in the context of machine-learned NLP models. Transfer learning has the potential
to use pre-trained robust generic HMI NLP models to extend their skill in adapting to new HMI
sub-system indication patterns (languages L1 ‖ L2 ‖ . . . ‖ Ln) thus, avoiding learning from scratch
(shorter training time).

L1 ‖ . . . ‖ Ln = {s : s ε ∑∗ : s ↑ i = si ε Li, i = 1, . . . , n} (8)

In summary, RW framework for a HMI DES allows the application of NLP algorithms by
specifying a generator automaton that can specify a DES by control language. The generator language
dictionary is a finite event set containing alphabets or words equivalent to the finite range of discrete
unique values various HMI features can take on. Patterns or sequences of events make the sentences or
states of the HMI DES language and cause HMI to transition from one state to another. NLP algorithm
are used to create deep learning models to estimate state mapping mechanisms (δ) through supervised
training. Once trained, such a model can translate multi-length sentences from one controller language
into another.

4. NLP Model Design

This section discusses two model designs under NLP architecture that have been evaluated below.
Model input, output variable notations and parameter nomenclature are listed in Table 1 for quick
referencing.

Sensors 2020, 20, 3228 13 of 33

Table 1. Model Parameter Nomenclatures.

Parameter Description

(k) or (K)
Fixed time-series window of size k, containing
k-lagged samples from past time steps T = t − k
. . . t− 1.

(n) or (N)
Fixed time-series window of size n, containing
n-ahead samples expected in future time steps
T = t + 0 . . . t + n− 1.

[X], [y]

[X] =< X1, X2 > represents an HMI DES event,
containing two one-hot encoded feature vectors:
X1—HMI indication value vector, X2—User input
value vector. Where, each X2, X2 ∈ RD, D is
the fixed dimensionality (dictionary size) of HMI
DES event space (currently set to 255) including
the <start> token
[y] =< y1, y2 > is same in construction as [X],
but is used to denote the expected HMI DES event.

{X}(k)

k-lagged sequence of HMI indication (X1) and user
input (X2) events containing samples of feature
vectors used as model training input pattern.
{X}(k) = {(X1t−k, X2t−k), . . . ,(X1t−1, X2t−1)} is
a DES HMI state vector of L1.

{y}(n) {ŷ}(n)

n-step ahead sequence of HMI indication (y1) and
user input (y2) events containing samples of feature
vector values used as model training target output
pattern (ground truth).
{y}(n) = {(y1t, y2t), . . . ,(y1t+n−1, y2t+n−1)}. {ŷ}(n)
is the expected output event sequence or translated
HMI DES state vector of L2.

4.1. Seq2Seq—LSTM Encoder-Decoder

Sequence-to-Sequence (seq2seq) represents a class of machine learning problems that entail
model training to generate fixed length output sequence of symbols when given fixed length input
sequence of symbols. There are no restrictions placed on any particular length of either input or output
sequences. An Encoder-Decoder(EncDec) architecture is adept for seq2seq class of problems, for example,
NLP (machine translation), image captioning, sentiment analysis, and so forth.

In the general case of machine translation using Encoder-Decoder(EncDec) architecture (Figure 7),
during the model training mode, entire input sequence of one language (L1) is required along with
the output sequence of the target language (L2). However, during translation (inference mode) each
previously predicted symbol is required to be fed forward to decoder input to produce subsequent
symbols until a sequence end token is produced.

In case of a LSTM-EncDec model (Figure 8) the encoder LSTM layer functions to produce a fixed
size internal representation (summary vector) of the given input string of symbol sequence of any
length truncated by a special <End> token (it triggers decoder to start translating). The summary vector
is obtained as a result of accumulated hidden states from each LSTM cell in the encoder hidden layer
as a result of processing the entire input sequence of symbols. Therefore, the final summary vector
consists of hidden state and cell output <(h, c)> from the last encoder LSTM cell. The LSTM decoder uses
the summary vector to initialize its first cell state, with the desired effect of incorporating contextual
information representing the entire input sequence that aids in predicting the next translated symbols.

Sensors 2020, 20, 3228 14 of 33

Figure 7. Model Under Training Vs. Inference. Encoder-Decoder Model are trained together using
teacher forcing—decoder input is replaced with ground truth tokens which results in exposure bias.
During inference previous decoder output is fed forward as input to output next token.

Figure 8. Basic LSTM (RNN) based encoder-decoder model for seq2seq applications. Sequence of input
tokens, X(K) are fed to the encoder LSTM stack, which pass intermediate hidden (hk) and cell state
(ck) vectors in between. The last layer hidden state vector (h, c) is the summary vector that captures
the essence of entire input sequence which initializes the first decoder LSTM cell including a <start>
token as input. The output or each LSTM cell is fed back as input to subsequent LSTM cells to generate
target tokens (ŷ(N)) one time step at a time until <end> token is generated (during inference).

4.1.1. LSTM-EncDec—Training Phase

Supervised training of LSTM-EncDec is to maximize the probability (logP({y}(n)|{X}(k)) (9) of
generating the target n-ahead samples of target HMI event sequence ({y}(n)) given the entire previous
k-lagged samples of input sequence ({X}(k)) context. This is done by the learning (or optimizing)
the RNN parameters (φ) of the decoder in LSTM-EncDec model to maximize the log probability of each
target HMI event token (yt) given a fixed summary vector (hk) or the hidden state of final encoder cell.
Where, hk (11) is a non-linear function of each input event (token) ({X}(k)) and corresponding previous
hidden states (ht−1) from other encoder RNN/LSTM cells.

The LSTM-EncDec model for current HMI DES seq2seq application is trained by using a method
referred to as Teacher forcing (10) as shown in Figure 7, which is a dynamic supervised training task
with input/output sequence pairs being: ({X}(k)/{y}(n)) from source and target HMI DES languages

Sensors 2020, 20, 3228 15 of 33

(L1, L2) respectively, to jointly train the encoder-decoder system. Where, {X}(k) is framed as a sequence
of HMI events from k time steps in past and {y}(n) as target HMI sequence of events n time steps-ahead
in future. Under Teacher forcing, a RNN based seq2seq models is trained by replacing the previous
predicted output of a decoder cell yt−1 by the actual (ground truth) or teacher supplied value as input to
subsequent cells for learning. That is, the feed-forward links between encoder RNN cells is bypassed by
injecting teacher supplied signals. This is analogous a teacher who corrects the student at every step of
a task sequence; instead of allowing the student to complete the entire task sequence fully and then
learn from her mistake.

Specifically in our design, sequence of one-hot encoded vectors are constructed for
encoder: INPUT1—{X}(k), decoder: INPUT2—{y}(n−1) (suffixed with a start token) and decoder:
OUTPUT—{y}(n) (as expected target output) as depicted in Figure 9. The sequence of one-hot
encoded vector corresponds to a sequence of events (a.k.a forms sentences from L1 and L2 languages)
that are HMI DES states. Each one-hot encoded vector has a fixed dimension (255 bits) that is same as
the dictionary event size and represents a particular value of the HMI indication feature(s) (X1, X2).
The output of decoder is the target translated sentence in L2 that corresponds to the predicted next
state of HMI DES, given the previous HMI state presented as INPUT1/INPUT2 to encoder and decoder
respectively. One caveat with INPUT2 is that it is offset by one time step compared to expected
OUTPUT sequence owing to inclusion of a <start> suffix token, which triggers the decoder to begin
translation. Note, that the required <end> token is not included as it is implicit in our design by having
a fixed length input and output sequence(s) (However, this is not a hard restriction as the model is
able to support variable length sequences).

Figure 9. Teacher Forcing—Training Data Stream. INPUT1 is the encoder training input which is
fed as the source sequence. Teacher forcing training data stream requires decoder input (INPUT2)
and expected ground truth output (OUTPUT) be offset by 1 time-step by inserting a start of sequence
(<Start>) marker token (255). Optionally a <End> marker may be inserted in training output sequence
(OUTPUT).

LSTM-EncDec Model

logP({y}(n)|{X}(k)) =
N

∑
t=0

logP(yt+1|yt, X; φ),
(9)

where:
N = n− 1, y0 = <start> token,
φ—learned parameter.

Teacher Forcing Training

logP(yt+1|yt, X; φ) = logP(yt+1|ht; φ)
(10)

Sensors 2020, 20, 3228 16 of 33

Hidden State or Context Vector

ht =

{
f (X; φ), if t = 0

f (ht−1, yt−1; φ), otherwise

(11)

where:
ht, φ—hidden vector, learned parameter respectively.

4.1.2. LSTM-EncDec—Inference Phase

The LSTM-EncDec model once trained using Teacher forcing may be used to infer (Figure 7)
the expected HMI event(s) of the target HMI state (translated language pattern) ŷn one step at a time.
Translation begins once the <start> is fed to the first decoder cell whose internal cell state has been
initialized by the summary vector from the encoder. Subsequent, target event tokens are inferred
by feeding as input the partial target HMI event pattern that is built by appending previously
predicted event tokens to it. The downside of this is if any previous inferred token is incorrect,
subsequent predictions will be off.

Moreover, the basic LSTM-EncDec model has also shown to be limited [42] in its translation skill
for longer length sequences, owing to a bottleneck associated with the final fixed-length summary
vector that only serves as a coarser context of the source pattern for the decoder. To overcome this
problem, Attention mechanism was introduced.

4.1.3. RNN Attention Mechanism

The encoder-decoder seq2seq RNN based models can be made more versatile in doing machine
translation of longer source patterns by using Attention mechanism. Attention in general was proposed
to provide more feature-full encoding of the source HMI event pattern from which finer grained
context vectors can be obtained. This allows the decoder to apply varying degree of Attention to every
input event token with its corresponding encoder hidden states—referred to as Keys(K) or Values(V),
in the source sequence for predicting each HMI event token in target sequence, given previous decoder
hidden state—referred to as Query(Q).

Attention Mechanism

et,i = f (Qt, Ki) Similarity Score,

ai = so f tmax(et,i) Attn. Weight Vector,

Attention(Qt, K, V) = ct = ∑
i

aiVi Attn. Context Vector.

(12)

The Attention mechanism [26,29] (Figure 10) results in constructing a attention context vector,
Attention(Q, K, V) = ct (12), as a sum of encoder hidden states weighted with normalized attention
weights (so f tmax(f(Q, Ki)) = αti) used for predicting each output HMI event token. It starts with
an alignment model (f(Q, Ki) to learn a similarity score (eti) between all hidden states (hi) of the encoder
at time-steps i = 1, . . . , k of the source sequence with respect to the decoder’s output hidden state st−1,
at previous time step t− 1. The alignment score eti essentially captures how relevant (or similar) each
encoded state hi (h1, h2, . . . , hk) (Key and Value) is to the decoder hidden state from previous time step
(st−1) (Query), which can be used to infer decoder output at next time step (T = t). Each score eti is then
normalized using softmax function in order to be used as probability value to indicate how likely each
encoded input HMI token is relevant to the current decoded output HMI event token. The normalized
scores are also referred to as attention weights (αti). The alignment model is implemented as a feed
forward single layer perceptron that is jointly trained (Wa, Ua, va trainable matrices) Equation (13)
with the rest of the translation encoder-decoder seq2seq model to learn various attention weights for
every encoded tokens with respect to an output token. The context vector (ct) is calculated for every
decoder output step (t), it represents the sum effect of all encoder hidden states (i = 1, . . . , k) weighted

Sensors 2020, 20, 3228 17 of 33

with expected attention weights (αti)—this captures the relative influence of each HMI event token
in input sequence X(k) on an output HMI event token in target sequence (ŷ(N)). The above attention
mechanism is based on global attention mechanism using additive (feed-forward) similarity function
as initially proposed by Reference [29] and described in Equation (13).

Figure 10. Attention Mechanism (conceptual). Allows the decoder to learn how much influence each
Key-Value (input tokens) has on a given Query (target token) dependence which allows accurately
predicting next output token. (Note: all subscripts span length of input sequence 1..N. Above example
is just for a specific case where N = 5).

RNN Attention Mechanism

Similarity Score:

eti = a(st−1, hi),

Attention Weight:

αti =
exp(eti)

∑K
i=1 exp(eti)

,

Additive Alignment Model:

a(s, h) = vT
a tanh(Wast + Uahi),

Context Vector:

ct =
K

∑
i=1

αtihi,

(13)

where:
Wa, Ua, va—trainable input, hidden and output layer weight matrices respectively.

4.2. Seq2Seq—CNN Encoder-Decoder

Recent trend in departure [43,44] from using RNN based encoder-decoder (e.g., LSTM-EncDec)
models for seq2seq prediction to the approach that combines Attention with convolutional neural
networks (CNN), has shown to outperform RNN based models in area of machine translation.
RNN based models are sequential in nature and generally require more memory bandwidth resources
than computational units. In contrast CNN Attention models offers themselves as better suited for
parallel and in-memory processing computational architectures [45].

The proposed model, here referred to as Trident, draws inspiration from the design recipe
“Embed, encode, attend, predict” by [46] in 2016, for building NLP CNN based models. It also
utilizes design concepts from transformer [26] and residual network (ResNet) [47] models to build
a scalable network that provides comparable or better performance than sequential LSTM-EncDec
model with single-headed attention layers evaluated herein.

Sensors 2020, 20, 3228 18 of 33

4.2.1. Trident—Encoder

Supervised training of the Trident (Figure 11) requires the same number of inputs (encoder:
INPUT1, decoder: INPUT2) and target output (OUTPUT) as required by seq2seq LSTM-EncDec model,
discussed previously. However, the encoder inputs (INPUT1) is framed slightly different, where
each HMI indication feature sequences of {X}(k) (X1, X2) are made bi-directional by concatenating

the corresponding sequence in reverse order (e.g.,
−−→
{X1}(k) concatenated with

←−−
{X1}(k)). This doubles

the length of the resulting training input vector of each HMI indication feature vector.

Figure 11. Trident Model: Contains stacked 1D convolutional neural network (CNN) layers to
build a parallel architecture that uses dot product attention layers for its encoder-decoder network.
Intermediate deeper CNN layer have larger (1, 2, 4) dilated kernel filters to increase the receptive filed
of the convolution maps to capture longer dependencies.

In addition the target HMI event sequence ({y}(n)) is introduced as input to the trident decoder
in a progressive way, during training, that is one new target token every few epochs (each target token
from the training set is appended to intermediate training sets). The overall {y}(n) target sequence
is padded to maintain a uniform sequence length. Therefore, the total number of training epochs is
equally split between all (n) tokens of the target HMI event sequence ({y}(n)). Progressive sequence
training is done to allow the model to train in a way, mimicking its functionality during translation
or performing inferences. This technique is to overcome exposure bias [48] (training-inference
discrepancy) in training a non-sequential CNN based model using Teacher forcing. Results show
improvement while predicting the output sequence one token at a time during the inference phase,
as the model encoder over-fitting is reduced. The model is also more resilient to begin translation

Sensors 2020, 20, 3228 19 of 33

using a partial sequence consisting of only a few previously output tokens generated by the decoder.
A <start> token is appended to each decoder input and an <end> token to each target HMI event
sequence similar to training the LSTM-EncDec models. Again, the rationale for these tokens is to offset
(lead) the decoder input sequence during training by one-time step (t− 1) compared to the target HMI
indication sequence.

4.2.2. Trident—CNN Layers

The proposed trident model design, as depicted in Figure 11, includes a parallel pathway
consisting of several convolutional neural network (CNN) layers to extract features from each input
and the target HMI indication sequences. A 1D-convolution (CNN) layer is utilized since it is more
conducive for processing sequence-based data sets, rather than images that have spacial information
in two-dimensional space. The size of the convolution kernel (filter) is has been chosen (Kernelsize = 3)
to be a value that is commonly used most CNN based models for language translation.

Number of feature (filter) maps generated in encoder for each convolution layer is set to
the dictionary size (Feature maps = D) of the HMI model input and output indication languages
(L1, L2) including the special <end> and <start> tokens. Therefore, D feature map vectors are
generated, followed by the application of a non-linear activation function (rectified linear unit
(ReLU) is used currently). In order to minimize the model, over-fitting regularization is required.
Regularization in CNN can be achieved by dropout connection, which randomly drops connections
between convolution layers, implemented in the CNN dense (fully connected) final output layer
in order to avoid saturation of gradient during backpropagation. Nevertheless, dropout does lead to
“un-learning” or decimating the previously learned weights, which is an issue in case the training
data set is small. Instead, batch normalization [49] was used between each convolution layer as a way
to regularize each convolution input pathway of trident model while it yields other benefits such
as reduction of covariate shift by normalizing the activations of each layer and speed up learning
of CNNs.

Unlike the RNN encoder-decoder (LSTM-EncDec) models, basic CNN encoders are not sequential
and do not learn sequence dependencies in long patterns by default as efficiently as LSTM layers
can. This limitation can be overcome by arranging the longer input sequences in spatially close
proximity such that the resulting convolution feature maps may capture sequential patterns and
related dependencies. In order to avail this, each input sequence has been made bi-directional by
concatenating the previous sequence in reverse order (as stated previously). Another design feature
is to use dilated kernel filters in intermediate convolution layers, which further allows the Trident to
increase its receptive field, as depicted in Figure 12, to capture longer sequence dependencies.

Figure 12. Dilation of kernel filters increases the receptive field of the higher subsequent convolution maps.

4.2.3. Trident—Attention Layer

Attention mechanism allows the CNN decoder to use various sub-regions of the input to draw
the output token. In the proposed model CNN Trident model (Figure 11), firstly the similarity
of the CNN layer internal representation vectors (h1, h2) for bi-directional encoder input {X}(k)
sequence(s), against the target decoder input sequence ({y}(n)) internal representation (hy) is obtained

Sensors 2020, 20, 3228 20 of 33

by performing vector dot products. The result of dot product generates similarity scores for each
sub-segment of the input HMI event sequence against the target HMI event sequence. The following
softmax activation is used to normalize the similarity scores to a probability distribution over
all segments of the input sequence, which can be used as the attention weight vector (α1,α2).
Secondly, the attention weight vectors are combined with the encoder input {X}(k) CNN layer internal
representation vectors (h1, h2), which ultimately applies the attention (focus) on various segments of
the HMI sequence {X}(k) given the target HMI sequence {y}(n). Lastly, all context vectors (C1,C2) are
concatenated along with the internally represented decoder input hy to obtain the final context vector C.

4.2.4. Trident—Decoder

Training of the Trident decoder is done along with the encoder using progressive target sequence as
per Teacher forcing technique. The decoder learns to use the context vector (C) to output the next token
(t = T) of the target sequence, given the partial sequence containing target tokens t = 0 to t = T − 1
(where, T is the sequence index of token in target sequence of length T = N) as the input to the decoder.
The context vector C captures the encoder attention or influence of the input sequences ({X}(k)) on each
partial target sequence {y}(t−1), which are introduced to the decoder progressively during training
beginning with a <start> token marker. The ground truth target sequence is also required and is same
as the decoder input sequence but is offset by one time step ahead ending with <end> token.

Inference is carried out similar to model training, where various HMI indication parameter
sequences of length K ({X}(K)) are provided as input to the encoder as bi-directional sequences.
The decoder input initially starts off with just the <start> token padded to the target HMI sequence of
length (N). Subsequently, as the decoder outputs a new token ({ŷ}(n−1)), it is appended to the sequence
which is fed back as input to the decoder. The context vector (C) evolves with the previously output
target token and is used to generate a new target token ({ŷ}(n)) by the decoder until the <end> marker
is output.

Trident decoder is implemented with two back to back 1D CNN layers with the first layer having
batch normalization. Both CNN layers have a fixed number of kernel filters (64). A dense layer
with softmax activation is used to reshape to a target sequence of length N tokens, which are one-hot
encoded to dictionary size D = 255 (including sequence de-marker tokens).

4.3. Curriculum Training

Curriculum training [50] overcomes the limitations of Teacher forcing and makes the model more
versatile (generalized) during training and accurate during inference. Training the seq2seq models
discussed above using Teacher forcing, inherently prevents the models from being generalized for
the inference phase. The issue is referred to as exposure bias (training-inference discrepancy [48]),
where the models are trained using actual ground truth target tokens ({y}(n)) each time step,
while during inference the model decoder is fed back previously predicted token ({ŷ}(n)). Thus,
limiting the skill of the seq2seq models to predict target tokens during inference over longer forecast
windows correctly. As, once an incorrect token is output, it may throw all prediction of subsequent
target token sequence off completely.

Curriculum training [50] entails seq2seq model decoder to be trained in mini-batches where both
actual ground truth and predicted tokens ({y}, {ŷ} receptively) are utilized. A sampling schedule is
followed to systematically control the probability (per epoch) in training mini-batch of how many of
either target or formerly predicted tokens are to be fed to the decoder during training. Namely, at each
training epoch based on the selected probability schedule (linear, exponential or inverse sigmoid
decay) [50] either (actual) {y}(n−1) or last predicted {ŷ}(n−1) is used. The sampling schedule is set
up to decay the probability (εi) of selecting ground truth ({y}), vs. previous predicted token ({ŷ})
decreases as training epoch count increase in a mini-batch (e.g., exponential εi = ki decay, where k < 1
and i is epoch index). This allows the model to get trained by teacher forcing in the beginning and

Sensors 2020, 20, 3228 21 of 33

slowly transition to using predicted target token output from the trained decoder trained thus far,
hence improve generalization and reduce over-fitting.

Trident is evaluated with using both teacher forcing and curriculum learning with linear decay
sampling schedule. It is noteworthy to state here both training techniques are used in conjunction with
the progressive sequence training, which rather controls how the decoder input is built progressively as
described previously.

5. Experiments

5.1. Data Generation

For the scope of this experiment a hypothetical HMI (ht-MI) application (Figure 13a,b) was
built using National Instruments Labview 8.0 standard function blocks. The ht-MI displays values of
an arbitrary simulated process as a pattern of 8 indication lamp states (8-bit), which the HMI user is
required to visually track and manually set an array of 8 rocker style toggle switches either ON or OFF
corresponding to each indicator lamp state being either ON or OFF. The process state evolves as per
synthetic data sample generator Equation (14)—which is a first-order linear autoregressive (AR or α),
moving average (MA or β) process, with Gaussian random noise (εt) and an adjustable period of
sinusoidal seasonal component. In addition, modulus of natural logarithm is added to introduce
an auto resetting trend component to TS. The parameters of the sample generator Equation (14) are as
listed below in Equation (15).

✻✵✻

✻✵✼

✻✵✽

✻✵✾

✻✶✵

✻✶✶

✻✶✷

✻✶✸

✻✶✹

✻✶✺

✻✶✻

✻✶✼

✻✶✽

✻✶✾

✻✷✵

✻✷✶

✻✷✷

✻✷✸

✻✷✹

✻✷✺

✻✷✻

(a) (b)

Figure 13. (a) ht-MI application in Manual mode: Process values are generated using a first-order
AR(α), MA(β) process with Gaussian noise (εt), periodic trend and seasonal components Equation (14).
Manual mode: Process values are displayed via array of lamp indicators. The user tracks indication
patterns by manually setting toggle switches in same pattern until alarm indication (red lamp)
goes off while user actions are logged each time step. (b) ht-MI application in Auto Pilot mode:
In Auto-Pilot mode, user tracking response to process values is modelled using a PI controller with
random proportional gain. Human Machine Interface (HMI) process and user response is captured as
time series data.

Synthetic data generated by the ht-MI application is based on the weakly stationary time-series
assumption made for HMI state space, as discussed previously in Section 3.2. Moreover, the intent of
this experimental setup is to be representative of the complexity and volume of data obtained from
real HMI systems and operator actions at a fundamental level, in order to demonstrate the principle of
modeling HMI state sequences via NLP models and exploring its potential ability to scale-up in future.

Sensors 2020, 20, 3228 22 of 33

Synthetic Data Model

Yi = µ + αYi−1 + βεt−1 + εt + sin
2πt

κ
+ ln[(t− κ)

⌊
t
κ

⌋
]

(14)

where:
µ, α, β, κ—Mean, Auto-regression, Moving-Average, seasonal trend resetting parameter,
εt—Gaussian noise term.

Process Parameters

Gaussian random noise(εt) : (seed = −1, µ = 0, σ = 0.5)

Seasonal component period[
t
κ
] =

time-step
200

(15)

This setup allows for generating two types of raw data sets under: manual entry and auto-pilot
modes. In the manual entry mode (Figure 13a) HMI user manually set switch states are captured
against the process indicator (lamp) values. Each time step sample (row) consists of a 2-tuple vector
as shown in Figure 14. In the auto-pilot mode (Figure 13b) the user response is modeled using a PI
(proportional-integral) controller with its proportional gain set each time step randomly within a fixed
range, that was determined by trail-error to closely match the author response rate, observed in manual
entry mode. Each state value is restricted to 8-bit in manual entry mode in auto-pilot mode.

Figure 14. Snippet of raw time-series data set generated from ht-MI application. PROCESS and
HMI_USER values are restricted to 8-bit integers (arbitrary time stamps generated). The raw data series
are framed into supervisory training data as desired for source (k-lag) and target (n-ahead) length of
sequence pairs.

5.2. Raw Data Sets

The raw HMI data sets are generated from either two sources: manual and auto-pilot modes.
Each data set (Figure 14) contains approximately (adjusted as desired) 4K samples with columns: Time,
PROCESS, HMI_USER. Time index is currently stored as date strings while the data columns hold
time sample tuples.

For this experiment, two (training and test) HMI raw data sets were generated separately
using auto-pilot mode with slightly different auto-regressive moving average (ARMA) time series
(α, β, µ) parameters listed in Equation (16) for the process generator Equation (14) along with random
proportional gain parameter for the (PI) operator response generator. The resulting two raw data

Sensors 2020, 20, 3228 23 of 33

sets were framed (arranged) into (k lag and n-step ahead) supervised training and test time series
sample data sets with the effective series mean remaining in range 198 to 255 as shown in Figure 15.
The rationale for keeping ARMA process generator is to ensure the synthetic data set do not fall
outside the fixed vocabulary size (HMI states: 0 to 255) pre-selected for this experiment. The test
data set contains similar HMI process patterns but slightly different HMI user patterns which is
obtained by changing the PI integral control reset constant from 4 to 6 steps, effectively slowing down
the operator response rate. This is conducive for evaluating out of sequence prediction performance of
the trained models.

HMI Synthetic data Model AR-MA params.

Training/Test Set:(α, β, µ) = (0.6,−0.1, 4), mean = 198

Traing/Test:(PI reset constant) = 4, 6 Steps

(16)

Figure 15. Raw Training/Validation and Test data sets for doing In-Sample and Out-of-Sample model
performance evaluation, respectively. Below each plot are zoomed-in sections of the over-all sequence
patterns to show the underlying patterns. Test data set uses a slightly slower HMI operator response:
The PI controller’s integral constant is changed to 6 steps compared to 4 steps used for original
training set).

5.3. Supervised Learning—Data Framing

Supervised learning often requires the raw data sets to be re-framed as input and target output
data sets that are representative of the underlying process to be modeled. For this experiment the raw
time-series HMI state feature data is framed as a short sequence of values arranged from previous k
time steps (Figure 14)—referred here with notation {X}k as the training sequence (containing both
process X1 and user input X2 features). This lagged sequence of patterns serves as the training,
validation, and test data sets for the required prediction model.

Similarly, the ground truth or target model output is framed as a short sequence of values taken
from next n-step ahead times—referred to here with notation {y}n (containing both process and user

Sensors 2020, 20, 3228 24 of 33

input features). The n-step ahead sequence of patterns also needs to accompany the training and
validation sets as expected output patterns for the required supervised training.

Finally, trained prediction model shall be able to predict n-step ahead samples of HMI state feature
vector (Figure 14)—referred to here with notation {ŷ}n, when k-lagged samples ({X}k) are provided
as input.

5.4. Baseline Model—Persistence Score

Persistence model (also referred to as naive or walk-forward forecast) is used to
ascertain the baseline forecast error estimate for a given time series data. Persistence algorithm shifts
(lags) a given time-series data by p steps in time, and uses it as the input to an ideal prediction model
(Figure 16). An ideal prediction model outputs the original data series exactly p steps out of phase.
Root mean square error is a common metric used to measure the standard deviation of the residuals
between predicted and expected samples. In the case of persistence forecast, root-mean-square
(RMSEp) error is dependent on the correlation between the lagged expected samples.

For example, when p = 0, the RMSEp = 0 is as expected, that is, the persistence model will
output the next step sample value in sync with the expected output when no shift or lag. RMSEp value
is generally used as an upper bound for the forecast error or selection criteria for any candidate forecast
model to be considered skillful, that is, a selected, trained model must yield a lower forecast error
(RMSE < RMSEp) than the persistence error for same n-step ahead prediction.

Rolling Window RMSE Metric

RMSErw =

√
∑N

i=1(yi − 1
W ∑W

k=0 ŷk)
2

N

(17)

where:
W, n, N—temporal slice size, sliding window size, total number of samples respectively.

Figure 16. Rolling Window Forecast for n-ahead (e.g., n = 3) Forecast for each input sequence {X}t.
Sub-samples from previous W predicted sequences at each temporal (red vertical stripes) slice in sliding
windows can be combined appropriately (e.g., averaged, max or min polled, etc.) together for
calculating rolling window forecast errors.

Additionally, a rolling window (rollWin) root mean square error RMSErw such as rollWin.RMSEp
for persistence model can be calculated using Equation (17). This metric combines samples from
previous W predicted sequences of n-step ahead sample window size. Sub-sequence samples that fall
in the same temporal slice of length W (Figure 16) as the n-step window advances one time step ahead
are are summed and scaled by W size (generally W = n is assumed). For instance, with {X}t = 2
as input to model, the predicted sequence will yield 4-step ahead samples for t = 2 to t = 5 when
n-step = 4. For each temporal slice (e.g., t = 2 to t = 5), the predicted sub-sample values are summed
vertically and scaled by W = 4, these rolling window sub-sample values are then used to calculate
the root mean square error against each expected yi (i = 0..N) samples. Rolling or sliding window
forecast error (RMSErw) is lower, such as seen in case of rollWin.RMSEp persistence score (Table 2),
owing to the beginning and ending trailing temporal slices having less than W number of sub-samples.

Sensors 2020, 20, 3228 25 of 33

The main intuition behind using a rolling window metric is to proportionally combine the errors
in redundant predicted sub-samples resulting from generating n-step ahead predicted samples ŷ,
while advancing the prediction window one-time step at a time.

RMSEp scores for lags (t + 2; t + 10; t + 20; t + 50) are as shown in Table 2. Figure 17 compares
both t + 1 and t + 50 lag persistence forecast and also depicts both RMSEp and rolling window RMSEp
as it varies with p-lag over the test data set that has been used.

Table 2. Persistence Score p-Lag RMSEp.

n-Lag RMSEp RMSEp (roll.Win.)

1 3.75 3.75
2 5.69 3.56

10 9.48 6.62
20 11.08 7.21
50 14.16 9.61

Figure 17. Persistence (RMSEp) score for a training/test data set for p-lag Persistence model forecast samples.

5.5. Models and Test Cases

Two models are evaluated in this paper. First is a seq2seq long short erm memory (LSTM) based
encoder-decoder model (referred to here as LSTM E-D) with a custom attention layer based on additive
attention [29] mechanism as described previously in Section 4.1.3. The second model is the 1D CNN
based custom model encoder-decoder design (referred to here as Trident) that uses dot product style
attention mechanism as described previously in Section 4.2.3.

The test cases include evaluating performance of above models under two training styles:
(1) Teacher forcing (2) Curriculum (scheduled sample) Training. Teacher forcing for LSTM E-D model
was previously described in Section 4.1.1 while teacher forcing, used for the Trident model was slightly
modified, in that it incorporates progressive sample injection to overcome the non-sequential nature
of the CNN networks as described previously in Section 4.2.1. Curriculum training was previously
described in Section 4.3.

Test Cases:

1. LSTM E-D Teacher Forcing (TF)
2. LSTM E-D Curriculum Learning (CL)
3. Trident Teacher Forcing (TF)
4. Trident Curriculum Learning (CL)

Sensors 2020, 20, 3228 26 of 33

Each above four test cases were swept over K-Lag = [4, 8, 16, 32] and n-step = [1, 2, 4, 10, 20]
parameters to train and evaluate the models using raw data set containing 4 K samples with train
vs. validation split of 60–30% for the resulting framed dataset (as described in above Section 5.3).
The performance values obtained from the train data set is called the in-sample(InS) result test
samples were selected from the original training set. Another data set (Section 5.2) containing 11 K
samples were generated for only re-evaluating the above-trained models under the above test cases
independently—which is the out-of-sample (OuS) performance since all models have never seen these
test samples during training.

In this application, both InS and OuS model performance are relevant owing to two benefits
(1) a lower validation accuracy compared to training accuracy on InS dataset, helps identify model
over-fitting (2) A high prediction accuracy on InS dataset may be desired in certain applications where
the process HMI states and operator actions are not expected to vary much with respect to each other.
This is particularly the case in safety-critical applications. Lastly, model performance (accuracy) using
OuS obviously shows the model’s generalization to the test data set.

All models have been custom-built using Python 3.6.7 Keras 2.2.4 API libraries with open source
TensorFlow 1.13.1 as its back end implementation.

6. Results

6.1. Time-Series Metrics

The objective is to accurately model the supervised training dataset sequence of samples.
Each sample includes K-Lag past tokens (source language) to produce N-Step ahead tokens (target
language) of HMI state (comprising of both process and operator response) feature parameters.
Initially, this modeling was treated as a regression time-series prediction problem, therefore rolling
window Root-Mean-Square Error (RMSErw) had been used as a metric to measure relative prediction
accuracy. Persistence rolling window RMSEp (baseline) scores for the desired N-step ahead predictions
(Section 5.4) is used to compare the relative prediction performance of various models.

All LSTM E-D models yield better (lower RMSErw) than baseline (RMSEp) persistence score
compared to the Trident CNN model. In general LSTM E-D yields ≈ 26% higher forecast accuracy than
the custom Trident model.

Lower RMSErw values are demonstrated for longer K-Lag source sequences. Since, that provides
the encoder-decoder more history per sequence to base its prediction on and improve its forecast
skill, than avilable for shorter source sequences K-Lag values. Results in Table 3 show LSTM E-D
generally yields lower RMSErw (e.g., LSTM E-D: RMSErw = 0 while Trident: RMSErw = 90.3 for
(K-Lag, N-step) = (32, 20)) compared to Trident model. This is owing to the non-sequential nature
of CNN to learn temporal sequences, which is seems to depend on Trident depth (number of CNN
layers) and combination of source/target sequence lengths. The custom Trident CNN model (Figure 11)
currenlty utlizes two 1D CNN layers. Nevertheless, current state-of-the-art research reveals CNNs
may overcome the limitation by using more deeper models, as such demonstrated by the Transformer
model [26].

Time-series Prediction Summary:

• LSTM E-D yields consistent lower rolling window RMSE (RMSErw) values than baseline score
RMSEp (Table 3) for all InS data test cases (which is desirable performance). While, Trident only
yields lower rolling window RMSE (RMSErw) values than baseline (RMSEp) for shorter target
sequence (N-Step < 20) cases, as long as source target sequence is K-Lag < 16. A behaviour that
is directly related to keeping kernel filter size constant for various source/target lengths.

• LSTM E-D generally yields lower RMSErw than Trident model. Trident models needs to be tuned
to work with a particular combination of K-Lag/N-Step source/target sequence lengths.

Sensors 2020, 20, 3228 27 of 33

• LSTM E-D and Trident model yield comparable Accuracy(tolerance) values for all test cases.
Therefore, both models are adept are modeling the general trend of expected future patterns
(within a tolerance).

• LSTM E-D shows lower (≈ 53%) validation accuracy than Trident. Suggests Trident achieves less
over-fitting with the same amount of available training data.

• Out-of-sample RMSErw scores are higher than RMSEp (Table 4) for all models, but show
consistent trends of values for same K-Lag/N-Step InS test cases. Therefore, InS performance is
a good indicator for estimating the performance for OuS datasets.

Table 3. Seq2Seq Encoder-Decoder Model In-Sample Training Data Set Performance Results.

Test Cases/Metrics k-Lag n-Step RMSEp
(roll.Win) Epocs RMSErw

(rollWin)
Accuracy

(Hard)
Accuracy

(Tolerance) BLEU 1 BLEU 2 BLEU 3 BLEU 4 TRN (acc) VAL (acc)

4 1 3.75 158 1.153 79.76% 99.88% 1 0 0 0 69.10% 32.10%
4 20 7.21 164 3.529 72.25% 99.36% 1 0.98 0.92 0.77 85.90% 25.40%

LSTM E-D 8 1 3.75 188 4.98 67.04% 98.90% 1 0 0 0 94.20% 18.20%
Teacher Forcing 8 20 7.21 135 1.925 93.81% 99.74% 1 1 1 0.99 99.40% 11.00%

16 20 7.21 149 0.019 99.88% 100.00% 1 1 1 1 99.90% 10.60%
32 20 7.21 148 0 100.00% 100.00% 1 1 1 1 100.00% 9.50%

4 1 3.75 81 1.262 79.24% 99.76% 1 0 0 0 70.30% 31.40%
4 20 7.21 81 7.224 38.69% 97.53% 0.99 0.93 0.89 0.79 64.50% 9.00%

LSTM E-D 8 1 3.75 81 0.314 95.48% 100.00% 1 0 0 0 92.90% 26.10%
Curriculum Learning 8 20 7.21 81 4.401 56.03% 98.99% 0.99 0.97 0.94 0.87 93.30% 7.30%

16 20 7.21 81 2.242 67.44% 99.62% 0.99 0.98 0.96 0.92 99.90% 6.70%
32 20 7.21 81 2.5 65.65% 99.58% 0.99 0.98 0.96 0.91 99.40% 7.10%

4 1 3.75 41 1.608 67.08% 99.76% 1 0 0 0 99.20% 83.40%
4 20 7.21 421 7.165 46.72% 97.71% 1 0.96 0.94 0.89 95.20% 20.30%

Trident 8 1 3.75 41 1.711 66.64% 99.52% 1 0 0 0 99.50% 80.80%
Teacher Forcing 8 20 7.21 421 3.559 79.24% 99.37% 1 0.98 0.97 0.94 95.20% 15.70%

16 20 7.21 421 70.872 41.11% 84.50% 0.85 0.74 0.71 0.62 98.60% 16.00%
32 20 7.21 421 90.354 28.79% 75.43% 0.75 0.62 0.59 0.49 99.10% 18.50%

4 1 3.75 81 2.238 54.80% 99.84% 1 0 0 0 85.70% 71.90%
4 20 7.21 81 18.128 28.75% 95.18% 0.95 0.84 0.78 0.64 49.70% 15.20%

Trident 8 1 3.75 81 1.902 56.92% 99.88% 1 0 0 0 86.90% 67.10%
Curriculum Learning 8 20 7.21 81 13.634 68.87% 98.36% 0.98 0.91 0.86 0.76 86.10% 12.50%

16 20 7.21 81 16.424 74.36% 97.95% 0.97 0.92 0.88 0.8 91.10% 10.00%
32 20 7.21 81 15.051 65.22% 98.14% 0.97 0.91 0.87 0.78 92.80% 10.40%

Table 4. Seq2Seq Encoder-Decoder Model Out-of-Sample Test Data Set Performance Results.

Test Cases/Metrics k-Lag n-Step RMSEp
(roll.Win) Epocs RMSErw

(rollWin)
Accuracy

(hard)
Accuracy

(Tolerance) BLEU 1 BLEU 2 BLEU 3 BLEU 4 TRN (acc) VAL (acc)

16 4 4.32 0 10.72 16.05% 90.14% 0.99 0.75 0.51 0.19 0 0
16 10 6.62 0 11.544 12.44% 89.27% 0.99 0.78 0.7 0.44 0 0

LSTM E-D 16 20 7.21 0 12.236 11.47% 90.38% 0.98 0.79 0.73 0.54 0 0
Teacher Forcing 32 4 4.32 0 11.101 14.59% 90.11% 0.99 0.75 0.51 0.18 0 0

32 10 6.62 0 12.103 12.20% 89.18% 0.99 0.77 0.68 0.41 0 0
32 20 7.21 0 12.127 11.40% 90.63% 0.98 0.79 0.73 0.54 0 0

16 4 4.32 0 10.826 17.47% 90.66% 1 0.77 0.58 0.26 0 0
16 10 6.62 0 11.422 14.36% 89.89% 0.98 0.83 0.79 0.64 0 0

LSTM E-D 16 20 7.21 0 12.044 11.57% 89.68% 0.98 0.82 0.78 0.63 0 0
Curriculum Learning 32 4 4.32 0 11.156 14.35% 89.78% 0.99 0.81 0.62 0.31 0 0

32 10 6.62 0 11.359 13.20% 91.27% 0.99 0.81 0.76 0.56 0 0
32 20 7.21 0 12.426 11.55% 90.11% 0.98 0.81 0.77 0.62 0 0

16 4 4.32 0 11.693 11.66% 88.68% 0.99 0.66 0.39 0.12 0 0
16 10 6.62 0 17.119 11.25% 88.31% 0.96 0.68 0.58 0.31 0 0

Trident 16 20 7.21 0 105.867 8.96% 63.64% 0.68 0.45 0.41 0.27 0 0
Teacher Forcing 32 4 4.32 0 16.101 10.37% 86.86% 0.97 0.7 0.46 0.18 0 0

32 10 6.62 0 12.948 11.40% 89.60% 0.98 0.73 0.65 0.41 0 0
32 20 7.21 0 112.988 6.18% 55.60% 0.63 0.43 0.4 0.29 0 0

16 4 4.32 0 11.068 10.00% 89.91% 0.99 0.84 0.68 0.37 0 0
16 10 6.62 0 15.302 10.29% 84.66% 0.9 0.67 0.6 0.38 0 0

Trident 16 20 7.21 0 34.656 9.91% 84.31% 0.9 0.67 0.62 0.45 0 0
Curriculum Learning 32 4 4.32 0 15.779 10.32% 84.65% 0.92 0.75 0.61 0.39 0 0

32 10 6.62 0 14.224 10.64% 87.36% 0.95 0.72 0.66 0.47 0 0
32 20 7.21 0 33.522 10.40% 87.50% 0.91 0.69 0.65 0.49 0 0

6.2. Prediction Accuracy

In addition, the proposed approach is to transform the time-series modeling as a NLP machine
translation problem, which falls under the multi-classification domain of machine learning. Hence,
label prediction accuracy measures and bilingual evaluation understudy (BLEU) (translation quality)
score have been utilized here.

For the accuracy, Accuracy(hard) metric looks for a one-to-one match, each time step,
between the class labels of expected and predicted output sequences. Secondly, Accuracy(tolerance) is

Sensors 2020, 20, 3228 28 of 33

a custom metric that is a relaxed accuracy measure that too makes one-to-one class label comparison,
but as long as class labels only do not vary more than a specified tolerance threshold (tol. = 0.01%)
they are accepted, otherwise rejected as not matching.

Results (Table 3), show the advantage of Curriculum learning vs. Teacher forcing for both LSTM
E-D and Trident models, as the models acquire prediction skills faster (requiring less epochs). Example,
for LSTM E-D under teacher forcing Accuracy(hard) = 100% for (32, 20) is reached at Epoch = 148,
while Accuracy = 65.65% is reached at Epoch = 81. Similarly, for Trident model Accuracy(hard) =
28.79% for (32, 20) at Epoch = 421, while Accuracy = 65.22% is reached at Epoch = 81.

BLEU 1-gram to 4-gram overlap scores were calculated to ascertain each model’s language
translation performance using previous K-Lag samples of HMI process (source language) to N-ahead
samples of HMI operator action sequence (target language). BLEU algorithm requires two sets of
reference and candidate sentence corpus. In this case, the reference sentence set contains the expected
N-ahead samples of HMI operator sequence, and the candidate set contains the actual predicted
N-ahead samples of HMI operator sentence.

In Table 3, BLEU scores have been averaged over all sequences in the evaluation data set for each
listed test case. The perfect BLEU score is a value 1. We BLEU-1 as an individual 1-gram score to
simply to account for the presence of all expected tokens in candidate sentences and that the expected
sequence length matches the reference sequences. In-sample(Table 3) results indicate all models show
a higher (>0.95) BLEU-1 score for all test cases, indicating all models are skillful enough to generate
the expected sequence length with all required tokens (irrespective order).

Similar to BLEU-1, BLEU-2 individual score looks at 2-gram (token) overlap (applicable for
N-Step >1 ahead sequences), that is, for expected token pairs must appear in the same pair order as
in reference sequences. For in-sample results (Table 3) BLEU-2 follows similar trend as demonstrated
by BLEU-1 for all test cases with slightly lower values reported for Trident model for longer N-Step > 10)
ahead sequence.

BLEU-3 and BLEU-4 scores are configured to yield a cumulative score, which is a weighted
geometric mean of individual n-gram scores. For instance cumulative BLEU-3 uses (0.33, 0.33, 0.33, 0)
and BLEU-4 uses (0.25, 0.25, 0.25, 0.25) as scale weight for 1-gram to 4-gram individual scores.
This allows for meaningful scores to capture longer in order token sequences. The in-sample results
in Table 3 show LSTM E-D models in general yield higher scores than Trident models. Even though
curriculum learning results lower (approx. < 3%) BLEU scores than Teacher forcing for both the models,
but it is able to achieve this with a lower number of Epochs. Therefore, curriculum learning does offer
learning at a faster rate, and further improvement is possible. Curriculum learning in particular does
seem to help (i.e., yield higher accuracy) for Trident model more than it does LSTM E-D (approximately
by factor of 1.06).

In brevity only a few expected vs. predicted output traces for in-sample and out-of-sample
data sets for LSTM E-D and Trident models under Teacher Forcing case have been included
in Figures 18 and 19, respectively. These traces are representative of a general trend of a progressive
drop in prediction accuracy as N-Step ahead forecast range increases for a given model trained at
a fixed K-Lag value (K-Lag = 4). However, as K-Lag is increased, accuracy for longer forecast does
improve as evident from results in Tables 3 and 4.

Sensors 2020, 20, 3228 29 of 33

Figure 18. LSTM E-D Model—Expected(solid line) vs. Predicted(red dots) Operator response traces for
Teacher Forcing test case from In-Sample (top row) & Out-of-Sample (bottom row) data set test under
K-Lag = [4] and N-Step = [1, 2, 4, 10, 20] runs (in left to right order).

Figure 19. Trident Model—Expected(solid line) vs. Predicted(red dots) Operator response traces for
Teacher Forcing test case from In-Sample (top row) & Out-of-Sample (bottom row) data sets test under
K-Lag = [4] and N-Step = [1, 2, 4, 10, 20] runs (in left to right order).

Sensors 2020, 20, 3228 30 of 33

Machine Translation Accuracy Summary:

• Accuracy(hard) measure for LSTM E-D is higher approximately (25%) compared to custom design
Trident model.

• Accuracy(hard) measure for LSTM E-D is lower (approx. < 20%) for curriculum learning than for
Teacher Forcing, but former is achieved via faster learning (Epochs = 164 vs. Epochs = 81).

• BLEU scores generally validate Accuracy(hard) measure, that is, higher Accuracy(hard) value
will yield higher BLEU n-gram scores.

• Curriculum learning seems to help Trident model more (approximately by factor of 1.06) than
it does to LSTM E-D model.

Lastly, looking at the training and validation accuracy values obtained during model training
(Table 3) shows that—Trident model achieves higher validation accuracy than LSTM E-D model.
This indicates that Trident is less prone to over-fitting and can further be improved by adding more
convolution layers.

7. Conclusions and Future Work

7.1. Conclusions

The broader implication of the proposed language translation modeling approach for the modern
control room and transportation industries is to develop a non-intrusive detection of human-in-the-loop
(HITL) error precursors and real-time monitoring of operator situational awareness. It may be achieved
by capturing and modeling patterns of interaction between the human operator and machine as
represented by HMI visual feedback states.

This work demonstrates transforming the HMI state time-series patterns into a language
translation problem to position the EYE-on-HMI framework [5] to take advantage of current
state-of-the-art NLP models. A custom design of a 1D CNN model (Trident) is utilized, which takes
into account design features from other state-of-the-art CNN and dot product attention based models
(e.g., Transformer [26], etc.). Trident model is compared in performance to standard seq2seq LSTM
based encoder-decoder design model with attention layer. In addition two NLP model training regimes:
Teacher forcing and Curriculum learning based on related research works was also used to train and
evaluate the models.

The results indicate the custom 1D CNN model performed (Trident) at par if not any less in terms
of translation accuracy compared to existing standard seq2seq recurrent LSTM encode-decoder model
for both in-sample and out-of-sample data sets. This being an initial design of Trident, it shows further
room for improvement, as seen in the higher validation accuracy (Table 3). We demonstrate that Trident
offers parallelism in design that does reasonably well given its simplicity and ability to scale up to to
include additional HMI features.

7.2. Future Work

A potential limitation of the current work is that it currently addresses HMI state modeling to
learn and predict HMI and operator action patterns only. This ability may further be extended to detect
anomalous HITL error precursors as a means to monitor SA. Moreover, the proposed SA monitoring
approach may even increase nuisance false alarms which, may defeat the purpose of having this
system owing to complacent response to actual alarm situations. Such limitations will require future
investigation utilizing Naturalistic Driving data for modeling and validation techniques (discussed
previously in the background Section 2.2).

Immediate future work entails further improving the CNN based model designs that can scale-up
for use modeling industrial control room HMIs. It will require optimizing the models for multi-feature
complex sequences using lesser computational resources and training times comparable to current
state-of-the-art NLP models.

Sensors 2020, 20, 3228 31 of 33

Author Contributions: Writing Original draft preparation, H.V.P.S.; Supervision, and Writing review and editing,
Q.H.M. All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada(NSERC).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. IAEA. International Nuclear Event Scale (INES). Available online: https://www.iaea.org/resources/
databases/international-nuclear-and-radiological-event-scale (accessed on 27 March 2020).

2. IAEA. INSAG-7 Safety Report The Chernobyl Accident (circa 1992). Available online: http://www-pub.
iaea.org (accessed on 27 March 2020).

3. Nuclear Energy Institute. Lessons from the 1979 Accident at Three Mile Island (Circa 2019). Available online:
https://www.nei.org/resources/fact-sheets/lessons-from-1979-accident-at-three-mile-island (accessed on
27 March 2020).

4. Manzey, D.; Reichenbach, J.; Onnasch, L. Human performance consequences of automated decision aids:
The impact of degree of automation and system experience. J. Cogn. Eng. Decis. Mak. 2012, 6, 57–87.
[CrossRef]

5. Singh, H.V.; Mahmoud, Q.H. EYE-on-HMI: A Framework for monitoring human machine interfaces
in control rooms. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer
Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–5.

6. Singh, H.V.; Mahmoud, Q.H. Evaluation of ARIMA Models for Human–Machine Interface State Sequence
Prediction. Mach. Learn. Knowl. Extr. 2019, 1, 18. [CrossRef]

7. Shih, S.Y.; Sun, F.K.; Lee, H.Y. Temporal pattern attention for multivariate time series forecasting. Mach. Learn.
2019, 108, 1421–1441. [CrossRef]

8. Wickens, C.D. Situation awareness: Review of Mica Endsley’s 1995 articles on situation awareness theory
and measurement. Hum. Factors 2008, 50, 397–403. [CrossRef] [PubMed]

9. Lundberg, J. Situation awareness systems, states and processes: a holistic framework. Theor. Issues Ergon. Sci.
2015, 16, 447–473. [CrossRef]

10. McAnally, K.; Davey, C.; White, D.; Stimson, M.; Mascaro, S.; Korb, K. Inference in the Wild: A Framework
for Human Situation Assessment and a Case Study of Air Combat. Cogn. Sci. 2018, 42, 2181–2204. [CrossRef]

11. Endsley, M.R. Automation and situation awareness. Autom. Hum. Performance Theory Appl. 1996, 20, 163–181.
12. Salmon, P.M.; Stanton, N.A.; Walker, G.H.; Jenkins, D.; Ladva, D.; Rafferty, L.; Young, M. Measuring

Situation Awareness in complex systems: Comparison of measures study. Int. J. Ind. Ergon. 2009, 39, 490–500.
[CrossRef]

13. Jones, D.G.; Endsley, M.R. Examining the validity of real-time probes as a metric of situation awareness.
In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Diego, CA, USA,
30 July–4 August 2000; Volume 1, pp. 278–278.

14. Endsley, M.R.; Selcon, S.J.; Hardiman, T.D.; Croft, D.G. A comparative analysis of SAGAT and SART for
evaluations of situation awareness. In Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, Chicago, IL, USA, 5–9 October 1998; Volume 42, pp. 82–86.

15. Li, G.; Wang, Y.; Zhu, F.; Sui, X.; Wang, N.; Qu, X.; Green, P. Drivers’ visual scanning behavior at signalized
and unsignalized intersections: A naturalistic driving study in China. J. Saf. Res. 2019, 71, 219–229.
[CrossRef]

16. Li, G.; Lai, W.; Sui, X.; Li, X.; Qu, X.; Zhang, T.; Li, Y. Influence of traffic congestion on driver behavior
in post-congestion driving. Accid. Anal. Prev. 2020, 141, 105508. [CrossRef]

17. Precht, L.; Keinath, A.; Krems, J.F. Effects of driving anger on driver behavior–Results from naturalistic
driving data. Transp. Res. Part Traffic Psychol. Behav. 2017, 45, 75–92. [CrossRef]

18. Ghasemzadeh, A.; Ahmed, M.M. Utilizing naturalistic driving data for in-depth analysis of driver
lane-keeping behavior in rain: Non-parametric MARS and parametric logistic regression modeling
approaches. Transp. Res. Part Emerg. Technol. 2018, 90, 379–392. [CrossRef]

19. Balsa-Barreiro, J.; Valero-Mora, P.M.; Berné-Valero, J.L.; Varela-García, F.A. GIS mapping of driving behavior
based on naturalistic driving data. ISPRS Int. J. -Geo-Inf. 2019, 8, 226. [CrossRef]

https://www.iaea.org/resources/databases/international-nuclear-and-radiological-event-scale
https://www.iaea.org/resources/databases/international-nuclear-and-radiological-event-scale
http://www-pub.iaea.org
http://www-pub.iaea.org
https://www.nei.org/resources/fact-sheets/lessons-from-1979-accident-at-three-mile-island
http://dx.doi.org/10.1177/1555343411433844
http://dx.doi.org/10.3390/make1010018
http://dx.doi.org/10.1007/s10994-019-05815-0
http://dx.doi.org/10.1518/001872008X288420
http://www.ncbi.nlm.nih.gov/pubmed/18689045
http://dx.doi.org/10.1080/1463922X.2015.1008601
http://dx.doi.org/10.1111/cogs.12636
http://dx.doi.org/10.1016/j.ergon.2008.10.010
http://dx.doi.org/10.1016/j.jsr.2019.09.012
http://dx.doi.org/10.1016/j.aap.2020.105508
http://dx.doi.org/10.1016/j.trf.2016.10.019
http://dx.doi.org/10.1016/j.trc.2018.03.018
http://dx.doi.org/10.3390/ijgi8050226

Sensors 2020, 20, 3228 32 of 33

20. Mikolov, T.; Karafiát, M.; Burget, L.; Černockỳ, J.; Khudanpur, S. Recurrent neural network based language
model. In Proceedings of the Eleventh Annual Conference of the International Speech Communication
Association, Chiba, Japan, 26–30 September 2010.

21. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.
arXiv 2013, arXiv:1301.3781.

22. Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural language processing (EMNLP), Doha, Qatar,
25–29 October 2014; pp. 1532–1543.

23. Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A neural probabilistic language model. J. Mach. Learn. Res.
2003, 3, 1137–1155.

24. Elman, J.L. Distributed representations, simple recurrent networks, and grammatical structure. Mach. Learn.
1991, 7, 195–225. [CrossRef]

25. Levy, O.; Goldberg, Y.; Dagan, I. Improving distributional similarity with lessons learned from word
embeddings. Trans. Assoc. Comput. Linguist. 2015, 3, 211–225. [CrossRef]

26. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I.
Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems,
Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008.

27. Takase, S.; Okazaki, N. Positional Encoding to Control Output Sequence Length. arXiv 2019, arXiv:1904.07418.
28. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. In Proceedings

of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014;
pp. 2204–2212.

29. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.
arXiv 2014, arXiv:1409.0473.

30. Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation.
arXiv 2015, arXiv:1508.04025.

31. Cheng, J.; Dong, L.; Lapata, M. Long short-term memory-networks for machine reading. arXiv 2016,
arXiv:1601.06733.

32. Raganato, A.; Tiedemann, J. An analysis of encoder representations in transformer-based machine translation.
In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP;
Association for Computational Linguistics: Stroudsburg, PA, USA, 2018.

33. Voita, E.; Talbot, D.; Moiseev, F.; Sennrich, R.; Titov, I. Analyzing Multi-Head Self-Attention: Specialized Heads
Do the Heavy Lifting, the Rest Can Be Pruned. arXiv 2019, arXiv:1905.09418.

34. Barrault, L.; Bojar, O.; Costa-jussà, M.R.; Federmann, C.; Fishel, M.; Graham, Y.; Haddow, B.; Huck, M.;
Koehn, P.; Malmasi, S.; et al. Findings of the 2019 conference on machine translation (wmt19). In Proceedings
of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), Nanchang, China,
27–29 September 2019; pp. 1–61.

35. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv 2018, arXiv:1810.04805.

36. Rajpurkar, P.; Jia, R.; Liang, P. Know What You Don’t Know: Unanswerable Questions for SQuAD. arXiv
2018, arXiv:1806.03822.

37. Conneau, A.; Kiela, D.; Schwenk, H.; Barrault, L.; Bordes, A. Supervised learning of universal sentence
representations from natural language inference data. arXiv 2017, arXiv:1705.02364.

38. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding with Unsupervised
Learning; Technical report; OpenAI: San Francisco, CA, USA, 2018.

39. Mishra, N.; Rohaninejad, M.; Chen, X.; Abbeel, P. A simple neural attentive meta-learner. arXiv 2017, arXiv:1707.03141.
40. Ramadge, P.J.; Wonham, W.M. Supervisory control of a class of discrete event processes. SIAM J. Control. Optim.

1987, 25, 206–230. [CrossRef]
41. Howard, J.; Ruder, S. Universal language model fine-tuning for text classification. arXiv 2018, arXiv:1801.06146.
42. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase

representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
43. Liu, Y.; Ji, L.; Huang, R.; Ming, T.; Gao, C.; Zhang, J. An attention-gated convolutional neural network for

sentence classification. Intell. Data Anal. 2019, 23, 1091–1107. [CrossRef]

http://dx.doi.org/10.1007/BF00114844
http://dx.doi.org/10.1162/tacl_a_00134
http://dx.doi.org/10.1137/0325013
http://dx.doi.org/10.3233/IDA-184311

Sensors 2020, 20, 3228 33 of 33

44. Yin, W.; Schütze, H.; Xiang, B.; Zhou, B. Abcnn: Attention-based convolutional neural network for modeling
sentence pairs. Trans. Assoc. Comput. Linguist. 2016, 4, 259–272. [CrossRef]

45. Culurciello, E.; Zaidy, A.; Gokhale, V. Computation and memory bandwidth in deep neural networks.
Medium 2017, 5, 1–4.

46. Honnibal, M. Embed, Encode, Attend, Predict: The New Deep Learning Formula for State-Ofthe-Art NLP Models;
Explosion AI: Berlin, Germany, 2016.

47. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

48. Wiseman, S.; Rush, A.M. Sequence-to-sequence learning as beam-search optimization. arXiv 2016, arXiv:1606.02960.
49. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. arXiv 2015, arXiv:1502.03167.
50. Bengio, S.; Vinyals, O.; Jaitly, N.; Shazeer, N. Scheduled sampling for sequence prediction with recurrent

neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC,
Canada, 7–12 December 2015; pp. 1171–1179.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1162/tacl_a_00097
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Situational Awareness
	Validation Using Naturalistic Data
	Word Embedding for HMI State Encoding
	Attention for NLP Models
	NLP Models
	Transformer
	BERT and SNAIL

	Problem Formulation
	HMI State Space Features
	HMI Model Assumptions
	HMI DES Modelling for NLP

	NLP Model Design
	Seq2Seq—LSTM Encoder-Decoder
	LSTM-EncDec—Training Phase
	LSTM-EncDec—Inference Phase
	RNN Attention Mechanism

	Seq2Seq—CNN Encoder-Decoder
	Trident—Encoder
	Trident—CNN Layers
	Trident—Attention Layer
	Trident—Decoder

	Curriculum Training

	Experiments
	Data Generation
	Raw Data Sets
	Supervised Learning—Data Framing
	Baseline Model—Persistence Score
	Models and Test Cases

	Results
	Time-Series Metrics
	Prediction Accuracy

	Conclusions and Future Work
	Conclusions
	Future Work

	References

