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Abstract
Sepsis is newly defined as life-threatening organ dysfunction caused by a 
dysregulated host response to infection. The pathophysiological mecha-
nism of sepsis is highly complex, and the mortality of in-patients suffering 
from sepsis is more than 10%. Severe unmanaged inflammation and inap-
propriate immune response characterize sepsis. Anti-inflammation thera-
pies alone are not successful for the reason that disbalance of 
anti-inflammatory and pro-resolving agents. In the recent researches, the 
host responses during the course of self-resolving infections are found to 
have the involvements of specialized pro-resolution mediators (SPMs), 
namely, lipoxins, resolvins, protectins and maresins. These endogenous 
lipid metabolites are core signal molecules in the resolution of inflamma-
tion, playing a key role in regulating the inflammation and promoting 
return to homeostasis. Besides, heme oxygenase-1 (HO-1, a sensitive 
marker for oxidative stress) is also known for upregulation in inflammation 
profiling. Carbon monoxide, synthesized by HO-1, performs multiple 
stances of anti-inflammation and pro-resolution along with the SPMs. If 
the potentially beneficial effects of these mediators would be well evalu-
ated in clinical trials, they present encouraging new hints in managing 
infectious maladies especially sepsis.
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8.1	 �Introduction

Sepsis is a complicated series of pathophysiological and biochemical disbalance 
due to the uncontrolled inflammatory response to the invasive pathogens. Its newest 
definition is defined as organ dysfunction due to infection, which remains a major 
public health concern that is associated with poor clinical outcomes (in-hospital 
mortality is more than 10%) and substantial healthcare expenditures [1]. Data 
showed that the cost of medical care for sepsis patients was more than $20 billion 
(5.2%) of total US hospital costs in 2011 [2]. Although the accurate incidence of 
sepsis is unknown, the reported data are increasing [3, 4], and conservative esti-
mates indicate that sepsis is a leading cause of mortality in the US hospitals and 
critical illness in the world [5, 6].

The inflammatory host response was long considered as a passive process, 
which is terminated by the clearance of pro-inflammatory mediators. Recently, it is 
recognized that the initiation and cessation of immune and inflammatory responses 
is an initiative and symphony process. The pathogenesis of sepsis is intricate. The 
early stages of sepsis are characterized by excessive generation of inflammatory 
mediators; however, as sepsis develops into severe chronic sepsis, immunosup-
pression dominates. This demonstrates that excessive uncontrolled inflammation 
and inappropriate immune response characterize sepsis [7]. The new lights into 
sepsis contribute to the explanation of failure in current treatment strategies, 
including inhibition of the activation phase of the acute inflammatory response to 
infection (e.g. glucocorticoids, nonsteroidal anti-inflammatory drugs and anti-
TNF-α drugs) [8]. Therefore, it’s urgent and beneficial to explore new paradigms 
in managing sepsis.

As of recent studies relating the host response to a self-resolving infection, it is 
brought into light that a genus of endogenous bioactive lipid mediators (SPMs) is 
produced by the innate immune system cells. A process of stereoselective enzyme 
conversion of essential fatty acids including arachidonic acid (AA), eicosapentae-
noic acid (EPA), docosahexaenoic acid (DHA) and n-3 docosapentaenoic acid (n-3 
DPA) produces these molecules. The synthetases include cyclooxygenase (COX), 
lipoxygenase (LOX) and cytochrome P-450 monooxygenase. The SPMs can further 
be subdivided into lipoxins, resolvins, protectins, maresins and immunoresolvents 
(RvTs, PCTRs and MCTRs) (Fig. 8.1) [9–12].

Through the G-protein-coupled receptor-dependent manner, these SPMs 
exhibit the fundamental bioactivities in the maintaining of host responses. Hence, 
the productions of pro-inflammatory cytokines (TNF-α and IL-1β) and chemo-
kines are inhibited, and the downregulation of inflammation-initiating eico-
sanoids (prostaglandins and leukotrienes) is promoted. This as well regulates the 
leukocyte infiltration and stimulates the macrophage efferocytosis of apoptotic 
cells and debris [10, 11]. Recent studies have shown that the SPMs exhibit ben-
eficial impacts at the site and in course of sepsis while maintaining the homeo-
stasis between the abundance of microorganisms and the host. In this chapter, we 
aim at:
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	(1)	 The functions of SPMs in sepsis.
	(2)	 Because aspirin partakes in the synthesis of lipoxins and resolvins, studies 

related to aspirin-triggered lipid mediators are included [13].
	(3)	 Protective effects of carbon monoxide (CO) on inflammation and its impacts of 

enhanced productions of pro-resolving lipids [14, 15]. Therefore carbon mon-
oxide and its synthetase HO-1 are summarized.

	(4)	 Since Annexin (A1) is a stress response protein, the current evidence for benefi-
cial pro-resolving effects of this mediator in sepsis is also addressed in this 
chapter [16].

8.2	 �Mediators Related to Resolution of Inflammation

8.2.1	 �Lipoxins

Lipoxins (trihydroxy-tetraene-containing eicosanoids) are derived from the omega-6 
polyunsaturated fatty acid arachidonic acid (AA) through sequential reactions 
involving lipoxygenase enzymes, including 5-lipoxygenase (5-LOX), 
12-lipoxygenase (12-LOX) and 15-lipoxygenase type 1 (15-LOX-1). There are two 
series of lipoxins, lipoxin-A4 (LXA4) and lipoxin-B4 (LXB4) [17]. We mainly 
summarize the activities of LXA4 in this chapter.

12/15/5-LOX

COX-2/P450

5-LOX

15-LOX

12/15-LOX

COX-2

12-LOX

15-LOX

AA

EPA

DHA

n-3 DPA

n-3 Protectins/Resolvins

n-3 Maresins

Resolvin Ts (RvTs)

Maresins/MCTRs

Protectins/PCTRs

Resolvin Ds

Resolvin Es

Lipoxin ALX/FPR2

ChemR23

ALX/GPR32

Fig. 8.1  SPMs derived from essential fatty acids and their receptors
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Lipoxins exert effects through a G-protein-coupled receptor, formyl peptide 
receptor-2 (FPR2/ALX). This receptor mainly expresses on the membrane of cells 
in the immune system along with the resident fibroblasts and epithelial cells [18]. In 
general, lipoxins are potent inhibitors of inflammatory activity, inducing the resolu-
tion of leukocyte activity. They block the response to leukotrienes and chemotactic 
factors such as leukotriene B4 (LTB4) and platelet-activating factor [19]. These 
effects inhibit the infiltration of pro-inflammatory cells. The resolution of inflamma-
tion involves reduction of neutrophil recruitment, promotion of macrophage migra-
tion and augmentation of apoptotic cells efferocytosis. Lipoxins exert 
immune-modulatory activity as well [17, 18].

LXA4, treated after injury, was proved to limit inhaled LPS-induced lung injury 
[20]. In other experimental models, 5 h after caecal ligation and puncture (CLP), 
LXA4 was administered to rats which resulted in decreasing of plasma IL-6, che-
mokine (C-C motif) ligand 2 (CCL2) and IL-10 and reducing NF-κB activity in 
peritoneal macrophages. LXA4 further enhanced the phagocytosis of macrophage 
recruited to the peritoneum and reduced bacterial load in the blood. Hence, LXA4 
improved the mortality of this CLP model [21].

Further study showed that flavocoxid, a dual inhibitor of COX-2 and 5-LOX, 
reduces the expression of NF-κB, COX-2 and 5-LOX which improves survival rate 
in a murine CLP sepsis model. Plasma IL-10 and LXA4 concentrations are 
increased, while tumour necrosis factor-α (TNF-α), IL-6, LTB4 and PGE2 are 
decreased [22].

Neutrophil phagocytosis involving the Fc receptor I (CD64) is increased and 
enhanced by LXA4. Meanwhile, LXA4 decreases the release of the exotoxin pyo-
cyanin by Pseudomonas aeruginosa, reducing its pathogenicity [23]. Moreover, 
LXA4 blocks trafficking of neutrophils, inhibits their adhesion and their release of 
azurophilic granules. And in activated T-cells, LXA4 lowers TNF release [24]. The 
finding shows that LXA4 not only modulates the host response but also affects bac-
terial toxicity [23].

A test was run to investigate the role of receptor FPR2/ALX in mediating the 
protective effects in sepsis using the receptor agonist BML-111. It ameliorates 
intestinal inflammation in septic rats. The anti-inflammatory cytokine transforming 
growth factor-β (TGF-β) which is supposed to protect intestinal cells from apoptotic 
cell death was induced [25]. In a murine model of non-lethal polymicrobial sepsis, 
FPR2/ALX-deficient animals developed more serious disease and exhibit higher 
cytokine levels and reduced recruitment of monocytes in peritoneal lavages. 
Treatment with an FPR2/ALX agonist protected wild type but not the knock-out 
mice from cardiac dysfunction [26]. These findings prove that LXA4 protect from 
organ dysfunction, a major cause of mortality in sepsis [27].

As known to all, acute lung injury (ALI) and the acute respiratory distress syn-
drome (ARDS) are major common complications of severe sepsis [27]. With the 
inoculation of Klebsiella pneumoniae in mice, pulmonary sepsis occurred and 
induced LXA4 and FPR2/ALX expression in the lung. Later, the treatment of recep-
tor antagonists and inhibition of 5-lipoxygenase and 15-lipoxygenase in early sepsis 
(1 h postinfection) even increased leukocyte migration to the infected tissues, and 
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survival rate increased. On the contrary, receptor agonist and LXA4 application 
consequently worsened early infection and reduced migration of leukocytes. But, 
24 h postinfection, LXA4 improved animal survival. Here, this research demon-
strates the dual role of LXA4 and highlights the time dependence when targeting the 
LXA4 pathway in pulmonary infection [28].

In the case of septic patients, all the mediators identified in preclinical studies 
and tested for the treatment in clinical trials have failed [29]. Pro-resolving lipid 
analysis in critically ill patients may reveal a novel orientation for treatment and 
bring in further insights into the pathways playing a role in the pathophysiology of 
sepsis. While comparing to 27 non-survival septic patients for 28 days of admission 
to the intensive care unit, LXA4 was significantly reduced in 39 patients that sur-
vived, but levels of this lipid were not associated with death [30].

8.2.2	 �Resolvins

Resolvins are also derived from omega-3 polyunsaturated fatty acids and exist as 
two series (D and E). E-series resolvins (RvE1 and RvE2) are products of eicosa-
pentaenoic acid (EPA) involving 5-LOX, cytochrome P450 and aspirin-acetylated 
COX-2 as well. D-series resolvins (RvD1–RvD6) are synthesized from docosa-
hexaenoic acid (DHA) metabolism involving enzymes 5-LOX/15-LOX [13, 31]. 
The biological activities of resolvins are similar to lipoxins. RvE1 and its ana-
logues are more potent than LXA4 on a molar basis. RvE1 binds to the leukotriene 
receptor BLT1 and blocks TNF-α-stimulated NF-κB activation at the ChemR23 
receptor [32].

In a mouse model of aspiration pneumonia and subsequent involvement of one 
lobe with E. coli infection, the function of RvE1 in acute lung injury was analysed 
and found that the RvE1, when injected before the acid injury, reduced pulmonary 
neutrophil infiltration and enhanced bacterial clearance. This was accompanied by 
lower levels of inflammatory cytokines and chemokines and marginally improved 
survival rate [33].

In other two murine models of acute lung injury, RvE1 enhanced cell death of 
neutrophils arising from the phagocytosis of opsonized E. coli or yeast and is medi-
ated by the leukotriene B4 receptor BLT1. Consequently, RvE1 enhanced the reso-
lution of the established pulmonary inflammation [34]. LXA4, RvE1 and protectin 
D1 increase levels of the C-C chemokine receptor 5 (CCR5) on apoptotic polymor-
phonuclear cells (PMNs) and thereby terminate chemokine signalling [35]. RvE1 
and 15-epi-lipoxin protect macrophages from oxidative stress-associated apoptotic 
cell death, and this contributes to the removal of cytotoxic debris and the inflamma-
tion resolution [36, 37].

D-galactosamine-sensitized mouse endotoxin shock mode was also tested for the 
effects of RvD1, which counteracted the induction of high-mobility group box-1 
(HMGB1) and pro-inflammatory cytokines. Hepatocyte apoptosis was suppressed, 
and also neutrophil immigration to the peritoneum was reduced by the effects of 
RvD1 [38].
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In a mouse model of intraperitoneal E. coli peritonitis, RvD5 enhanced phagocy-
tosis of bacteria compared to the control group. RvD1 had a similar but smaller 
effect. Both RvD1 and RvD5 reduced significantly titre of viable bacteria in perito-
neal exudates and blood and lowered degree of hypothermia as well. Plasma levels 
of pro-inflammatory cytokines (TNF-α and IL-1β) were reduced by RvD1 and RvD5. 
Interestingly, it was found that RvD1 enhanced the antimicrobial effect of ciprofloxa-
cin in resolving E. coli peritonitis and increased survival rate in this model [39].

Administration of resolvin D2 could improve outcomes of burn-related sepsis by 
regulating PMN chemotaxis. In a rat model of burn-related sepsis, RvD2 restored 
the chemotaxis of PMN to almost normal level. Furthermore, when burned rats 
received intravenous LPS 9 days after their burn injury, with intravenous pretreated 
RvD2, the survival of rats improved significantly. Similarly, RvD2 pretreatment 
increased survival, following caecal ligation after burn injury [40].

RvD1 injected after CLP model of sepsis increased bacterial clearance and mice 
survival. The numbers of peritoneal neutrophils were decreased, while CD3 
T-lymphocytes apoptosis in thymus got significant improvement [41]. When AT-RvD1 
was administered 1 h after the toxin in a LPS-induced acute kidney injury mouse model, 
renal function was improved. Lower expression of adhesion molecules, less activation 
of NF-κB and reduced infiltration of neutrophils have been reported as well [42].

Previous studies have shown that IV administration of RvD2 on a CLP sepsis 
model exhibits the following protective pro-resolution effects and increases survival 
rate: (1) reduce viable aerobic bacterial load in peritoneal exudates and blood; (2) 
reduce PMN migration into the peritoneum; (3) reduce plasma levels of IL-10 and 
IL-17; (4) reduce pro-inflammatory cytokine (IL-6, IL-1β, IL-23 and TNF-α) levels 
in plasma and peritoneum; (5) reduce concentrations of the pro-inflammatory lipids 
PGE2 and LTB4; while (6) increase clearance of bacteria by phagocytes in inguinal 
lymph nodes and in vitro; (7) enhance phagocytosis of E. coli by human PMN and 
also increase intracellular production of reactive oxygen species; and (8) increase 
survival as a result [43].

Inflammatory pain is mainly caused due to the activation of transient receptor 
potential subtype vanilloid 1 (TRPV1) and TRP ankyryn 1 (TRPA1). RvD2 is a 
potent inhibitor of both channels in primary sensory neurons, while RvE1 inhibits 
TRPV1 and RvD1 inhibits TRPA1, respectively. Hence, these lipids contribute to 
pain-relieving activities [44].

The potential therapeutic uses of exogenous resolvins are currently under investi-
gation. In a recent phase 2 clinical trial involving patients with dry eye syndrome, an 
RvE1 analogue significantly improved signs and symptoms of corneal inflammation. 
This is the first trial to show the clinical efficacy of the novel class of resolvins thera-
peutics that stimulate resolution rather than inhibit inflammatory mediators [14].

8.2.3	 �Protectins

Protectins are also omega-3 polyunsaturated fatty acid derivatives, generated from 
docosahexaenoic acid (DHA) through 12-LOX/15-LOX-mediated pathways. 
Neuroprotectin D1 (NPD1) and protectin D1 (PD1) are included [45].
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In a severe human influenza model, H1N1-A virus was introduced through the 
intratracheal route in mice, and PD1 levels were found to be reduced, suggesting 
that endogenous production was suppressed by the virus. When other influenza A 
virus strains were tested, the reduction of PD1 was found to inversely correlate with 
the virulence of the virus strain used. In the same model of severe human influenza, 
intravenous administration of PD1 reduced in vitro replication of the H1N1 influ-
enza A virus and increased survival. Besides, When PD1 was administered in com-
bination with the antiviral agent peramivir, a dramatic increase in survival was 
found compared to use of peramivir alone [46].

Protectin DX (PDX, an isomer of protectin D1) also exhibits protective effects of 
anti-inflammation and pro-resolution. In a CLP sepsis mice model, PDX increased 
overall survival rate and attenuated multiple organ injury. In addition, PDX reduced 
pro-inflammatory cytokines and bacterial load 24 h after CLP. Moreover, PDX pro-
moted phagocytosis of peritoneal macrophages and increased the percentage of M2 
macrophages in peritoneum of septic mice [47].

In a recent report encompassing 22 sepsis patients, it was shown that plasma 
levels of inflammation-initiating mediators including PGF2α and LTB4 and pro-
resolving mediators, including RvE1, RvD5 and 17R-PD1, were significantly 
higher in non-survivors than in surviving sepsis subjects. Further analysis revealed 
increased respiratory failure in non-survivors. These results indicate that peripheral 
blood lipid mediator profiles (RvE1, RvD5 and 17R-PD1) in sepsis correlate with 
survival and ARDS development, thus suggesting plausible novel biomarkers and 
biological targets for critical illness [48].

8.2.4	 �Maresins

Maresins are a new family of anti-inflammatory and pro-resolving lipid mediators 
derived from docosahexaenoic acid (DHA) by macrophages via human 
12-lipoxygenase (12-LOX). The first member of this family, termed as maresin 1 
(MaR1), exhibits potent phagocyte-directed actions that include inhibition of neu-
trophil infiltration and stimulation of macrophage efferocytosis by dihydroxyl prod-
ucts in this pathway [10, 49, 50]. In a murine model of ARDS, lipid mediator 
metabololipidomics discovered that MaR1 was temporally generated and regulated 
in vivo. Early intravascular MaR1 was organ-protective, and MaR1 production was 
dependent on platelet-neutrophil interactions leading to reduced lung neutrophils, 
oedema, tissue hypoxia and inflammatory mediators [51].

Pro-resolution effects are activated to terminate inflammation as soon as the 
inflammatory response initiates. In a peritonitis model, MaR1 was one of the 
first SPMs upregulated in the peritoneum during self-resolving infections. 
Acting as a partial agonist/antagonist to the LTB4 receptor (BLT1), MaR1 
supressed the activity of LTB4 so as to promote the uptake and clearance of 
apoptotic cells and bacteria [52]. Interestingly, levels of MaR1 and LTB4 
reached a maximum level in the early stages of the inflammatory response, sug-
gesting that early MaR1 production impacts leukocyte infiltration to the inflam-
matory site [39, 52].
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In a LPS-induced ALI mice model, high dose of MaR1 exhibited protective 
activities by mitigating patho-histological changes, attenuating pulmonary oedema 
and restoring oxygenation. Besides, high-dose MaR1 inhibited the increasement of 
pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and chemokines, while anti-
inflammatory cytokine IL-10 was upregulated. Moreover, MaR1 lowered LPS-
induced neutrophil adhesions and suppressed the expression of intercellular 
adhesion molecule (ICAM)-1, P-selection and CD24 [53, 54]. Another study 
reported that MaR1 can maintain the permeability of lung epithelial cells by upregu-
lating the expression of claudin-1 and ZO-1 in LPS-induced ALI [55].

In a CLP sepsis mice model, it was found that MaR1 markedly mitigated the 
levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6). Intervention of 
MaR1 lowered the LPS level in serum and enhanced the bacterial clearance. 
Furthermore, MaR1 attenuated lung injury and decreased serum level of alanine 
transaminase (ALT), aspartate transaminase (AST), creatinine (Cre) and blood urea 
nitrogen (BUN) in this sepsis model. Consequently, the survival rate was improved. 
Inhibition of NF-κB activation pathway by MaR1 is the possible protective mecha-
nism [56].

Maresin 2 (MaR2) was identified later. MaR2 exhibits similar potency to 
MaR1 in limiting PMN recruitment but has an apparent optimal concentration 2–3 
log orders lower than MaR1  in enhancing human macrophage phagocytosis of 
zymosan. MaR2 also enhanced human macrophage uptake of apoptotic PMN but 
was less potent than MaR1 [57].

8.2.5	 �Aspirin-Triggered Lipid Mediators

Aspirin is a classic anti-platelet anti-inflammatory agent. Acetylating COX-2 facili-
tates aspirin to induce a shift from the synthesis of pro-inflammatory to pro-resolving 
lipid mediators termed as aspirin-triggered lipoxins (AT-LX) and aspirin-triggered 
resolvins (AT-Rv) [13, 58]. AT-LX and AT-Rv share the pro-resolution effects of 
LXA4 and RvD1, respectively, and act by the same intracellular pathways [59].

The aspirin-triggered lipoxin, also known as 15-epi-LXA4 (AT-LXA4), was 
found to be increased with administration of aspirin in both in vitro and in vivo 
models of infection; with infection alone increase in 15-epi-LXA4 levels was 
observed [60]. In murine models of sepsis and ARDS, aspirin increased the survival 
rate effectively [61]. Low dosage of aspirin administered 30 min prior to the endo-
toxin model of sepsis improved the survival and reduced the levels of thromboxane 
and prostaglandins derived from arachidonic acid [62]. Another research indicated 
that low-dose aspirin, however, did not reduce cytokine and prostaglandin levels 
while enhancing 15-epi-LXA4 synthesis [63]. In an E. coli sepsis model, 15-epi-
LXA4 injected 24  h after the injury lowered PMN number in broncho-alveolar 
lavage by stimulating the apoptosis [64].

Several observational clinical studies have confirmed the benefits of aspirin in 
those who took it prior to medical consult in sepsis patients. In a group of 1149 criti-
cally ill patients, 25% of them with preclinical aspirin use had a decreased risk of 
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developing to ARDS and tended to a lower mortality [65]. A different study with 
5523 patients suffering from systemic inflammatory response syndrome or sepsis 
suggested that a lower mortality was found in 2082 patients when given aspirin 
within 24 h after diagnosis [66]. Similarly, in a study comprising 1005 patients with 
community-acquired pneumonia, 100 mg/day intake of aspirin was associated with 
a lower mortality rate within 30 days [67]. Hence, a clinical trial indicates that the 
aspirin and essential fatty acid supplemented in healthy human volunteers increase 
the endogenous production of pro-resolving mediators including 17-R-PD1 and 
augment bacterial clearance of leukocytes [68].

However, a multicentre study with 3855 patients did not pinpoint a significant 
association between preclinical aspirin therapy and progression to ARDS [69]. A 
prospective observational study with 972 patients indicated that preclinical aspirin 
therapy was neither associated with the development of organ failure nor shock nor 
90-day mortality up to 90 days after hospitalization [70].

Evidence above does not make a solid statement of conclusion on exact benefi-
cial prognoses of aspirin therapy in sepsis. Further studies are required to evaluate a 
potential protective effect of aspirin in sepsis patients.

8.2.6	 �Novel Families of SPMs

8.2.6.1	 �RvTs
A novel family of pro-resolving mediators termed 13 series resolvins (RvTs) were 
identified recently in the very early stages (≤4 h) of self-resolving E. coli infections 
model. These RvTs mediators include RvT1, RvT2, RvT3 and RvT4, which are 
derived from n-3 docosapentaenoic acid (n-3 DPA) through sequential reactions 
involving COX-2/5-LOX in the crosstalk of vascular endothelia and neutrophils. 
Each of these molecules activates the host immunity in a dose-dependent manner 
for bacterial clearance and counter-regulates the production of pro-inflammatory 
molecules including endothelin-1, plasminogen activator inhibitor-1 and inflamma-
tory eicosanoids. Moreover, concentrations of RvTs in peripheral blood increased 
rapidly after exercise (a self-resolving inflammatory state) in healthy volunteers and 
were significantly higher in patients with sepsis than in healthy subjects. These 
results indicate that RvTs biosynthesis occurs in a coordinated manner in correla-
tion with acute activation of the immune response. Therefore, inability to form these 
pathways leads to delayed resolution responses and an impaired ability to clear 
bacterial infections [71].

8.2.6.2	 �PCTRs
Recent studies suggest that the formation of the immunoresolvent protectin conju-
gate in tissue regenerations (PCTRs: PCTR1, PCTR2 and PCTR3) by group 3 
innate lymphoid cells (ILC-3), which in turn regulates peritoneal macrophage 
responses to bacterial infections, is promoted by the vagus nerve [72]. PCTRs are 
derived from DHA through 15-LOX-mediated pathways in leukocytes. Since 
PCTRs actively promote the termination of bacterial infections by stimulating the 
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uptake and killing the bacteria as well as the repair and regeneration of damaged 
tissues, these mediators are immunoresolvents [73]. PCTRs parallelly promote a 
macrophage phenotype shift, downregulating the production of pro-inflammatory 
cytokines including TNF-α and IL-8 and increase the production of regenerative 
molecules including TGF-β [74]. Any form of damage to the vagus reflex dysregu-
lates PCTRs formation and macrophage phenotype leading to an impaired ability of 
the recruited leukocytes to efficiently clear pathogens causing the delayed resolu-
tion of inflammatory infections [72].

8.2.6.3	 �MCTRs
Further researches into mediators formed during the late phases of resolution of E. 
coli infections pointed out a huge group of molecules that are peptide-lipid conju-
gates. These molecules termed as maresin conjugates in tissue regeneration 
(MCTRs: MCTR1, MCTR2 and MCTR3) are produced by 14-lipoxygenation of 
DHA through 12-LOX-mediated pathways in human macrophages. MCTRs exhibit 
some potential benefits in regulating bacterial phagocytosis, promoting tissue repair 
and regeneration [74, 75].

Both PCTRs and MCTRs were found in inflammatory exudates and spleens from 
infected mice as well as in human plasma, serum and spleens. The levels of these 
mediators were increased during the later stages of infectious inflammation in mice 
[73, 74].

8.2.7	 �Carbon Monoxide and Heme Oxygenase

Carbon monoxide (CO) enhances the immune cell function. CO is produced by the 
constitutively expressed heme oxygenase-2 (HO)-2, and by HO-1, which is upregu-
lated upon cellular stress. HO-1 catalyses the degradation of heme to biliverdin, CO 
and iron (which binds to ferritin), all acting as anti-oxidative and anti-inflammatory 
agents [76]. Endogenously formed CO acts as a signalling molecule and induces 
antioxidant genes [76, 77]. CO downregulates inflammatory prostaglandins and 
thromboxanes. On the other hand, it enhances the expression of lipoxygenases 
which are key synthetases of SPMs [15]. Resolvins and lipoxins in turn upregulate 
HO-1  in macrophages demonstrating mutual amplification of these two pro-
resolving pathways [15]. CO contributes to active pathways on the elimination of 
microorganisms, promote killing of bacteria and enhance their clearance by macro-
phages in a protective manner [78]. Furthermore, pro-inflammatory cytokines 
including TLR2, -4, -5 and -9 are repressed, while anti-inflammatory cytokines such 
as IL-10 are initiated by CO in macrophages [79]. Enhanced endocytosis of apop-
totic cells by efferocytosis is also known [15].

In murine sepsis model, higher mortality and hepatic necrosis in HO-1-deficient 
mice group were found pointing out the protective function of this enzyme [80]. 
Hepatoprotective effects were reported with increasing levels of CO in endotoxic 
rats [81]. Hepatic accumulation of PMN, expression of the intercellular adhesion 
molecule-1 (ICAM-1) and activation of NF-κB in murine polymicrobial sepsis are 
reduced by CO. In endotoxin-activated human umbilical vein, the endothelial cells 
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cocultured with CO, the production of reactive oxygen species (ROS), nitric oxide 
(NO), activation of NF-κB, induction of inducible NO synthase and ICAM-1 and 
PMN adhesion were reduced [82].

In CLP mice model, levels of circulating inflammatory cytokines and the number 
of bacteria in blood and organs were decreased by the inhalation of CO which 
resulted in the increased survival rate of the mice [83]. CO inhalation, 2 h prior to 
initiation of peritonitis, lowered the number of infiltrating PMN. Monocyte num-
bers remained unchanged, while the clearance of microbial pathogens and dead 
PMN significantly raised [15]. Inflammation resolved nearly two times faster than 
CO nonexposed group. Lipid mediators derived from arachidonic acid, LTB4 and 
PGE were low in the early stage of inflammation and pro-resolving lipids including 
RvD1, RvE2 and maresin, were markedly high [15].

The clinical patients have been observed for the protective roles of CO and HO-1. 
Patients with lower respiratory tract infection indeed had higher CO in their breath, 
and levels descended in those patients recovering from disease after antibiotic treat-
ment [84]. When compared to 30 healthy neonates, CO in plasma of 7 neonates with 
sepsis was significantly increased [85]. When 36 patients with severe sepsis or sep-
tic shock were compared to 21 patients without sepsis, arterial blood CO and HO-1 
protein levels in monocytes were ascended. These two molecules were positively 
related to survival [86]. Exhaled CO is higher in severely ill patients compared to 
the control group [87]. In mechanically ventilated patients with severe sepsis or 
septic shock, exhaled CO was nearly threefold higher compared to controls and 
declined along with therapy, and high amount of CO in exhaled air on the first day 
during treatment was associated with better outcome [88]. CO is reported to have 
beneficial impacts in different patient groups; therefore, inhalation of CO would be 
a potential policy guide for the treatment of sepsis [77].

8.2.8	 �Annexin A1

Annexin A1 is a 37 kDa monomeric protein, existing abundantly in some pivotal 
cell types of the innate and adaptive immune systems and the neuroendocrine sys-
tem. The synthesis and release of Annexin A1 is regulated by glucocorticoids (GCs) 
and expresses as a stress response protein through binding to formyl peptide family 
receptors (FPRs) [89].

An increasing number of experimental evidence in present days indicate that 
Annexin A1 is crucial to many of the acute actions of GCs in several systems rele-
vant to the stress response, including the innate and adaptive host immune systems 
[89, 90] and the HPA axis [91]. In Annexin A1-null mice models of inflammation, 
treating with anti-Annexin A1 antibodies or antisense constructs of Annexin A1, 
have confirmed that Annexin A1 exhibits as an endogenous regulator of anti-
inflammatory and pro-resolving as well as a mediator of GC action [89, 90]. Annexin 
A1, binding to FPR in the innate immune system, exerts general suppressive activi-
ties including the reduction of the amounts of pro-inflammatory eicosanoids mole-
cules generated and the release of histamine and preformed cytokines from mast 
cells. In contrast, ANX-A1 may induce the release of pro-resolving mediators, such 
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as IL-10. Furthermore, Annexin A1 highly downregulates PMN migration into 
inflammatory sites and accelerates their apoptosis, while the migration of mono-
cytes into inflammatory sites is promoted by Annexin A1 which eventually trans-
form the microenvironment into a resolving procedure [92]. In an in vivo experiment, 
the absence of Annexin A1 or its major receptor (FPR2) amplifies greatly the dura-
tion and intensity of acute and chronic inflammation. Consequently, the acute anti-
inflammatory actions of GCs are greatly reduced or even abrogated. Conversely, 
human recombinant Annexin A1 and peptides derived from the N-terminal domain 
can rescue this phenotype and exert high anti-inflammatory and pro-resolution 
effects in many models of inflammation [90, 92].

8.3	 �Summary and Prospect

Sepsis is a severe organ dysfunction syndrome due to uncontrolled infection with a 
high mortality risk. Despite of inspiring results in preclinical models, none of the 
presumptive therapeutic agents tested so far succeed in clinical trials. Excessive 
uncontrolled inflammation and inappropriate immune responses are both character-
istic features of sepsis that complicate identification of suitable drug targets. 
Inhibition of inflammation may delay the resolution because of an improper induc-
tion of anti-inflammatory and pro-resolving pathways. Overcoming sepsis, there is 
still a long way to run.

An accumulating evidence decodes the role that endogenous resolutions triggered 
by SPMs demonstrate the ensured internal homeostasis in host body by activating the 
ultimate cardinal signs of resolution that include pathogen and cellular debris lavage, 
analgesia and restoration of organ functions. Latest studies point out that monitoring 
the concentrations of these SPMs in infected patients may provide a better under-
standing of the inflammation-resolution procedures and hence reflect a positive out-
come [48]. Yet, requiring further prospective studies to confirm these observations.

The points and the hints that are mentioned in this review indicate that SPMs act as 
potential biomarkers and, more importantly, hold a great promise as novel therapeutics 
in inflammatory diseases. Latest studies reveal that the majority of end-stage fatal sepsis 
patients are immunosuppressed rather than hyperinflammation [93]. Given, the potential 
anti-inflammatory and pro-resolution benefits of these SPMs (including CO, HO-1 and 
Annexin A1) mentioned above, endogenous or exogenous supplement of these media-
tors analogues or natural extracts may be a new paradigm in treating sepsis.
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