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This paper proposes a robust real-timemyocardial border tracking algorithm for echocardiography. Commonly, after an initial con-
tour of LV border is traced at one or two frames from the entire cardiac cycle, LV contour tracking is performed over the remaining
frames. Among a variety of tracking techniques, optical flow method is the most widely used for motion estimation of moving
objects. However, when echocardiography data is heavily corrupted in some local regions, the errors bring the tracking point out of
the endocardial border, resulting in distorted LV contours. This shape distortion often occurs in practice since the data acquisition
is affected by ultrasound artifacts, dropouts, or shadowing phenomena of cardiac walls. The proposed method is designed to deal
with this shape distortion problem by integrating local optical flow motion and global deformation into a variational framework.
The proposed descent method controls the individual tracking points to follow the local motions of a specific speckle pattern, while
their overall motions are confined to the global motion constraint being approximately an affine transform of the initial tracking
points. Many real experiments show that the proposed method achieves better overall performance than conventional methods.

1. Introduction

In company with the development of real-time three-
dimensional echocardiography (RT3DE), the demands for
automated analysis methods of left ventricle (LV) assessment
such as ejection fraction, motion analysis, and strain analysis
are rapidly increasing. Nevertheless, most of the analysis
methods are still based on the measurements in a few two-
dimensional (2D) slices, because they are available in clinical
practice [1, 2]. In general, the quantitative assessment for
heart function is performed by manually tracing endocardial
border in some 2D slices of different view at frames (such as
end-systole (ES) or end-diastole (ED) frames) selected from
the entire cardiac cycle and automatically tracking the traced
LV contour over the remaining frames [3, 4]. The motion
tracking of LV is carried out by observing the speckle pattern
associated with deforming tissue. Speckle pattern is an inher-
ent appearance in ultrasound imaging and its local brightness
reflects the local echogeneity of the underlying scatterers.
Since it is a difficult task to automatically track the motion of

endocardial border in ultrasound images due to ultrasound
artifacts, dropouts or shadowing phenomena, low contrast,
and so on, user intervention is somewhat required for stable
and successful tracking of endocardial border.

In the last decades, there have been numerous studies
for tracking of LV wall motion such as the tracking methods
using deformable models [5–8], active shape models [9–11],
and optical flow methods [2, 12–15]. Those methods have
some limitations to practical application of endocardial
border motion tracking. In deformable models, their meth-
ods are relatively time consuming due to iterative contour
evolutionwith stopping criteria and often need preprocessing
for speckle reduction before wall motion tracking. Active
shape models are the statistical methods based on the dataset
of trained images so that they require additional effort to train
on many images. Both deformable models and active shape
models provide the motion information of LV border and
enable user tomeasure the volume inside LV,whereas they are
somewhat inadequate for strain analysis related to themotion
and deformation of heart, because they are not speckle
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(a) (b) (c) (d)

Figure 1: The estimation of endocardial border by the Lucas-Kanade optical flow method. Case 1: a tracking point getting out from the real
LV shape distorts the whole shape near the border with weak edges; (a) initially traced endocardial border and its tracking points at an ED
frame, (b) the tracked result at the ES frame, (c) at the frame between ES and ED, and (d) at the next ED frame.

(a) (b) (c) (d)

Figure 2: The estimation of endocardial border by the Lucas-Kanade optical flow method. Case 2: the tracked points are irregularly spaced
by indistinguishable speckle patterns; (a) initially traced endocardial border and its tracking points at an ED frame, (b) the tracked result at
the ES frame, (c) at the frame between ES and ED, and (d) at the next ED frame.

tracking-based methods providing motion information of
local region on the myocardium but shape-based tracking
methods.

On the other hand, optical flow methods, which use the
assumption that the intensity of a moving object is con-
stant over time, provide the local motion information of
myocardium.They are capable ofmeasuring the LVvolume as
well as the myocardial wall motion analysis or strain analysis
to detect LV abnormalities. After an initial contour of endo-
cardial border is traced, each point on the contour tracks the
specific intensity and speckle pattern in sequential images.
However, it is problematic to track the endocardial bor-
der in ultrasound images with unclear speckle pattern or
weak signals. In practical environment, there often exist
some incorrectly tracked points due to ultrasound artifacts,
dropouts, or shadowing phenomena of cardiac wall [16].
When edge dropout or indistinguishable speckle pattern is
present in a local neighborhood of a tracking point, the errors
bring the tracking point out of the endocardial border, result-
ing in distorted LV contours throughout the entire cardiac
cycle as shown in Figure 1 or irregular distances between
the tracked points in Figure 2. These distorted results affect
LV volume measurement or strain analysis.

In order to cope with these problems, we develop a new
optical flow method equipped with a global motion con-
straint that is designed to prevent each tracking point from
getting out of the endocardial border. In the proposedmodel,
the Lucas-Kanade (LK) optical flowmethod [17] and a global
motion constraint being approximately an affine transfor-
mation of the initial tracking points are incorporated into a
variational framework. So the individual tracking points fol-
low speckle patterns (corresponding to each tracking point)

and their overall motions are confined to the global motion
constraint. The global motion constraint is based on the
results [18, 19] that heart motion is regarded as the non-
rigid motion by rotation, contraction/expansion, and shear.
Typically, nonrigid motion consists of global deformation
and local deformation. The global deformation is modeled
by an affine transformation while the local deformation is
described by a free-form deformation.

The proposed algorithm is capable of tracking LV border
in real-time since itsmovement is directly computed from the
difference between two sequential images via a simple matrix
multiplication. For performance evaluation, we carry out
various real experiments with Samsung Medison R&D Cen-
ter (http://www.samsungmedison.com/). Numerous exper-
iments show better performance of the proposed tracking
methods compared to the conventional tracking methods.

2. Methods

2.1. Conventional Optical Flow Tracking Methods. Let 𝐼(r, 𝑡)
represent the intensity of echocardiography at the location
r = (𝑥, 𝑦) and the time 𝑡. Optical flow tracking methods are
based on the assumption that the intensity of a moving object
is constant over time, so that the noisy time-varying images
𝐼(r, 𝑡) approximately satisfy

u (r, 𝑡) ⋅ ∇𝐼 (r, 𝑡) + 𝜕

𝜕𝑡
𝐼 (r, 𝑡) ≈ 0, (1)

where u(r, 𝑡) is the velocity vector to be estimated. Based on
(1), numerous approaches for estimating the velocity vector
u(r, 𝑡) have been proposed and those were applied to LV
border tracking in echocardiography [2, 13–15].

http://www.samsungmedison.com/
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Horn and Schunk [20] proposed the optical flow tech-
nique incorporating the smoothness of the motion vector in
the entire image as a global constraint. In their model, the
velocity u(r, 𝑡) at each time 𝑡 is determined by minimizing
the energy functional:

𝐸
𝑡
(u) := ∫

Ω

(u (r) ⋅ ∇𝐼 (r, 𝑡) + 𝜕

𝜕𝑡
𝐼 (r, 𝑡))

2

+ 𝜆|∇u (r)|2𝑑r,

(2)

where Ω is the image domain and 𝜆 a regularization param-
eter which controls the balance between the optical flow
term and the smoothness on u. The velocity u(r, 𝑡) at each
time 𝑡 can be computed by solving the corresponding Euler-
Lagrange equation that is a reaction-diffusion equation. In
[21], it has been observed that this global method with the
global smoothness constraint is significantly more sensitive
to noise than the local method used by Lucas and Kanade
[17].

Lucas and Kanade [17] used the assumption of locally
constant motion to compute the velocity u(r

0
, 𝑡) at a target

location r
0
= (𝑥

0
, 𝑦

0
) and time 𝑡 by forcing constant velocity

in a local neighborhood of a point r
0
= (𝑥

0
, 𝑦

0
), denoted

by N(r
0
). Following Lucas and Kanade, Barron et al. [21]

estimated the velocity u(r
0
, 𝑡) by minimizing the weighted

least square criterion in the neighborhoodN(r
0
):

u (r
0
, 𝑡)

:=arg min
u

∫
N(r0)

[𝑤(r−r
0
)(u ⋅ ∇𝐼 (r, 𝑡) + 𝜕

𝜕𝑡
𝐼 (r, 𝑡))

2

]𝑑r,

(3)

where 𝑤 is a weight function that enables to give more rele-
vance to central terms rather than the ones in the periphery.
Here, “argmin” stands for the argument of theminimum, that
is, the vector u for which the right integral attains its min-
imum value. Since this method determines u(r

0
, 𝑡) at each

location r
0
by combining information from all pixels in the

neighborhood of r
0
, it is reasonably robust against image

noise. We used (3) as the Lucas-Kanade method, because this
weighted window LK method is essentially same as the LK
method. When the weight function𝑤 is uniform, the form is
the same as the Lucas and Kanade one, in fact.

As we mentioned in Section 1, there often exist some
incorrectly tracked points due to weak signal on cardiac
wall since echocardiography data is acquired through trans-
mitting and receiving ultrasound signals between the ribs,
causing considerable shadowing of cardiac wall [16]. Due to
these incorrectly tracked points, LK method may produce
significantly distorted LV shape.

Recently, Sühling et al. [13] improved the weighted
window LK method (3) by introducing a linear model for
the velocity along the time direction, and the displacement

u(r
0
, 𝑡) is obtained by evaluating u such that u, b ∈ R2 and

2 × 2matrix 𝐴minimize the following energy functional:

𝐸
𝑡
(u, 𝐴, b)

:= ∫

∞

−∞

∫
R2

×[

[

𝑤 (r−r
0
, 𝑠)(

(u + 𝐴 (r − r
0
) + 𝑠b)⋅∇𝐼 (r, 𝑡 + 𝑠)

+
𝜕

𝜕𝑡
𝐼 (r, 𝑡 + 𝑠)

)

2

]

]

𝑑r 𝑑𝑠,

(4)

where𝑤 is the symmetricwindow function,which givesmore
weight to constraints at the center of the local spatiotemporal
region than to those at the periphery. Since this method uses
multiple frames centering around the time 𝑡, it is more robust
than the LK method (3) using the single frame at 𝑡. However,
the same problemof LV shape distortion as in LKmethod still
remains.

Compared with the approaches based on the LKmethod,
Duan et al. [15] used the region-based tracking method (also
known as the block matching or pattern matching method)
with the cross-correlation coefficients as a similaritymeasure.
For given two consecutive images 𝐼 at time 𝑡 and 𝑡 + Δ𝑡, the
velocity vector u = (𝑢, 𝑣) for each pixel r = (𝑥, 𝑦) ∈ Ω is
estimated by maximizing the cross-correlation coefficients:

u (r
0
, 𝑡)

:= arg max
u

×

{{

{{

{

∫
N(r0)

[𝐼 (r, 𝑡) 𝐼 (r + u, 𝑡 + Δ𝑡)] 𝑑r

√∫
N(r0)

[𝐼 (r, 𝑡)]2𝑑r√∫
N(r0)

[𝐼 (r + u, 𝑡 + Δ𝑡)]
2
𝑑r

}}

}}

}

.

(5)

Instead of maximizing the cross-correlation coefficients, the
velocity vector can be estimated by minimizing the sum-of-
squared difference (SSD) [21] as follows:

u (r
0
, 𝑡) := arg min

u
∫
N(r0)

× 𝑤 (r − r
0
) [𝐼 (r, 𝑡) − 𝐼 (r + u, 𝑡 + Δ𝑡)]

2
𝑑r.

(6)

The block matching method uses similarity measures that
are less sensitive to noise, of fast motion, and of potential
occlusions and discontinuities [15].

The above three local methods have drawback in dealing
with the problem of the contour shape distortion in the pres-
ence of locally weak signal corrupted by rib shadowing and
other factors. Hence, we need to develop amethod alleviating
shape distortion.

2.2. Proposed Method. The proposed method uses an affine
transformation to describe a globalmotion that is synthesized
by integrating local deformations.We denote the endocardial
border traced at initially selected frame (e.g., end-systole or
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end-diastole frame) by a parametric contour C∗
= {r∗(𝑠) =

(𝑥
∗
(𝑠), 𝑦

∗
(𝑠)) | 0 ≤ 𝑠 ≤ 1} that can be identified as its 𝑛

tracking points r∗
1
= r∗(𝑠

1
), . . . , r∗

𝑛
= r∗(𝑠

𝑛
). Here, 0 = 𝑠

1
<

𝑠
2
< ⋅ ⋅ ⋅ < 𝑠

𝑛
= 1. Let C(𝑡) = {r(𝑠, 𝑡) = (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) |

0 ≤ 𝑠 ≤ 1} be the contour deformed fromC(0) = C∗ at time
𝑡. The motion of the contour C(𝑡) will be determined by an
appropriately chosen velocity U(𝑡) indicating a time change
of tracking points (r

1
(𝑡), . . . , r

𝑛
(𝑡)):

U (𝑡) :=
[
[

[

u
1
(𝑡)

...
u
𝑛
(𝑡)

]
]

]

=
𝑑

𝑑𝑡

[
[

[

r
1
(𝑡)

...
r
𝑛
(𝑡)

]
]

]

with[[

[

r
1
(0)

...
r
𝑛
(0)

]
]

]

=
[
[

[

r∗
1

...
r∗
𝑛

]
]

]

.

(7)

Here, we identify the contour C(𝑡) with tracking points
(r

1
(𝑡), . . . , r

𝑛
(𝑡)).

In our method, U(𝑡) for each time 𝑡 is a minimizer of the
following energy functional reflecting local-to-global defor-
mation:
E

𝑡
(U)

:=
1

2

𝑛

∑

𝑖=1

×

[
[
[
[
[

[

∫
N(r𝑖(𝑡))

𝑤(r−r
𝑖
(𝑡)){u

𝑖
⋅ ∇𝐼 (r, 𝑡)+ 𝜕

𝜕𝑡
𝐼 (r, 𝑡)}

2

𝑑r

+𝜆



r
𝑖
(𝑡) + u

𝑖
− [

𝑎
1
(U) 𝑎

2
(U)

𝑎
3
(U) 𝑎

4
(U)

] r∗
𝑖
− [

𝑎
5
(U)

𝑎
6
(U)

]



2

]
]
]
]
]

]

,

(8)

where 𝜆 is a nonnegative parameter, 𝑤 is the weight func-
tion as used in the LK method, and the affine coefficients
𝑎
1
(U), . . . , 𝑎

6
(U) at time 𝑡 are given by

[
[

[

𝑎
1
(U) 𝑎

3
(U)

𝑎
2
(U) 𝑎

4
(U)

𝑎
5
(U) 𝑎

6
(U)

]
]

]

= (Φ(C
∗
)
𝑇

Φ(C
∗
))

−1

Φ(C
∗
)
𝑇

×

[
[
[
[

[

(r
1
(𝑡) + u

1
)
𝑇

...

(r
𝑛
(𝑡) + u

𝑛
)
𝑇

]
]
]
]

]

,

(9)

where

Φ(C
∗
) :=

[
[
[

[

r∗
1

𝑇
1

...
...

r∗
𝑛

𝑇
1

]
]
]

]

. (10)

The first term in (8) controls the individual tracking points to
follow the local motions of a specific speckle pattern, while
the second term controls their overall motions to be confined
to the global motion constraint being approximately an affine
transform of the initial tracking points.

The first term in (8) reflects the well-known LK optical
flow (3) that probes local motions using blood-to-tissue
intensity ratio.

The second term concerns a misfit between the estimated
tracking points and their projection onto the space W, the
space of affine transforms of the initial tracking points, given
by

W =

{{{{

{{{{

{

[
[
[
[

[

r∗
1

𝑇
1

...
...

r∗
𝑛

𝑇
1

]
]
]
]

]

[
[

[

𝑎
1
𝑎
3

𝑎
2
𝑎
4

𝑎
5
𝑎
6

]
]

]

: 𝑎
1
, . . . , 𝑎

6
∈ R

}}}}

}}}}

}

⊂ R
𝑛×2

.

(11)

To be precise, a careful computation yields

the projection of
[
[
[

[

(r
1
(𝑡) + u

1
)
𝑇

...
(r

𝑛
(𝑡) + u

𝑛
)
𝑇

]
]
]

]

onto W

= Φ (C
∗
) (Φ(C

∗
)
𝑇

Φ(C
∗
))

−1

Φ(C
∗
)
𝑇

[
[
[
[

[

(r
1
(𝑡) + u

1
)
𝑇

...
(r

𝑛
(𝑡) + u

𝑛
)
𝑇

]
]
]
]

]

=

[
[
[
[

[

r∗
1

𝑇
1

...
...

r∗
𝑛

𝑇
1

]
]
]
]

]

[
[

[

𝑎
1
(U) 𝑎

3
(U)

𝑎
2
(U) 𝑎

4
(U)

𝑎
5
(U) 𝑎

6
(U)

]
]

]

.

(12)

Hence, the second term in (8) with the above identity
reflects a global motion involving contraction, expansion,
translation, and rotation.

To compute theminimizerU of the energy functional (8),
we need to derive the Euler-Lagrange equation which can be
obtained by taking partial derivative of E

𝑡
with respect to

each u
𝑗
:

0 = 𝜕E
𝑡

𝜕u
𝑗

= ∫
N(r𝑗(𝑡))

𝑤(r − r
𝑗
(𝑡)) ∇𝐼 (r, 𝑡)

× {u
𝑗
⋅ ∇𝐼 (r, 𝑡) + 𝜕

𝜕𝑡
𝐼 (r, 𝑡)} 𝑑r

+ 𝜆{r
𝑗
(𝑡) + u

𝑗
−

𝑛

∑

𝑖=1

𝑑 (𝑖, 𝑗) (r
𝑖
(𝑡) + u

𝑖
)} ,

for 𝑗 = 1, . . . , 𝑛,

(13)

where 𝑑(𝑖, 𝑗) is the (𝑖, 𝑗)-component of the 𝑛 × 𝑛matrix

P (C
∗
) := Φ (C

∗
) (Φ(C

∗
)
𝑇

Φ(C
∗
))

−1

Φ(C
∗
)
𝑇

. (14)

The derivation of the Euler-Lagrange equation is given in the
appendix.

For numerical algorithm, we replace the integral over
N(r

𝑗
(𝑡)) in (13) by summation over pixels around r

𝑗
(𝑡).



Computational and Mathematical Methods in Medicine 5

Assuming that the neighborhood N(r
𝑗
(𝑡)) consists of 𝑚

pixels r
𝑗1
, . . . , r

𝑗𝑚
, (13) becomes

0 = 𝐴
𝑇

𝑗
𝑊

𝑗
𝐴

𝑗
u
𝑗
+ 𝐴

𝑇

𝑗
𝑊

𝑗
b
𝑗
+ 𝜆

× {r
𝑗
(𝑡) + u

𝑗
−

𝑛

∑

𝑖=1

𝑑 (𝑖, 𝑗) (r
𝑖
(𝑡) + u

𝑖
)} ,

(15)

where 𝐴
𝑗
= [∇𝐼(r

𝑗1
, 𝑡), . . . , ∇𝐼(r

𝑗𝑚
, 𝑡)]

𝑇, 𝑊
𝑗
= diag(𝑤(r

𝑗1
−

r
𝑗
(𝑡)), . . . , 𝑤(r

𝑗𝑚
− r

𝑗
(𝑡))), and b

𝑗
= [(𝜕/𝜕𝑡)𝐼(r

𝑗1
, 𝑡), . . . ,

(𝜕/𝜕𝑡)𝐼(r
𝑗𝑚
, 𝑡)]

𝑇.
For notational simplicity, let the time 𝑡 be fixed and let

u
𝑗
:= [

𝑢
𝑗

𝑣
𝑗

] , r
𝑗
(𝑡) = [

𝑥
𝑗

𝑦
𝑗

] ,

[
𝛼
𝑗
𝛽
𝑗

𝛽
𝑗
𝛾
𝑗

] := 𝐴
𝑇

𝑗
𝑊

𝑗
𝐴

𝑗
+ 𝜆𝐼, [

𝜉
𝑗

𝜂
𝑗

] = 𝐴
𝑇

𝑗
𝑊

𝑗
b
𝑗
+ 𝜆r

𝑗
(𝑡) .

(16)

Then, the system (15) can also be represented by

0 = 𝛼
𝑗
𝑢
𝑗
+ 𝛽

𝑗
𝑣
𝑗
− 𝜆

𝑛

∑

𝑖=1

𝑑 (𝑖, 𝑗) 𝑢
𝑖
+ 𝜉

𝑗
− 𝜆

𝑛

∑

𝑖=1

𝑑 (𝑖, 𝑗) 𝑥
𝑖
,

0 = 𝛽
𝑗
𝑢
𝑗
+ 𝛾

𝑗
𝑣
𝑗
− 𝜆

𝑛

∑

𝑖=1

𝑑 (𝑖, 𝑗) 𝑣
𝑖
+ 𝜂

𝑗
− 𝜆

𝑛

∑

𝑖=1

𝑑 (𝑖, 𝑗) 𝑦
𝑖
.

(17)

This can be concisely written by

(Λ − 𝜆P (C
∗
)) 𝑈 + 𝐵𝑉 = −Ξ + 𝜆P (C

∗
)𝑋,

𝐵𝑈 + (Γ − 𝜆P (C
∗
)) 𝑉 = −Π + 𝜆P (C

∗
) 𝑌,

(18)

where Λ = diag(𝛼
1
, . . . , 𝛼

𝑛
), 𝐵 = diag(𝛽

1
, . . . , 𝛽

𝑛
), Γ =

diag(𝛾
1
, . . . , 𝛾

𝑛
), 𝑈 = [𝑢

1
, . . . , 𝑢

𝑛
]
𝑇, 𝑉 = [𝑣

1
, . . . , 𝑣

𝑛
]
𝑇, Ξ =

[𝜉
1
, . . . , 𝜉

𝑛
]
𝑇, Π = [𝜂

1
, . . . , 𝜂

𝑛
]
𝑇, 𝑋 = [𝑥

1
, . . . , 𝑥

𝑛
]
𝑇, and 𝑌 =

[𝑦
1
, . . . , 𝑦

𝑛
]
𝑇. Using the block matrix form, we can rewrite it

as the system of linear equations:

[
(Λ − 𝜆P (C∗

)) 𝐵

𝐵 (Γ − 𝜆P (C∗
))
] [

𝑈

𝑉
]

= [
−Ξ + 𝜆P (C∗

)𝑋

−Π + 𝜆P (C∗
) 𝑌

] .

(19)

Therefore, we can directly compute themovementU = [ 𝑈 𝑉 ]

of size 𝑛 × 2 from the formula:

[
𝑈

𝑉
]

= [
(Λ− 𝜆P (C∗

)) 𝐵

𝐵 (Γ− 𝜆P (C∗
))
]

−1

[
−Ξ + 𝜆P (C∗

)𝑋

−Π + 𝜆P (C∗
) 𝑌

] ,

(20)

because the column vectors of the block matrix
[

(Λ−𝜆P(C∗)) 𝐵

𝐵 (Γ−𝜆P(C∗))
] of size 2𝑛 × 2𝑛 are linearly inde-

pendent.

For the parameter 𝜆 = 0, the displacements u
𝑗
(𝑗 ∈

{1, . . . , 𝑛}) by (15) are exactly the same as those by the LK
optical flow. However, (20) has a distinction to be capable of
controlling the global shape in that the bigger the parameter𝜆
is, the stronger the shape constraint is imposed.The LK opti-
cal flowperforms a role as the local deformation subject to the
global shape constraint, which is represented by the relation-
ship of all 𝑛 tracking points. Therefore, each point efficiently
tracks maintaining the global deformation of initial LV
contour.

2.3. Heuristic Choice of Parameter 𝜆. For heuristic choice of
parameter 𝜆, we use various datasets of manually delineated
LV borders by clinical experts. With manually defined data
r
𝑗
, C∗

, and U(𝑡) in a given image 𝐼, we define the parameter
�̃� as a function of quantity r

𝑗
, C∗

, U(𝑡), 𝐼, and time 𝑡:

�̃� := √

∑
𝑛

𝑗=1


𝐴

𝑇

𝑗
𝑊

𝑗
𝐴

𝑗
u
𝑗
(𝑡) + 𝐴

𝑇

𝑗
𝑊

𝑗
b
𝑗



2

2

∑
𝑛

𝑗=1


r
𝑗
(𝑡) + u

𝑗
(𝑡) − ∑

𝑛

𝑖=1
𝑑 (𝑖, 𝑗) (r

𝑖
(𝑡) + u

𝑖
(𝑡))



2

2

.

(21)

We should note that if u
𝑗
(𝑡) satisfies (15) for all 𝑡 and 𝑗 =

1, . . . , 𝑛, then �̃� = 𝜆, the constant independent of time 𝑡.
From numerous experiments, we observed that �̃� tends

to depend mainly on the contrast of the image 𝐼, and
its dependency on time 𝑡 is relatively small. We found a
linear relationship between log(𝐼tissue/𝐼blood) and �̃�, where
𝐼tissue/𝐼blood is an overall tissue/blood intensity ratio.

To investigate behavior of the parameter �̃�, we generate
synthetic speckle images consisting of tissue and blood
regions and test them by changing conditions including
tissue/blood contrast as shown in Figure 3. We use an apical
long-axis view template shown in Figure 4(a). When the
synthetic images are generated, it is assumed that speckle is
fully developed so that the statistics of echo envelope follow
the Rayleigh distribution ([22, 23]) and, by log-compression,
the distribution of the intensities is changed into the Fisher-
Tippett distribution ([24, 25])

𝑓
𝜎
(𝐼)

=
2

𝛼
1

exp{ 2

𝛼
1

(𝐼 − 𝛼
2
) − ln (2𝜎2

) − exp

×(
2

𝛼
1

(𝐼 − 𝛼
2
) − ln (2𝜎2

))} ,

(22)

where 𝜎 is the distribution parameter represented in Rayleigh
distribution and 𝛼

1
, 𝛼

2
are the predetermined system param-

eters for log-compression of echo envelope. Finally, the syn-
thetic images are smoothed by low-pass filter (in Figures 4(b),
4(c), and 4(d), resp.).

For modeling of heart motion, we simulate a heart with
the nonrigid motion integrating global and local deforma-
tions. Figure 5(a) illustrates the deformation of LV in four
simulated images. LV contours are represented by 13 tracking
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High contrastLow contrast

· · ·

Figure 3: Image frames by varying tissue/blood intensity ratio.We use echographic texture modeling and heart motionmodeling to generate
image frames with various contrasts.

(a) (b)

(c) (d)

Figure 4: Synthetic images: (a) original LV template, (b) speckle image with Rayleigh distribution, (c) with Fisher-Tippet distribution, and
(d) its smoothed image by a Gaussian filter.

points and a natural cubic spline connecting them, which are
denoted by r

𝑖
at each time. Their 𝑥𝑦-coordinates and dis-

placements u
𝑖
from previous tracking points to next tracking

points are listed in Table 1. For the sake of convenience in
computation, it is assumed that the global deformation is
modeled by an affine transformation of coefficients 𝑎

1
= 0.92,

𝑎
2
= −0.03, 𝑎

3
= −0.01, 𝑎

4
= 0.89, 𝑎

5
= 20, and 𝑎

6
= 6, which

illustrate a contraction, and the local deformation is modeled
by a free-form deformation of 0.1% variants with respect to
the global deformation. In the first row of Figure 5(a), the
blue solid lines and the red asterisks are showed as LV contour
and tracking points by the defined heart motion, respectively.
The green lines and asterisksmean LV contour at the previous
frame. To generate the sequential images indicating the heart
deformation, we also generate the tracking points of the
epicardial contours so that the wall thickness between two
contours is changed from 20 to 25 pixels in the sequential
images. Using node points containing the endocardial and
epicardial tracking points, theDelaunay triangulationmeshes
are generated and the sequential images are filled using linear
spatial transformation from each mesh at previous image to
the corresponding mesh at next image (second row).

We first test the dependency of �̃� on the time 𝑡. For the
given sequential synthetic images and tracking points at each
time step, we compute �̃� and plot the change of �̃� with time
𝑡. The parameter �̃� varies within the range of 250 to 350 as
shown in Figure 5(b). Using 𝜆 = 300, the mean value of �̃�,
we again compute (20) and get the displacements having the
errors within 1 pixel compared to the reference displacements
in Table 1(b). In this test, we use the 2-dimensional Gaussian
function of variance 𝜎2

𝑥
= 𝜎

2

𝑦
= 5

2 (pixel size) for the weight
function𝑤 over the square neighborhood with side length 21
pixels. From this test, we observe that the dependency of �̃� on
the time 𝑡 is negligibly small.

Next, we test the dependency of �̃� on the tissue/blood
intensity ratio. We generate the two consecutive images by
varying the intensity of tissues as mentioned in Figure 3 and
evaluate the change of �̃� with respect to the tissue/blood
intensity ratio. Figure 6 shows that the relationship between
the image intensity contrast and log

10
�̃� is approximately

linear. This linear relationship enables us to provide a way
of choosing the parameter 𝜆 depending on the tissue/blood
intensity ratio effectively.
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(b)

Figure 5: Result showing the independency of �̃� with time 𝑡: (a) sequential synthetic images for myocardial motion. The first row shows
the synthetic initial image and the tracking points representing the sequential motion of heart, the second row the sequential images cor-
responding to the motion of the tracking points, and the last row the tracking points (yellow “o” marks) and LV contour (yellow dotted line)
by the displacements computed using 𝜆 = 300 and the mean value of �̃� computed using the sequential images. (b)The change of �̃� according
to 𝑡. The �̃� value varies within the range of [250, 350].

3. Experimental Results

We test the proposed algorithm in clinical setting usingmany
real data.We compare the performance of the proposed algo-
rithm with some widely used tracking algorithms including
the block matching tracking methods using sum-of-squared
difference (SSD) and cross-correlation coefficient, and the LK
optical flow. For experiments, we use the 35 cases of 240×320
size 2D echocardiography data acquired using a Samsung
Medison V10 ultrasound system (Seoul, Republic of Korea)
and a phased array transducer P2-4BA (2–4MHz). We use
19 tracking points to track the endocardial border and make
the LV contour connecting the points using the natural cubic

spline. All the experiments were conducted using MATLAB
7.5 and laptop computer (Inter processor U7300 at 1.3 GHz
and 1GBRAM), and the computational time was about 40
milliseconds at each frame.

3.1. Assessment of LV Border Tracing. A quantitative evalua-
tion on the performance of the proposed tracking algorithm
is done on real 2D image sequences. For computation of
u ⋅ ∇𝐼+ (𝜕/𝜕𝑡)𝐼, we use the standard finite difference method.
We use the Hausdorff distance 𝜀

𝐻
[26, 27] to compare

the automated LV contours produced by algorithms with
manually traced contours by a clinical expert. Here, the
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Figure 6: Graphs showing the relationship between �̃� and the
tissue/blood intensity contrast. The stars are the points obtained
from the simulation; the straight line fits these points.

Hausdorff distance between the contour C
1
and C

2
is given

by

𝜀
𝐻
(C

1
,C

2
)

= max{ sup
r1∈𝐶1

(min
r2∈𝐶2

r1 − r
2

) , sup
r2∈𝐶2

(min
r1∈𝐶1

r1 − r
2

)} .

(23)

For two representative cases among the 35 cases of
2D echocardiography data, the LV tracking results of the
proposed method and the conventional methods are shown
in Figures 7 and 8, respectively. For the sake of a name, we call
them Cases I and II.

In Figure 7, the first row is manually traced LV contours
by a clinical expert for images at ED, ES, and ED frames in
the entire cycle. The next two rows are results by two block
matching tracking methods using the different similarity
measures of sum-of-squared difference (SSD) and cross-
correlation. The fourth and fifth rows are obtained by the LK
optical flow and the proposedmethod, respectively.The three
conventional methods produce distorted LV contours due to
a few incorrect tracking points alienated from the real LV
border. On the other hand, the proposedmethod successfully
follows local speckle patterns without distorting thewhole LV
shape.

For initial 10 sequential images, we compute �̃� by man-
ually identifying each tracking point to the corresponding
position on each image. From the computed parameters �̃�,
𝜆 is set to 120 according to the 𝜆-choice method described in
Section 2.3.

In Figure 8, we test for real images having indistin-
guishable speckle patterns near endocardial border. Due
to the presence of indistinguishable speckle patterns, the
three conventionalmethods produce irregular distribution of
tracking points as shown in second, third, and fourth rows in
Figure 8. The proposed method keeps regular distribution of

Table 1: The tracking points and displacements used in sequential
synthetic images.

(a) Tracking points

𝑖 r
𝑖
at 1st 𝐼 r

𝑖
at 2nd 𝐼 r

𝑖
at 3rd 𝐼 r

𝑖
at 4th 𝐼

1 (152, 201) (153, 196) (154, 187) (154, 183)
2 (151, 176) (152, 171) (153, 165) (154, 161)
3 (155, 151) (156, 147) (157, 142) (158, 139)
4 (152, 128) (153, 125) (155, 120) (156, 118)
5 (142, 105) (144, 103) (146, 100) (147, 98)
6 (147, 82) (149, 80) (152, 78) (153, 77)
7 (167, 71) (169, 70) (171, 69) (172, 68)
8 (188, 84) (189, 82) (190, 80) (191, 79)
9 (207, 101) (207, 99) (207, 96) (207, 94)
10 (217, 124) (217, 121) (216, 116) (216, 114)
11 (224, 147) (223, 143) (222, 138) (221, 135)
12 (229, 172) (228, 167) (227, 160) (226, 156)
13 (229, 196) (228, 191) (226, 182) (225, 178)

(b) Displacements

𝑖 u
𝑖
at 1st 𝐼 u

𝑖
at 2nd 𝐼 u

𝑖
at 3rd 𝐼

1 (1, −5) (1, −9) (0, −4)

2 (1, −5) (1, −6) (1, −4)

3 (1, −4) (1, −5) (1, −3)

4 (1, −3) (2, −5) (1, −2)

5 (2, −2) (2, −3) (1, −2)

6 (2, −2) (3, −2) (1, −1)

7 (2, −1) (2, −1) (1, −1)

8 (1, −2) (1, −2) (1, −1)

9 (0, −2) (0, −3) (0, −2)

10 (0, −3) (−1, −5) (0, −2)

11 (−1, −4) (−1, −5) (−1, −3)

12 (−1, −5) (−1, −7) (−1, −4)

13 (−1, −5) (−2, −9) (−1, −4)

tracking points and successfully track local speckle patterns.
For Case II, 𝜆 is set to 100.

Figure 9 shows the comparison results of four different
methods using Hausdorff distance between contours drawn
manually and contours generated automatically for the entire
cycle from an ED frame to the next ED frame. The proposed
method provides the smallest errors in final tracking results
of both Cases I and II.

3.2. Assessment of Individual Tracking Point Errors. For per-
formance evaluation of the proposed algorithm, we propose
an additional assessment regarding the repeatability of local
point along the forward and backward entire cardiac cycle.
Let {rinitial

1
, . . . , rinitial

𝑛
} be the set of initial tracking points

on a manually delineated contour (see the images of the left
column in Figure 7). Let 𝑡

𝑅
be a time interval of a one cycle

image between ED frame and the next ED frame. Using one
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Figure 7: Case I: real images with weak signals in endocardial border. The second and third rows are the results by region-based tracking
methods using sum-of-squared difference (SSD) and cross-correlation, respectively. The fourth row is the result by the LK optical flow and
the final row is the result by the proposed method (𝜆 = 120).

cycle image 𝐼(r, 𝑡), 0 ≤ 𝑡 ≤ 𝑡
𝑅
, we generate a forward-

backward image defined by

𝐼 (r, 𝑡) =
{

{

{

𝐼 (r, 𝑡) if 0 ≤ 𝑡 ≤ 𝑡
𝑅

𝐼 (r, 2𝑡
𝑅
− 𝑡) if 𝑡

𝑅
≤ 𝑡 ≤ 2𝑡

𝑅
.

(24)

Using this forward-backward image 𝐼(r, 𝑡), 0 ≤ 𝑡 ≤ 2𝑡
𝑅
, we

apply an automated tracking algorithm to get the returning
tracking position rreturning

𝑗
at time 𝑡 = 2𝑡

𝑅
. The local tracking

point assessment is obtained by estimating the distance
between the initial position rinitial

𝑗
and the corresponding

returning position rreturning
𝑗

:

Forward-backward point tracking error (FBTE)

= √
1

𝑛

𝑛

∑

𝑖=1


rinitial
𝑖

− rreturning
𝑖



2

.

(25)

Table 2: The comparison results of the proposed method with the
conventionalmethods using FBTE, for Case I andCase II (in pixels).

Method Case I Case II
Block matching (SSD) 3.6992 4.6566
Block matching (cross-correlation) 2.3396 5.5866
Optical flow (LK) 2.6326 2.1521
Proposed method 0.4052 0.7930

For the previous two representative cases, Cases I and II,
Table 2 shows the comparison results of the proposedmethod
with the conventional methods using the FBTE.

Table 3 shows the mean and standard deviation of
the forward-backward point tracking errors of the results
obtained by the three conventional tracking methods and the
proposed method. Tables 2 and 3 reveal that the proposed
method provides improved performance compared with the
conventional tracking methods.
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At ED frame At ES frame At next ED frame
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Block matching
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Block matching
(cross-correlation)

Optical flow
(Lucas-Kanade)

Proposed
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Figure 8: Case II: real images with indistinguishable speckle patterns in endocardial border. The second and third rows are the results by
region-based tracking methods using sum-of-squared difference (SSD) and cross-correlation, respectively.The fourth row is the result by the
LK optical flow and the fifth row by the proposed method (𝜆 = 100).

Table 3: The comparison results of the tracking algorithms for the
total experimental dataset of 35 cases.The errors aremeasured using
the FBTE (in pixels).

Method Mean of
errors

Standard deviation
of errors

Block matching (SSD) 4.1936 2.4456
Block matching (cross-correlation) 4.4173 2.5684
Optical flow (LK) 3.0685 1.2997
Proposed method 0.6344 0.2884

4. Discussion and Conclusion

The proposedmethod controls the individual tracking points
following optical flow by confining their overall motions by
penalizing the misfit between the estimated tracking points
and their projection onto the affine transform spaceW in (11)
of the initial tracking points.

We have experimentally demonstrated that the pro-
posed method is capable of performing robust real-time LV
border tracking even in the presence of indistinguishable
portions of the LV walls in echocardiography data. In prac-
tice, echocardiography data often contains edge dropout or
indistinguishable speckle patterns in a local neighborhood of
a tracking point which may bring the tracking point out of
the endocardial border, resulting in distorted LV contours.
The proposed method effectively deals with these problems
by taking advantage of an LV shape space describing a global
motion that is synthesized by integrating local deformations
governed by the LK optical flow model. Various experiments
show that the proposed method achieves better overall
performance than the widely used conventional methods
including the block matching tracking methods using sum-
of-squared difference (SSD) and cross-correlation, and the
LK optical flow.

The proposed method performs the LV border track-
ing by directly computing the displacements between two
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Figure 9: Comparison results of LV contours using the Hausdorff
distance 𝜀

𝐻
for the entire images of (a) Case I and (b) Case II, which

are shown in Figures 7 and 8, respectively.

sequential images via a simple matrix multiplication. The
computational time is affected by the size of the matrix,
depending on the number of tracking points.

We also proposed a new performance evaluation method
for LV tracking that is based on the forward-backward
tracking error estimation as shown in Section 3.2. The con-
ventional evaluation of global tracking performance using the
delineated LV contours has some limitations in estimating
errors of individual tracking points; in the case when tracking
points erroneously move along LV border, the LV contour
connecting the tracking points cannot reveal those individual
tracking errors. The forward-backward point tracking error

estimation provides a better local tracking performance
assessment in the whole cycle.

The proposed technique can be extended to three dimen-
sions by using 3D affine transformation as a global deforma-
tion.

APPENDIX

Derivation of the Euler-Lagrange
Equation (13)
In this appendix, we derive the Euler-Lagrange equation (13)
from (8). From (9), we have
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for 𝑗 = 1, 2, . . . , 𝑛. From the first and fourth identities of (A.1),
we have
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Using (A.1) and (A.2), the partial derivatives 𝜕E
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𝜕𝑡
𝐼 (r, 𝑡)} 𝜕

𝜕𝑥
𝐼 (r, 𝑡) 𝑑r

+𝜆[

[

{𝑥
𝑗
+ 𝑢

𝑗
− (𝑎

1
𝑥
∗

𝑗
+ 𝑎

2
𝑦
∗

𝑗
+ 𝑎

5
)}

−

𝑛

∑

𝑖=1

{𝑥
𝑖
+ 𝑢

𝑖
− (𝑎

1
𝑥
∗

𝑖
+ 𝑎

2
𝑦
∗

𝑖
+ 𝑎

5
)}(

𝜕𝑎
1

𝜕𝑢
𝑗

𝑥
∗

𝑖
+

𝜕𝑎
2

𝜕𝑢
𝑗

𝑦
∗

𝑖
+

𝜕𝑎
5

𝜕𝑢
𝑗

)

]

]

= ∫
N(r𝑗(𝑡))

𝑤(r − r
𝑗
(𝑡))

× {u
𝑗
⋅ ∇𝐼 (r, 𝑡) + 𝜕

𝜕𝑡
𝐼 (r, 𝑡)} 𝜕

𝜕𝑥
𝐼 (r, 𝑡) 𝑑r

+ 𝜆[ {𝑥
𝑗
+ 𝑢

𝑗
− (𝑎

1
𝑥

∗

𝑗
+ 𝑎

2
𝑦

∗

𝑗
+ 𝑎

5
)}

−

𝑛

∑

𝑖=1

𝑑 (𝑖, 𝑗) {𝑥
𝑖
+ 𝑢

𝑖
− (𝑎

1
𝑥

∗

𝑖
+ 𝑎

2
𝑦

∗

𝑖
+ 𝑎

5
)}] ,

(A.3)

𝜕E
𝑡

𝜕𝑣
𝑗

= ∫
N(r𝑗(𝑡))

𝑤(r − r
𝑗
(𝑡))

× {u
𝑗
⋅ ∇𝐼 (r, 𝑡) + 𝜕

𝜕𝑡
𝐼 (r, 𝑡)} 𝜕

𝜕𝑦
𝐼 (r, 𝑡) 𝑑r

+𝜆[

[

{𝑦
𝑗
+ 𝑣

𝑗
− (𝑎

3
𝑥
∗

𝑗
+ 𝑎

4
𝑦
∗

𝑗
+ 𝑎

6
)}

−

𝑛

∑

𝑖=1

{𝑦
𝑖
+ 𝑣

𝑖
− (𝑎

3
𝑥
∗

𝑖
+ 𝑎

4
𝑦
∗

𝑖
+ 𝑎

6
)}(

𝜕𝑎
3

𝜕𝑣
𝑗

𝑥
∗

𝑖
+

𝜕𝑎
4

𝜕𝑣
𝑗

𝑦
∗

𝑖
+

𝜕𝑎
6

𝜕𝑣
𝑗

)

]

]

= ∫
N(r𝑗(𝑡))

𝑤(r − r
𝑗
(𝑡))

× {u
𝑗
⋅ ∇𝐼 (r, 𝑡) + 𝜕

𝜕𝑡
𝐼 (r, 𝑡)} 𝜕

𝜕𝑦
𝐼 (r, 𝑡) 𝑑r

+ 𝜆[ {𝑦j + 𝑣
𝑗
− (𝑎

3
𝑥

∗

𝑗
+ 𝑎

4
𝑦

∗

𝑗
+ 𝑎

6
)}

−

𝑛

∑

𝑖=1

𝑑 (𝑖, 𝑗) {𝑦
𝑖
+ 𝑣

𝑖
− (𝑎

3
𝑥

∗

𝑖
+ 𝑎

4
𝑦

∗

𝑖
+ 𝑎

6
)}] .

(A.4)

Simple arrangement of the above identities leads to the Euler-
Lagrange equation:

0 = 𝜕E
𝑡

𝜕u
𝑗

= ∫
N(r𝑗(𝑡))

𝑤(r − r
𝑗
(𝑡)) ∇𝐼 (r, 𝑡)

× {u
𝑗
⋅ ∇𝐼 (r, 𝑡) + 𝜕

𝜕𝑡
𝐼 (r, 𝑡)} 𝑑r

+ 𝜆{r
𝑗
(𝑡) + u

𝑗
− g

𝑗
(U)

−

𝑛

∑

𝑖=1

𝑑 (𝑖, 𝑗) (r
𝑖
(𝑡) + u

𝑖
− g

𝑖
(U))} ,

(A.5)

where g
𝑖
(U) = [

𝑎1(U) 𝑎2(U)

𝑎3(U) 𝑎4(U)
] r∗

𝑖
+ [

𝑎5(U)

𝑎6(U)
]. The Euler-Lagrange

equation (13) can be obtained by a careful rearrangement of
(13) using the identity

g
𝑗
(U) =

𝑛

∑

𝑖=1

𝑑 (𝑖, 𝑗) g
𝑖
(U) . (A.6)

Hence, it remains to prove the above identity. It suffices to
prove

𝑛

∑

𝑖=1

𝑥
∗

𝑖
𝑑 (𝑖, 𝑗) = 𝑥

∗

𝑗
,

𝑛

∑

𝑖=1

𝑦
∗

𝑖
𝑑 (𝑖, 𝑗) = 𝑦

∗

𝑗
,

𝑛

∑

𝑖=1

𝑑 (𝑖, 𝑗) = 1,

(A.7)

for 𝑗 = 1, 2, . . . , 𝑛. To compute ∑𝑛

𝑖=1
𝑥

∗

𝑖
𝑑(𝑖, 𝑗) simply, denote

[
[

[

𝜙
𝑗

𝜑
𝑗

𝜓
𝑗

]
]

]

:=

[
[
[
[
[
[
[
[
[

[

𝑛

∑

𝑘=1

𝑥
∗2

𝑘

𝑛

∑

𝑘=1

𝑥
∗

𝑘
𝑦

∗

𝑘

𝑛

∑

𝑘=1

𝑥
∗

𝑘

𝑛

∑

𝑘=1

𝑥
∗

𝑘
𝑦

∗

𝑘

𝑛

∑

𝑘=1

𝑦
∗2

𝑘

𝑛

∑

𝑘=1

𝑦
∗

𝑘

𝑛

∑

𝑘=1

𝑥
∗

𝑘

𝑛

∑

𝑘=1

𝑦
∗

𝑘
𝑛

]
]
]
]
]
]
]
]
]

]

−1

[
[
[

[

𝑥
∗

𝑗

𝑦
∗

𝑗

1

]
]
]

]

. (A.8)
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Then ∑𝑛

𝑖=1
𝑥

∗

𝑖
𝑑(𝑖, 𝑗) can be simplified by

𝑛

∑

𝑖=1

𝑥
∗

𝑖
𝑑 (𝑖, 𝑗)

=

𝑛

∑

𝑖=1

𝑥
∗

𝑖
[𝑥

∗

𝑖
𝑦

∗

𝑖
1]

×(
[
[

[

𝑥
∗

1
𝑦

∗

1
1

...
𝑥

∗

𝑛
𝑦

∗

𝑛
1

]
]

]

𝑇

[
[

[

𝑥
∗

1
𝑦

∗

1
1

...
𝑥

∗

𝑛
𝑦

∗

𝑛
1

]
]

]

)

−1

[

[

𝑥
∗

𝑗

𝑦
∗

𝑗

1

]

]

= [

𝑛

∑

𝑖=1

𝑥
∗2

𝑖

𝑛

∑

𝑖=1

𝑥
∗

𝑖
𝑦

∗

𝑖

𝑛

∑

𝑖=1

𝑥
∗

𝑖
]

×

[
[
[
[
[
[
[
[
[

[

𝑛

∑

𝑘=1

𝑥
∗2

𝑘

𝑛

∑

𝑘=1

𝑥
∗

𝑘
𝑦

∗

𝑘

𝑛

∑

𝑘=1

𝑥
∗

𝑘

𝑛

∑

𝑘=1

𝑥
∗

𝑘
𝑦

∗

𝑘

𝑛

∑

𝑘=1

𝑦
∗2

𝑘

𝑛

∑

𝑘=1

𝑦
∗

𝑘

𝑛

∑

𝑘=1

𝑥
∗

𝑘

𝑛

∑

𝑘=1

𝑦
∗

𝑘
𝑛

]
]
]
]
]
]
]
]
]

]

−1

[
[
[

[

𝑥
∗

𝑗

𝑦
∗

𝑗

1

]
]
]

]

= [

𝑛

∑

𝑖=1

𝑥
∗2

𝑖

𝑛

∑

𝑖=1

𝑥
∗

𝑖
𝑦

∗

𝑖

𝑛

∑

𝑖=1

𝑥
∗

𝑖
]
[
[

[

𝜙
𝑗

𝜑
𝑗

𝜓
𝑗

]
]

]

= 𝜙
𝑗

𝑛

∑

𝑖=1

𝑥
∗2

𝑖
+ 𝜑

𝑗

𝑛

∑

𝑖=1

𝑥
∗

𝑖
𝑦

∗

𝑖
+ 𝜓

𝑗

𝑛

∑

𝑖=1

𝑥
∗

𝑖

= 𝑥
∗

𝑗
.

(A.9)

This completes the first identity of (A.7). Similarly, we can get
the remaining two identities of (A.7).
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