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Abstract

Background: Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent
spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state
networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number
of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves
human input in selecting meaningful networks.

Methodology/Principal Findings: We report on a voxel based model-free normalized cut graph clustering approach with
whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal
clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the
resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26
subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner.

Conclusions/Significance: An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and
attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently
reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.
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Introduction

Functional brain imaging studies have suggested that the brain

is not inactive during rest, but rather shows a default state of

activation [1–5]. Low frequency oscillations (ranging from 0.01 to

0.1 Hz) of resting-state functional Magnetic Resonance Imaging

(fMRI) time-series are known to show correlated patterns between

anatomical separated brain regions [1,6,7]. These correlations are

suggested to originate from coherency in the underlying neuronal

activation patterns of these regions and believed to reflect

functional connectivity. Regions that show this kind of coherent

functional behavior are said to form a resting-state network (RSN).

Multiple RSNs have been reported, including primary auditory,

motor and sensory networks, attention networks and the default

mode network [2,5,8,9]. Resting-state fMRI patterns are tradi-

tionally examined by correlating the rest recorded fMRI time-

series of a single seed voxel against the time-series of all other

voxels, resulting in a functional connectivity map (fcMap). A seed

voxel is usually selected from an activation map of a separately

acquired fMRI experiment. For example, when the seed voxel is

based on activation in a motor task, the resting-state fcMap gives

information about functionally connected regions involved in the

motor network. Several studies mapping motor, visual, auditory

and even cognitive networks have shown the potential of this seed-

based resting-state analysis [1,6,10,11]. However, the information

of a fcMap is limited to the network associated with the selected

seed voxel. In contrast, model-free methods enable the exploration

of spatial and temporal activation patterns without the need of

defining a specific model. Several model-free methods have been

applied to individual (resting) PET and fMRI data, including

principal component analysis (PCA) [12], independent component

analysis (ICA) ) [2,13,14], hierarchical [15] and Laplacian based

clustering [16].

A few model-free resting-state group methods have been

introduced [17–19]. However, group analysis of resting-state data

is still a complex task and often involves human input in selecting

the number of meaningful group networks. Here, we report on a

model-free group graph clustering approach for selecting consis-

tent functionally connected RSNs across a group of subjects. Our

method works at the voxel level with whole brain coverage and

includes a procedure to determine the number of RSNs as an

optimal fit of the data. The method involves the formation of

individual and group functional connectivity graphs which are

clustered to group voxels that show high functional connectivity in

RSNs. For the clustering itself, the normalized cut (Ncut) graph

clustering method of Shi and Malik [20] was used. The Ncut

criterion is an unbiased measure of the disassociation between the

subgroups of the data and minimizing this criterion directly leads

to maximizing the total association within the subgroups. The

Ncut method has the strong advantage of being less sensitive to

outliers than other graph clustering methods. In essence, our RSN

group selection method consists of a two stage process, combining
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clustering at the individual level with clustering at the group level.

At the individual level, the inter-voxel functional connectivity of an

individual fMRI dataset is expressed as the temporal coherence in

the rest recorded BOLD time-series. This inter-voxel connectivity

data is then clustered, resulting in individual clustermaps. At the

group level, the consistency across the individual clustermaps is

clustered and this determines the group RSNs. As a result, the

RSNs directly reflect groups of voxels that consistently showed a

high level of functional connectivity across the group of subjects. A

group of 26 subjects was scanned on a 3 Tesla scanner with a fast

fMRI protocol. Analysis of the acquired resting-state data was

done with the two-stage Ncut group clustering approach and the

resulting group RSNs are discussed on their functional relevance,

overlap and differences with previous reported resting-state

studies.

Results

Spatial maps of the 7 clusters are shown in Figure 1 and can be

described as follows. Cluster a (Figure 1a) shows a network of

posterior cingulate/precuneus region (Brodmann Area (BA) 23/

31), middle temporal gyrus (BA 39), inferior temporal gyrus (BA

21), supramarginal gyrus (BA 40) and frontal regions, including

both superior frontal gyrus (BA 8) and medial frontal gyrus (BA

11). Clusters b and c (Figure 1b and 1c) show highly lateralized

parietal-frontal networks in the left and right hemisphere,

involving superior parietal lobule, inferior parietal lobule,

supramarginal gyrus (BA 7/40), middle frontal gyrus and superior

frontal gyrus (BA 8/9). Cluster d (Figure 1d) shows the largest

found network, consisting of postcentral gyrus (BA 3/1/2),

precentral gyrus (BA 4), cingulate gyrus (BA 24) and lateral,

medial and superior occipital gyrus and peristriate region (BA 17/

18/19). Cluster e (Figure 1e) involves bilateral insular and superior

temporal cortex (BA 22) and a part of the cingulate gyrus (BA 24).

Cluster f (Figure 1f) involves a singular region consisting of a

posterior part of BA 7. Cluster g (Figure 1g) involves a singular

region covering a medial part of the medial frontal gyrus (BA 9)

and an anterior part of the cingulate gyrus (BA 32).

Cluster d (Figure 1d) overlapped several brain regions.

Iteratively clustering the voxels in cluster d with the Ncut group

clustering approach revealed 3 sub-clusters within this cluster. The

results of this sub-clustering are shown in Figure 1 (Figure 1-d’,

lower right corner). Cluster d’-1 represents a sub-cluster consisting

of striate and parastriate cortex (BA 17/18) (Figure 1d’-1). Cluster

d’-2 shows a sub-cluster consisting of postcentral gyrus (BA 3/1/2),

precentral gyrus (BA 4) and cingulate gyrus (BA 24) (Figure 1d’-2).

Cluster d’-3 represents a sub-cluster consisting of lateral and

superior occipital gyrus (BA 19) (Figure 1d’-3).

Figure 1. Group clustered resting-state networks. Group clustering of 3 Tesla resting-state fMRI data of a group of 26 subjects revealed 7
resting-state networks (RSNs). 1a shows a functional connected network consisting of the posterior cingulate/precuneus, medial frontal regions and
bilateral parietal/temporal regions, a RSN known as the default mode network. 1b and 1c show lateralized parietal-frontal networks, networks that are
often reported in attention and memory processing. 1d shows a joint network of both sensorimotor and visual networks. Iteratively clustering
partitioned this cluster in 3 sub-clusters, shown in clustermap d’. The results showed separate clusters for primary visual regions (cluster d’-1), primary
sensorimotor regions (cluster d’-2) and extra-striate visual regions (cluster d’-3). 1e shows a network of bilateral insular regions and posterior cingulate
cortex. 1f and 1g represent singular clusters consisting of, respectively, a posterior part of Brodmann Area 7 and an anterior part of the cingulate
cortex. The clustered networks show resemblance with previous reported RSNs.
doi:10.1371/journal.pone.0002001.g001
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Discussion

We report on a group clustering method to select resting-state

networks at a group level. Voxels with coherent resting-state time-

series were grouped and disconnected from voxels showing a

different time pattern, resulting in individual clustermaps. At the

group level, the consistency across the individual clustermaps was

computed and clustered, defining the group resting-state networks

(RSNs). Normalized cut group clustering of 3 Tesla resting-state

fMRI data of 26 subjects revealed 7 independent functional

connected resting-state networks.

Group clustering resulted in resting-state networks (RSNs) of

known functional relevance that show resemblance with recently

reported resting-state group ICA results. Six out of seven of the

found clusters show resemblance with the group ICA results of

Beckmann et al. [17], De Luca et al. [2] and Damoiseaux et al.

[8], being cluster a, b, c, d, e and cluster f. Cluster a (Figure 1a)

represents a network of regions that is often referred to as the

default mode network [3,5]. The default mode network is

consistently found in resting-state fMRI studies [3,21] and

resting-state group ICA studies [2,8,17]. The default mode

network is suggested to play an important role in core processes

of human cognition [3,4,22]. Cluster b and c reflect lateralized

parietal-frontal networks, which are often reported in attention

and memory processing. Both networks are consistently found in

resting-state studies [2,8,17]. Cluster d represents a combined

network of regions involved in motor and visual processing.

Cluster e shows a network consisting of bilateral insular regions

and cingulate gyrus. This network is suggested to play an

important role in the control of goal-directed behavior [23] and

salience processing [24] and is often reported in RSN studies

[2,8,17]. Two clusters, clusters f and g (Figure 1f and 1g), consist of

singular regions, which suggest that these clusters show an isolated

pattern of neuronal activity during rest. These results support the

idea of complex functional connected RSNs underlying the

architecture of the resting brain [25].

Interestingly, the group clustermaps also show important

differences with previous reported resting-state studies. Previous

studies have described up to 10 different RSNs [8], were in this

study 7 RSNs were found. Most studies [2,8,17,19] report the

motor and visual regions to belong to two separate RSNs, while in

this study they were grouped together in a single RSN (cluster d,

Figure 1d). In addition, primary visual and extra-striate visual

regions have also been reported to form separated RSNs [17,26].

Clustering motor and visual regions in a single RSN suggests that

other RSNs are more differentiated in their level of functional

connectivity than motor and visual regions and could imply that

these regions are interconnected to quite some extent. This marks

an important differentiation between the results of this study and

previous studies [2,17,19,26] and this difference is particular

noteworthy as a number of studies have especially foccused on the

motor and visual system during rest and reported two separate

networks [1,6,10,11]. This suggested the existence of meaningful

sub-RSNs within cluster d. The voxels in cluster d were therefore

iteratively clustered using the Ncut clustering approach, partition-

ing cluster d in 3 sub-RSNs (see method section). This exploratory

procedure resulted in 3 sub-clusters which are shown in Figure 1d’

(lower-right part of Figure 1). Sub-clustering indeed resulted in two

separate RSNs for primary visual regions (Figure 1d’-1) and

primary sensorimotor regions (Figure 1d’-2), similar to previous

group ICA [2,8,17] and clustering studies [19]. Furthermore, the

extra-striate regions (Figure 1d’-3) were clustered as a separate

RSN, similar as reported in Damoiseaux et al. [8] and Beckmann

et al. [17], although clustermap d’-3 overlaps somewhat larger

regions. These results suggest a valuable role for iteratively clustering

in the Ncut group procedure and future studies are aimed to further

explore such a multilevel Ncut clustering approach.

A number of other differences between the results of this study

and previous studies are of interest. First, the singleton cluster f

(Figure 1f) was not found to be this prominent in other studies.

Second, although most of the clustered RSNs represent regions of

known functional relevance, cluster g (Figure 1g) does not directly

correspond to a known functional network. Third, our results only

partially overlap with the group results of Salvador et al. [25], who

reports on a hierarchal graph clustering approach of resting-state

fMRI. In their study, six main clusters were found, of which only

the motor and visual clusters show some overlap with our

combined motor/visual network (cluster d, Figure 1d). The

differences in clustering results may arise from the used voxel-

wise approach in our study, in contrast to the averaged regional

approach used by Salvador et al. In addition, in the study of

Salvador et al. the group connectivity graph was constructed by

averaging the individual regional-connectivity graphs, while in this

study the group graph reflected the cluster-consistency over the

individual clustering results.

Overall, despite differences between studies, we take the

similarities between the clustered group networks and the previous

reported group ICA components as a demonstration of the robust

formation of functional networks when the brain is at rest. In this

study, resting-state data was acquired in a different setting (on a 3

Tesla scanner and with a six times faster fMRI protocol) and

analyzed with a novel group clustering approach, but this still

resulted in the selection of known RSNs. The RSN similarities marks

the potential of our normalized cut group clustering method in

correctly detecting functionally connected RSNs in the resting brain.

The consistency of the proposed Ncut clustering group

approach was studied by examining the results of multiple

clusterings with different parameter settings (Figure 2, 3 and 4).

First, the cut-off threshold of the individual connectivity graph was

varied for three settings (being 0.3, 0.4 and 0.5). This resulted in

three different sets of individual clustering results which were

clustered at the group level (Stage B). The group clustering showed

to be only minor influenced by the individual cut-off threshold, as

all 7 clusters of the 3 sets showed high overlap (Figure 2). However,

when the individual cut-off threshold was increased to 0.6 (and up)

more and more paths were removed from the individual graphs

and this did have an effect on the group results, showing less

consistent group RSNs. Therefore the individual cut-off threshold

was set to 0.4 in the main analysis. Second, the influence of the

level of overclustering at the individual clustering stage (Stage A)

on the final group clustering was examined by repeating the

clustering with 5 settings of overclustering, ranging from 15 to 45.

This resulted in 5 sets of group clusterings, all showing large

overlap for all of the 7 clusters (Figure 3), indicating that changing

the level of individual overclustering did not change the nature of

the group clustering results. As a third test, the influence of the

group-graph complexity parameter on the group clustering was

examined. The group graph was clustered with 5 settings of the

group cut-off threshold around the found optimum of 9. The 5

cluster solutions showed large similarity for all of the 7 group clusters

(Figure 4). This overlap suggests only a minor influence of the graph

complexity threshold on the group clustering. Taken together, these

results show that the used Ncut group clustering approach yield

consistent results for clustering with different parameter settings.

This indicates that our group clustering approach is robust for

different settings of the cluster parameters. In addition, the overlap

suggest that the clustered RSNs can be found consistently in a group

of subjects, increasing the confidence in the found RSNs.

Group Clustering of RS fMRI
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A number of model-free methods have been successfully

introduced for the group wise selection of RSNs from resting-

state fMRI. ICA based methods are perhaps the most commonly

used [17,18] and have been reported to show large consistency

[27,28]. ICA methods search for a mixture of sources underlying

the observed signal, with the assumption that the sources are

statistically independent. An advantage of these methods is that

they work at the voxel level and that the temporal signal of the

independent components can be easily further examined and

compared between groups. However, the interpretation of the

ICA results may involve human input in selecting the anatomical

meaningful networks from the total collection of components and

this can be a complex task. New analysis methods are suggested to

calculate the consistency across ICA solutions to provide

additional information for a better interpretation of the results

[28]. Clustering methods have also been successfully used to

investigate RSNs [15,19]. Salvador et al. [19] reported on

hierarchical graph clustering of an averaged group connectivity

matrix, clustering brain regions in six main groups. Advantages of

this clustering method are the simplified selection of RSNs by

controlling for the hierarchical levels of clustering and the

straightforward interpretation of the results. However, most

clustering approaches have clustered over brain regions, using a

parcellation of the cortex in a number of fixed regions, making the

spatial resolution of these methods limited to a regional scale.

Clustering at the group level forms the core of our group clustering

approach. Functional connectivity is represented on the voxel

scale, enabling the examination of RSNs in detail, similar to group

ICA methods [17,18]. A strong asset is the data-driven

computation of the number of RSNs, avoiding human input in

Figure 2. Overlap of multiple group clusterings of different sets of individual clustermaps, varying on the individual cut-off
threshold. At the individual clustering stage, the constructed individual connectivity graph was threshold with the set individual graph cut-off
threshold rc before clustering. To examine the effect of rc on the final group clustering, the individual clustering procedure was repeated with 3
settings of rc, being 0.3, 0.4 and 0.5. The overclustering parameter was kept fixed on 20. Group clustering (graph complexity threshold set to 9;
number of RSNs set to 7) was repeated with the 3 sets of individual clustering results, resulting in 3 group clusterings. For all of the 7 group clusters
the overlap of these clustering solutions was computed. Figure clearly shows large overlap for all of the 7 group clusters, indicating that the setting of
rc did not affect the final group clustering. However, when rc was increased to 0.6 and up, more and more paths were removed from the individual
graph. This clearly affected the individual clustering and the group clustering, changing the spatially layout of the clusters (data not shown).
doi:10.1371/journal.pone.0002001.g002

Group Clustering of RS fMRI
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defining the number of RSNs. Clustering purely implies the

grouping of voxels that consistently show correlated time-series

across a group of subjects making the results straightforward to

interpret. However, in contrast to group ICA methods, the

temporal signals of the RSNs are not directly available for further

processing, but this requires some level of post analysis like

overlapping the clusters on the functional time-series and

calculating the level of (partial) correlation between the RSN

regions. Graph clustering methods using minima criteria, among

which hierarchal clustering and k-means clustering, tend to be

sensitive to outliers in the dataset [29]. Minima based clustering

methods are generally very effective when clustering averaged

time-series over regions, as noise over the time-series is averaged

out. However, such clustering strategies are less effective in

clustering voxels. The time-series of a single voxel could have a low

signal to noise ratio and therefore easily show a rather distinct

pattern from the rest of the dataset. As a result, the clustering of

voxel-based data could result in grouping such an outlier or a small

group of outliers as single clusters, ignoring the more global

character of the data [15,29]. To overcome this problem, in this

study the normalized cut clustering of Shi and Malik [20] was

used. The normalized cut criterion measures both the total

similarity within groups as well as the dissimilarity between groups,

effectively penalizing the formation of small clusters and thereby

stimulating the clustering of more global RSNs.

The neurophysiological meaning of resting-state networks

remains unclear. It has been proposed that synchronization of

neuronal oscillation patterns within neuronal networks may

Figure 3. Overlap of multiple group clusterings of different sets of individual clustermaps, varying on the level of individual
overclustering. To test the assumed minor effect of overclustering at the individual level on the group clustering results, the individual clustering
(Stage A) was repeated with varying overclustering settings (i.e., the number of clusters) and analyzed at the group level (Stage B). For each individual
dataset, the individual clustering (stage A) was repeated with varying number of clusters (assumed to result in overclustering), ranging from 15 to 35
(with steps of 5). This resulted in 5 clustermaps per individual dataset. Next, the group clustering (stage B) was repeated with the 5 sets of individual
clustermaps (graph complexity threshold set to 9; number of RSNs set to 7). For each of the 7 resulting group clusters, the 5 cluster solutions were
summated, creating an overlap map (cluster a–g) with voxel values ranging up to a maximum of 5. The maximum of 5 indicated an overlap off all 5
cluster solutions. Figure shows highly similar cluster results over the 5 different group clusterings, as suggested by the large overlap for each of the 7
clusters. As expected, the results demonstrated that the overclustering at the individual level did not change the nature of the group clustering.
doi:10.1371/journal.pone.0002001.g003
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contribute to the regulation of information flow [30] supporting

selection, consolidation and combination of learned information

[31], processes that are likely to be on-going during rest [32,33].

Coherent oscillatory patterns during rest in RSNs may therefore

be involved in the consolidation of past events and the preparation

for future responses to stimuli [32,33]. More specific, robust

functional connections between the posterior and anterior

cingulate cortex of the default mode network have been associated

with integration of cognitive and emotional processing [3].

Investigations into the resting-state of the brain may give us

more insight into the foundation of the brains architecture and its

dysfunction in brain disorders. It has been recently suggested that

resting-state patterns may be affected in Alzheimer’s disease

[34,35], depression [36] and schizophrenia [37–42]. Our

proposed group clustering method could contribute to this field

of research. It allows for a direct comparison of the spatial

distribution of RSNs between patients and healthy controls.

Furthermore, the used graph representation of connected voxels

can be used to examine the organization of the functionally

connected resting-state brain [19,43] and possible disruptions in

network organization in patients [39].

The described two-stage Ncut group clustering approach

requires to set a number of parameters by the user before

clustering, being the individual cut-off threshold, the level of

individual overclustering and the group graph complexity

threshold. In this study, the influence of the chosen parameter

settings was tested and found to have only a minor influence on the

group clustering (Figure 2, 3 and 4). In addition, the number of

Figure 4. Overlap of multiple group clusterings with varying group graph complexity cut-off thresholds. To verify that the optimization
procedure considering the selection of the group graph complexity cut-off threshold resulted in a stable clustering, the group clustering was
repeated with multiple settings of the graph complexity cut-off threshold. The group clustering stage (stage B) was repeated (using the individual
clustermaps consisting of 20 clusters) with different settings for the group cut-off threshold varying around the found optimum of 9 (ranging from 7
to 11). The number of clusters was set to the found optimum of 7 (see main text). Next, for each of the 7 clusters, the 5 group cluster solutions were
summated, creating an overlap map with voxels ranging up to a maximum of 5. The maximum of 5 indicated the overlap of all 5 clustering solutions.
Figure shows large overlap between the 5 group clusterings, for all of the 7 clusters. This large overlap demonstrates that varying the cut-off
threshold around the found optimum only minor influenced the group results, indicating that the automatic parameter setting procedure resulted in
a stable clustering solution.
doi:10.1371/journal.pone.0002001.g004

Group Clustering of RS fMRI
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group clusters, defining the total number of group RSNs, has to be

defined. The described approach includes an exhaustive search

procedure to find the group cluster parameters that resulted in an

optimal clustering of the group data, by finding a clustering

solution with a minimal normalized cut cost [20]. The examined

influence of the individual and group parameters on the final

group clustering and the described optimization procedure might

assist the user to set the required parameters.

Some limitations to this study have to be considered. Like in all

clustering based resting-state methods, all cortical voxels must be

placed in one of the RSNs. However, it can be argued that only

parts of the brain participate in RSNs. Indeed, two of the found

clustermaps show a solitary group of voxels, which suggest that

these voxels do not participate in a network, but rather show an

isolated pattern of neuronal activity during rest. Stronger pre-

selection criteria may address this issue by removing voxels that

show little to no significant connections from clustering. An

additional limitation of using a clustering approach is that each

voxel is exclusively assigned to one cluster. This may be incorrect

for regions that participate in multiple RSNs, for example

subcortical regions with relay functions like the thalamus. In this

study we focused exclusively on the cortical areas, but it is of

interest to examine subcortical contributions to RSNs. A more

general limitation considers the assumption of cross-correlation

between time-series reflecting functional connectivity. Two voxels

showing a high cross-correlation between their time-series could

be mediated by a third voxels time-series and not because they are

(directly) functionally connected. The use of partial correlation or

partial coherence has been suggested to account for these third

party influences [15,19,44,45].

We introduced a two-stage normalized cut based group

clustering method to investigate the formation of resting-state

networks in the human brain at a group level. Inter-voxel

functional connectivity was clustered into individual networks

and consistency of these networks over the group of subjects

determined the group RSNs. Group clustering of rest recorded 3

Tesla fMRI data of 26 subjects revealed resting-state networks of

known functional relevance and included the often reported default

mode network. Our results support the idea of the formation of

spatially distinct RSNs during rest in the human brain.

Materials and Methods

Datasets and preprocessing
Data was acquired using a 3 Tesla Philips Achieva Medical

scanner (Philips Medical Systems, Best, The Netherlands) at the

University Medical Center Utrecht, The Netherlands. 26 right

handed healthy subjects with no psychiatric history participated in

the study (age mean/std : 25/7.7; gender: 14 male, 12 female). All

participants gave written consent prior to taking part in the study

as approved by the medical ethics committee for research in

humans (METC) of the University Medical Center Utrecht, the

Netherlands. During the resting experiment the scanner room was

darkened and the subjects were instructed to relax with their eyes

closed, without falling asleep. Resting-state blood oxygenation

level dependent (BOLD) signals were recorded during a period of

8 minutes using a fast fMRI sequence (3D-PRESTO pulse

sequence with parallel imaging [46,47]. Acquisition parameters:

TR 21.75 ms, effective TE 32.4 ms (using a shifted echo); flip-

angle 9 degrees; 1000 timeframes; FOV 2566256 mm, voxelsize

4 mm isotropic, 32 slices covering whole brain; total acquisition

time per volume 0.5 sec). The short volume acquisition time of

500 ms allowed the sampling of information in the frequency

domain up to 1 Hz. This minimized the possible backfolding

(aliasing) of higher frequencies, such as cardiac and respiratory

oscillations into the lower resting-state frequencies of interest

(0.01–0.1 Hz). Directly after the acquisition of the functional time-

series an additional PRESTO scan with better anatomical contrast

using an increased flip angle of 25 degrees (FA25) was acquired for

coregistration purposes. A T1 weighted image was acquired for

anatomical reference (3D FFE pulse sequence. Acquisition

parameters: TR = 9.87 ms, TE = 4.6 ms; flip-angle 8 degrees;

SENSE reduction 1.7 (left-right) and 1.4 (anterior-posterior); FOV

2406240 mm, voxelsize 0.7560.7560.8 mm, 180 slices).

All preprocessing steps were done with the SPM2 software

package (http://www.fil.ion.ucl.ac.uk). The functional scans were

corrected for small head movements by realigning all functional

scans to the last functional scan. Realignment to the last functional

scan ensured maximum spatial overlap with the FA25 scan at the

start position of the registration, because the FA25 scan was

acquired directly after the resting-state time-series. The functional

time-series were coregistered to the FA25 image, by taking the last

functional scan as a source. The T1 image was then coregistered to

the FA25 image, providing spatial alignment between the

functional time-series and the anatomical image. After realign-

ment, the rest recorded functional time-series were bandpass

filtered with a finite impulse response (FIR) bandpass filter with

zero phase distortion (bandwidth 0.01–0.1 Hz) to eliminate low

frequency noise (including slow scanner drifts) and influences of

higher frequencies reflecting possible cardiac or respiratory

oscillations [11]. Normalization parameters were estimated using

the MNI 305 T1 brain [48] as a template and the T1 image as a

source. All functional scans were then normalized to the standard

space according to normalization parameters and resampled to a

46464 mm resolution, enabling between subject comparisons.

Cortex segmentation was done on the T1 image using the

Freesurfer software package (http://surfer.nmr.mgh.harvard.edu/).

Segmentation maps were normalized and resampled to a

46464 mm resolution to spatially overlap the filtered time-series.

After preprocessing, the resting-state fMRI datasets were

analyzed using the normalized cut group clustering method,

consisting of two clustering stages (explained in detail below). At

the individual level (Stage A, Individual clustering), voxels showing

correlated BOLD activation patterns over time were clustered and

defined an individual clustermap. Next, at the group level (Stage

B, Group clustering) the consistency across the individual

clustermaps was computed and clustered using the Ncut method,

defining the group RSNs.

Stage A: Individual clustering
Clustering at the individual level (Stage A) involved the

grouping of voxels that showed coherent BOLD fMRI time

signals. The individual clustering stage consisted of two steps

(Figure 5), the Formation of an individual functional connectivity graph

(step A1) and the Clustering of this graph (step A2).

Step A1 Formation of an individual functional

connectivity graph. Each fMRI dataset was represented as a

fully connected undirected graph G = (N,E), with nodes N

representing the voxels in the dataset (all gray matter voxels)

and the weighted edges E connecting each voxel pair (Figure 5,

step A1). This resulted in an individual graph of M nodes

representing the M cortical voxels with a total of (M22M)/2 edges

connecting each possible voxel pair. M varied between subjects

from 8500 to 9500, depending on the individual cortical

segmentation. The weights of the edges of the graph represented

the level of functional connectivity between the voxels. The weight

w(i,j) of edge e(i,j) connecting voxel i and voxel j in the graph was

computed as the correlation between their filtered fMRI time-
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series. The individual functional connectivity graph was stored as a

weighted connection matrix before clustering.

Step A2 Clustering. Next, the connectivity graph G was

clustered in a number of sets consisting of groups of voxels that

showed a high level of functional connectivity (Figure 5). To

partition graph G in a number of subsets the normalized cut-cost

clustering method according to Shi and Malik [20] was used. By

using a graph cut method for clustering a graph is partitioned in a

number of subsets by removing edges from the graph that connect

the subsets, with the total cost of this operation defined as the sum

of all the weights of the edges that have to be removed. The

normalized cut value normalizes this cut cost by the fraction of all

paths in that subset (for a more detailed description see supporting

information text S1). A direct advantage of the Ncut method is

that, due to the normalization factor, the clustering is less sensitive

to grouping outliers as individual subsets. The optimal partitioning

of graph G is one that minimizes the Ncut cost and can be found

by solving a generalized eigenvalue system representation of G

[20]. Clustering was done with the public available MALTAB

implemented Ncutclustering_7 toolbox of Shi (http://www.cis.

upenn.edu/,jshi/software).

To reduce the number of connecting edges in the connectivity

graph and therefore reduce the graph complexity, a cut-off

threshold rc [15] of 0.4 was applied, setting the weights of the edges

that did not reach this threshold to zero. The effect of this

individual cut-off threshold on the group clustering was examined

by repeating the individual clustering stage with 3 different settings

of rc, being 0.3, 0.4 and 0.5, resulting in 3 clustermaps for each

individual dataset. The group clustering stage (Stage B, see below)

was then repeated with the 3 different sets of 26 individual

clustermaps, resulting in 3 group clusterings. Varying the

individual cut-off threshold rc around 0.4 did not change the

nature of the group clustering, as indicated by the overlap of the

resulting group clusters (Figure 2). Therefore, rc was set to 0.4.

Clustering required a preset number of clusters to partition in.

At start the number of RSNs was unknown. Setting the number of

clusters lower than the true number of RSNs would result in an

underclustering of the data, erroneously combining distinct RSNs.

Setting a high number of clusters would probably result in an

overclustering of the data, forcing networks to be divided in

multiple subsets. However, if overclustering of the data would

force a true RSN to be split in two or more subsets, the assignment

of the voxels to one of the subsets would be random, as no correct

splitting would be possible on basis of the data itself. Therefore, the

devision into subsets would not change the shape or outline of the

RSNs and would not affect the nature of the group clustering. To

verify this assumed minor effect of individual overclustering on the

group clustering, the individual clustering stage was repeated with

the (overclustering) number of clusters ranging from 15 up to 35

(with steps of 5), resulting in a total of 5 clustermaps per individual

dataset. Subsequently, the group clustering step (Stage B, see

below) was repeated 5 times (using fixed group cluster parameters),

with the 5 different sets of 26 individual clustermaps. As predicted,

the 5 group clustermaps demonstrated large overlap, indicating

that overclustering at the individual level did not change the

nature of the group results (Figure 3).

To avoid incorrect underclustering of the data, the number of

clusters was set to 20, double the number of 6 to 10 networks

reported in previous fMRI resting-state studies. This was expected

to result in (harmless) overclustering of the data. The individual

graph was partitioned in 20 clusters using the Ncut clustering

algorithm. Labeling the cortical voxels with their cluster number

(ranging from 1 to 20) resulted in an individual clustermap. Small

gaps in the individual clustermap were filled by using a majority

voting algorithm with a minimum of 5 neighbours.

Stage B: Group clustering
In the group clustering stage the consistency across the 26

individual clustermaps was computed and clustered (Stage B,

Figure 6). The resulting group clustermap expressed networks that

could be consistently found across the group of subjects. Group

clustering consisted of 3 steps, Formation of the group graph that reflected

the RSN consistency across the group of subjects (step B1), Setting

cluster parameters (step B2) and Computing the group clustermap (step B3).
Step B1 Formation of the group graph. Overlap of the

normalized individual cortical segmentation maps resulted in a

group cortical segmentation of 9014 gray matter voxels. From the

9014 cortical voxels a fully connected undirected group graph Ggrp

Figure 5. Individual clustering stage. Step A1 Graph formation. An individual graph was constructed, consisting of M cortical voxels and (M2 -M)/2
edges connecting all voxel pairs. The weight w(i,j) of edge e(i,j) connecting voxel i and voxel j was computed as the correlation between the filtered
time-series of voxel i and voxel j, reflecting the level of functional connectivity between the two voxels. Step A2 Clustering. Prior to the clustering, a
cut-off threshold of 0.4 was applied to reduce the complexity of the graph and lower the computational load, setting all weights to zero that did not
reach this threshold. Normalized cut clustering was used to partition the graph in a fixed number of 20 networks, grouping voxels that showed a high
level of functional connectivity into networks, resulting in an individual clustermap.
doi:10.1371/journal.pone.0002001.g005
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was constructed with (9014229014)/2 edges connecting all voxel

pairs (Figure 6, step B1). The weights of the edges were set to

express the consistency of the cluster-similarity across the

individual clustermaps and were computed as follows. In each

individual clustermap (the outcome of the individual clustering

stage), the cluster-similarity between two voxels was set to 1 if the

two voxels were grouped in the same cluster and 0 otherwise.

Then at the group level, the weight of the edge connecting those

two voxels in the group graph was computed as the total

summation of the cluster-similarity values across the individual

Figure 6. Group clustering stage. Step B1 Formation of a group graph. A group graph was constructed, consisting of the cortical voxels that
resulted from the group averaged cortical segmentation map and edges connecting all possible voxel pairs. The weight W(i,j) of the edge connecting
voxel i and voxel j reflected the cluster consistency across the group of subjects and was computed as follows. For each individual clustermap, the
individual cluster-similarity between voxel i and j was defined as 1 if in the individual clustermap voxel i and voxel j were grouped in the same cluster
and 0 otherwise. Figure box shows the clustermaps of subject 1 and 2 and the last subject (subject S). In subject 1 the voxels i and j were not
clustered in the same cluster, hence the cluster-similarity between voxel i and voxel j was set to 0. In contrast, in subject 2 and in subject S voxel i and
j were clustered in the same cluster and therefore the cluster-similarity values between these voxels in these subjects were set to 1. At the group
level, W(i,j) was computed as the summation of the cluster-similarities between voxel i and voxel j over the group of S subjects. Step B2 Setting cluster
parameters. The group graph was clustered with increasing number of clusters P and increasing graph complexity cut-off thresholds Q. An optimal fit
was computed as the clustering fit with the first minimum normalized cut cost value in descending direction of the number of P clusters, to maximize
the number of meaningful clustered RSNs. Step B3 Computing group clustermap. The cortical voxels were labeled according to the optimal clustering
fit, resulting in the group clustermap. The group clustermap represents networks of voxels that were consistently clustered into the same resting-
state network across the group of subjects.
doi:10.1371/journal.pone.0002001.g006
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clustermaps. More formally, weight W(i,j) of edge E(i,j) between

voxel i and j in Ggrp, was defined as

W (i,j)~
XN

S~1
clusS(i,j)

with N the number of subjects and clusS(i,j) being 1 if voxel i and j

were in the same cluster in subject S and 0 otherwise. This

definition of the weights of the group graph expressed between

subject cluster-similarity in such a way that high weight values

reflected strong subject overlap. A high value of W(i,j) would

indicate that in a large proportion of the group of 26 subjects the

two voxels i and j were clustered into the same cluster and

therefore should probably belong to the same group RSN.
Step B2 Setting cluster parameters. At start of the group

clustering stage the number of clusters (i.e. the number of RSNs) to

partition Ggrp in was unknown. Furthermore, a graph complexity

cut-off threshold was needed to be set to decrease the size of Ggrp

in preparation for the clustering to reduce the computational load,

setting the weights of the edges that did not reach the complexity

cut-off threshold to zero. At start, the number of group clusters

and the cut-off threshold were unknown and as a result could not

be set correctly by the user. An optimal partitioning of Ggrp with

respect to these 2 parameters was computed with the following

procedure. First, Ggrp was clustered repetitively with different cut-

off thresholds and with different values for the number of clusters

(i.e. RSNs). For each of these clusterings the Ncut method was

used and the Ncut cost to partition Ggrp was computed. This

resulted in a Ncut cost landscape of size P6Q, with P the range of

used numbers of clusters and Q the range of used graph

complexity thresholds. The examined number of group clusters

varied between 2 and 50 clusters and the graph complexity

threshold varied between 5 and 25, resulting in a 49621 Ncut cost

landscape, containing 1029 group clustering solutions. Second,

from this Ncut landscape the optimal clustering solution was

selected. The Ncut cost of a clustering is defined as the summation

of the weights of the edges that have to be removed to divide the

group in multiple sets and directly reflects the quality of the

clustering [20]. Therefore, the optimal partitioning of Ggrp in an

optimal number of clusters, was selected from the total collection

of cluster solutions as a solution with a minimum Ncut cost. This

minimum was selected by traveling through the Ncut cost landscape

in descending direction of the number of clusters starting with 50 (i.e.

from 50 to 2) -partitioning the data in as much meaningful networks

as possible- and in ascending direction of the cut-off threshold (i.e up

from 2 to 25), keeping the information in Ggrp as high as possible.

This procedure resulted in an optimal partitioning of Ggrp in 7

clusters with a group cut-off threshold of 9.
Step B3 Computing the group clustermap. The cluster

labels resulting from the computed optimal clustering of Ggrp were

assigned to the cortical voxels (Figure 6, step B3). This resulted in a

group clustermap of 7 RSNs.

To confirm that the optimization procedure resulted in a stable

clustering fit of Ggrp, the overlap of the clustering solutions with a

cut-off threshold varying around the found optimum of 9 was

calculated. A range of 22 to 2 was chosen (i.e. 5 cut-off thresholds

ranging from 7 to 11). To test the specific effect of the cut-off

threshold on the group clustering the number of clusters was kept

fixed for all 5 group clusterings to the found optimum of 7. The 5

computed group clustermaps showed large overlap for all of the 7

clusters, indicating that the optimization procedure resulted in a

stable clustering (Figure 4).

Additional analysis, sub-clustering of cluster d
The largest clustered network (cluster d, Figure 1) consisted of

both sensorimotor and visual regions, combining these regions in a

single RSN. To examine whether this cluster consisted of multiple

sub-clusters, an iterative cluster procedure was added, sub-

clustering the voxels in cluster d (Figure 1d). This iterative

clustering stage followed the exact procedure of the normalized

group clustering approach, with both the individual clustering

stage (Stage A) and group clustering stage (Stage B). First,

individual connectivity graphs were formed out of the selected

voxels and clustered. For the individual clustering a cut-off rc of 0.4

was used and the level of overclustering was set to 10 clusters,

being over twice the expected number of clusters, similar to the

procedure followed in the main analysis (Stage A: Individual

clustering, step A2). The individual clusterresults were combined

at the group clustering stage, forming a new group graph,

consisting of 4186 voxels (Stage B: Group clustering). This graph

was then clustered with the graph-complexity threshold set to a

value of 9 (similar to the main analysis) and the number of group

clusters set to 3.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0002001.s001 (0.05 MB

DOC)
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