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ABSTRACT

The rise of large-scale, sequence-based deep neural networks (DNNs) for predicting gene expression has introduced challenges
in their evaluation and interpretation. Current evaluations align DNN predictions with experimental perturbation assays, offering
a limited perspective of the DNN’s capabilities within the studied loci. Moreover, existing model explainability tools mainly
focus on motif analysis, which becomes complex to interpret for longer sequences. Here we introduce CREME, an in silico
perturbation toolkit that interrogates large-scale DNNs to uncover rules of gene regulation that it has learned. Using CREME,
we investigate Enformer, a prominent DNN in gene expression prediction, revealing cis-regulatory elements (CREs) that directly
enhance or silence target genes. We explore the relationship between CRE distance from transcription start sites and gene
expression, as well as the intricate complexity of higher-order CRE interactions. This work advances the ability to translate the
powerful predictions of large-scale DNNs to study open questions in gene regulation.

Recent advances in sequence-based genomic DNNs have shown notable success in predicting gene expression by considering
significantly larger inputs1–3. However, the extensive sequence size presents a challenge when evaluating DNN predictions and
interpreting their learned patterns. Current methods for evaluating large-scale models have relied on assessing the alignment
between predictions and experimental perturbation assays1, 4, 5—such as massively parallel reporter assays6, 7 and CRISPR
interference (CRISPRi)8—as well as statistical analyses like expression-quantitative trait loci5, 9, 10. However, these only provide
a narrow evaluation of what a DNN has learned within the studied loci or the biological question being probed. Moreover,
experimental measurements capture both biological and technical variability, which makes it difficult to assess generalization
of the underlying biology learned by the DNN. Conversely, prevailing model interpretability methods concentrate primarily
on the analysis of motifs11–20, short DNA sequences associated with regulatory functions. As the number of motifs spanning
longer sequences grows, interpreting motif analysis becomes increasingly challenging, given the difficulty in deciphering their
coordination for carrying out regulatory functions.

To bridge this gap, we present CREME (Cis-Regulatory Element Model Explanations), an in silico perturbation toolkit
designed to examine large-scale DNNs trained on functional genomics data. In contrast to existing model interpretability
methods, CREME can provide interpretations at various scales, including a coarse-grained CRE-level view as well as a fine-
grained motif-level view. CREME is based on the notion that by fitting experimental data, the DNN essentially approximates
the underlying “function” of the experimental assay. Thus, the trained DNN can be treated as a surrogate for the experimental
assay, enabling in silico “measurements” for any sequence. Drawing inspiration from CRISPRi21, 22, CREME comprises a suite
of perturbation experiments to uncover how DNNs learn rules of interactions between CREs and their target genes (Fig. 1).

To demonstrate the utility of CREME, we interpret Enformer1, a DNN that takes ∼400kb DNA sequences as input and
predicts the corresponding read coverage profiles for 5,313 experiments that includes chromatin accessibility, transcription
factor binding, histone marks, and gene expression across various cell types. In this study, we investigate the regulation of
gene expression in K562 cells. Using a curated list of sequences centered on TSS annotations23 (see Methods), we examine
how specific sequence perturbations affect gene expression given by Enformer’s predictions of TSS activity. The results are
organized according to specific biological questions.

To what extent does Enformer depend on distal context for gene expression prediction? While Enformer’s predictions
have been shown to depend on individual nearby enhancers5, the extent that it relies on a broader set of context is unclear.
Using CREME’s TSS Context Dependence Test, we sought to directly measure the effect of distal context on TSS activity24, 25.
Briefly, this test measures the effect of shuffling the context (i.e. the entire sequence) while keeping the proximal regions (∼5kb)
centered on the TSS-under-investigation intact (see Methods). To reduce the effects of spurious patterns, we performed 10
independent dinucleotide-shuffles and averaged predictions of TSS activity, a procedure similar to global importance analysis
(GIA)14.

Interestingly, we observed that the majority of cases resulted in a drop in TSS activity, presumably due to disruption of
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Figure 1. CREME Overview. CREME offers a suite of in silico perturbation experiments that probe specific biological
hypotheses. Perturbations are applied to the input sequence and the effect size is measured as the difference in the model
predictions.

enhancers (Figs. 2a and 2b). On occasion, the TSS activity increased, suggesting the presence of silencers26–29. We also
observed cases where TSS activity was robust across context, which can arise from a neutral context (i.e., depletion of CREs or
net neutral effects of CREs) or the TSSs are intrinsically strong and context independent. Based on these results, we organized
a subset of the sequences into 3 context categories (i.e., enhancing, silencing, and neutral) for further analysis (Fig. 2a, inset).

Do CREs yield similar effects on non-target genes? Next, we explored how gene expression changes when a TSS along
with its proximal context (5kb) is inserted into different, non-native (but genomic) contexts—replacing the native TSS—using
CREME’s TSS Swap Test (see Methods). By stratifying results according to context categories, we observed that TSSs originally
from neutral contexts largely maintained high activity independent of the context (Fig. 2c, top). As expected, these TSSs
mostly correspond to housekeeping genes30 (49%), whereas the TSSs in other contexts did not (6% for enhancing context and
0% for silencing context). Interestingly, swapping TSSs among the set of sequences from enhancing contexts resulted in a
50% decrease in TSS activity, on average, while a larger drop was observed when placed into other contexts (Fig. 2c, middle).
This suggests that enhancers can be somewhat effective at enhancing other genes, but they are better tuned for their native
target gene, perhaps through some compatibility rule31–33. On the other hand, we found that silencing context is more-or-less
interchangeable when considering their effectiveness across genes that are actively silenced (Fig. 2c, bottom). Swapping these
actively silenced genes into non-silencing context leads to a substantial increase in TSS activity. Moreover, testing TSS activity
in dinucleotide-shuffled versions of the context from each category confirmed the importance of higher-order structured patterns
(e.g. enhancers and silencers) beyond dinucleotide frequencies (Supplementary Fig. 1).

Which CREs are necessary for TSS activity? Using CREME’s CRE Necessity Test, we can identify a CRE’s influence on a
target gene, mapping the locations of enhancers and silencers and their effect size on TSS activity. Specifically, we binned the
input sequence into 5kb tiles and monitored how TSS activity is altered upon shuffling each tile (Fig. 3a), which is effectively
an occlusion perturbation5, 34. As expected, individual tiles in enhancing backgrounds tend to yield a positive influence on TSS
activity, while tiles in silencing context are enriched to yield a negative influence (Fig. 3b). Notably, all context seem to have a
mix of enhancers and silencers. In general, individual tiles in neutral context have an overall weak impact on TSS activity,
though some may yield large effects.

Are individual CREs sufficient for TSS activity? To test whether an individual tile is sufficient to activate or silence
a target TSS35, we employed CREME’s CRE Sufficiency Test, which embeds a tile-of-interest along with the TSS tile in
dinuceotide-shuffled sequences at their original positions and measures TSS activity. This GIA experiment uncovers the global
importance of the combined tiles while effectively removing contributions from background context14. The results indicate that
individual enhancer tiles often yield low effect sizes on their own (Fig. 3c). Surprisingly, the effect sizes of individual tiles on
TSS activity increased when taken out of the original (neutral or silencing) context, suggesting competition among CREs in the
original context leads to a lower effect . Evidently, necessity does not imply sufficiency (Supplementary Fig. 2), suggesting that
multiple CREs are needed to drive most TSS activity in non-neutral contexts.

How far are CREs from target TSS? We next mapped the distance distribution of TSSs for enhancer and silencer CREs
identified from CREME’s Sufficiency Test (see Methods). Our findings indicate that the majority of enhancers recognized
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Figure 2. TSS robustness to context. a, Histogram of normalized context effect on TSS for 4,527 sequences that contain an
active, annotated gene in K562 cells. The sequence context was perturbed via a dinucleotide-shuffle while keeping the central
5kb tile centered on a TSS-of-interest intact. Inset shows the subset of sequences for enhancing, silencing and neutral contexts.
b, Representative sequences from the three context categories showing Enformer’s predictions before and after a context
perturbation, with a zoomed in version shown in the inset. c-e, Context Swap Test results. Box plots of normalized context
effect on TSS for sequences with context perturbations given by insertion of the original TSS in different context categories.
Results are organized according to the original TSS category: neutral (c, top), enhancing (c, middle), and silenced (c, bottom).
The number of datapoints in each box-plot represent an all-vs-all comparison of each respective TSS in each possible context.
Box plots show the first and third quartiles, the median (central line) and the range of data with outliers removed (whiskers).

by Enformer are located in close proximity to their target TSS, and the number of enhancers progressively diminishes as the
distance increases (Fig. 3d), in agreement with previous observations5. On the other hand, silencers recognized by Enformer
are more-or-less homogeneously distributed (Fig. 3d).

Does changing the distance between CRE and TSS alter its effect? Using CREME’s TSS-CRE Distance Test, we
performed a GIA experiment where the TSS activity was monitored while the distance of an enhancer from a target TSS was
systematically varied in random sequences (see Methods). Surprisingly, we found that Enformer learns a similar distance
dependence relationship, on average, across different enhancer-TSS pairs (Fig. 3e). This suggests that a weak enhancer can
increase its effect on gene expression by moving closer to the TSS36. Similarly, silencer-TSS pairs did not exhibit any noticeable
distance dependence.

How do CREs interact to regulate gene expression? Moving from single-tile perturbations to multi-tile perturbations, we
used CREME’s Higher-order CRE Interaction Test to identify minimal sets of CREs that maximally alters TSS activity (Fig.
4a). In anticipation that CRE interactions are complex24, 37, 38, we elected to search for CRE sets via an iterative greedy search,
instead of grouping CREs based on their individual effects. In each round, the greedy search identifies a new CRE (given the

3/12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.03.547592doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.03.547592
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tiled DNA

CAGE-seq

5 kb

Annotation

R
ea

d 
C
ov

er
ag

ea

e

d

0 20 40 60 80
Distance to TSS (kb)

0

10

20

30

40

50

C
ou

nt
s Enhancer

Silencer

enhancing neutral silencing
Context

1.0

0.5

0.0

0.5

1.0
N

or
m

al
iz

ed
 s

hu
ff
le

 e
ff
ec

t Necessity Test

enhancing neutral silencing
Context

1.0

0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

 C
R
E 

ef
fe

ct

Sufficiency Test

b

c

20 40 60 80
Binned Distance (kb)

0.0

0.4

0.8

1.2

Fo
ld

 c
ha

ng
e 

ov
er

 c
on

tr
ol TSS-CRE Distance Test

Enhancer
Silencer

Figure 3. CRE effects on TSS activity. a, Schematic of tile perturbation experiments showing a TSS centered sequence with a
toy gene annotation below, a CAGE track is shown above with putative up and down regulating CREs. b, CRE Necessity Test
results. Normalized shuffle effect on TSS activity for tiles in enhancing, neutral and silencing context sequences. Normalized
shuffle effect is calculated according to how the TSS activity changes upon tile shuffles, normalized by the original TSS activity.
A value of 1 represents a strong enhancer and a value of 0 represents a strong silencer. c, CRE Sufficiency Test results.
Normalized CRE effect of adding a given tile along with the TSS tile to dinucleotide-shuffled sequences in their original
positions for different context categories. b,c, Boxen-plots have 5928, 1560, 429 context-derived tiles in enhancing, neutral,
and silencing context, respectively. d, Histogram of the distance between CRE from TSS for enhancers and silencers, defined
by activity thresholds from c (i.e., enhancers > 0.3 and silencers < -0.3). e, TSS-CRE Distance Test results. Average fold
change over control of moving an CRE tile from a fixed TSS tile in shuffled sequences, where the control represents the TSS
activity when the CRE tile is at its original position (i.e., similar to the CRE Sufficiency Test). The distance towards the 5’ end
and 3’ end were averaged together for each CRE tile. Shaded region represents standard deviation of the mean.

set of the CREs found in previous rounds) that yields the largest effect size (see Methods) – optimizing for higher or lower TSS
activity yields sets of silencers or enhancers, respectively.

When probing for enhancer sets, we observed that, on average, 5 enhancers drive more than 80% of TSS activity for
sequences in enhancing contexts (Fig. 4b). In contrast, when probing for silencer sets, we found that silencing context is
enriched for larger numbers of silencers, each with a smaller effect size (Fig. 4c). All contexts, including neutral context,
contain enhancers and silencers, albeit with varying effect sizes. Together, this suggests that the overall net effect of enhancers
and silencers drives TSS activity.

To help understand the CRE trajectories from the greedy search, we considered a hypothetical scenario where the overall
influence of multi-tile perturbations on TSS activity follows an additive effects model (see Methods). We found that, according
to Enformer, sets of multiple enhancers are largely additive on average (Fig. 4d), which is in contrast to previously observed
multiplicative effects of pairs of CREs5, 32, 38, 39. However, when stratifying the results, we observed that enhancers exhibit a
range of complex behaviors, including redundancy and cooperativity. Redundancy refers to when multiple enhancers appear
to each have a small effect size on TSS activity when perturbed individually (Fig. 4e), which arises due to the presence of
other redundant enhancers40–43. Cooperativity refers to when two or more CREs depend on each other24, 37, 38. For instance, a
perturbation to an individual CRE that is cooperating with another CRE will result in a large decrease in TSS activity as both

4/12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.03.547592doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.03.547592
http://creativecommons.org/licenses/by-nc-nd/4.0/


a b

d

0 10 20
Number of CREs

0

0.5

1

Redundancy (n=59)

0 10 20
Number of CREs

-1

0

1
Cooperativity (n=28)

0 10 20
Number of CREs

0

0.5

1

Additivity (n=65)

greedy

additive
(hypothetical)

0 10 20
Number of CREs

-0.5

0

0.5

1

Fo
ld

 c
ha

ng
e 

ov
er

 c
on

tr
ol Enhancing (all)

0 5 10 15 20 25
Number of CREs

0.0

0.2

0.4

0.6

0.8

1.0

Fo
ld

 c
ha

ng
e 

ov
er

 c
on

tr
ol c

0 5 10 15 20 25
Number of CREs

0

1

2

3

4

5

Fo
ld

 c
ha

ng
e 

ov
er

 c
on

tr
ol

silencing
neutral

enhancing

c

e f g

Enhancer greedy search Silencer greedy search

Figure 4. Optimal CRE sets reveal complex interactions. a, Schematic of the greedy search process for enhancer CRE sets.
Checkered box represents a shuffled tile. b,c Average fold change over control of TSS activity with the shuffled CRE tiles in
each round of the greedy search (indicated by the number of CREs) for sequences from different context categories optimizing
for enhancer sets (b) and silencer sets (c). Control represents the TSS activity of wild-type. d, Comparison of the average fold
change over control for enhancer sets for sequences categorized as enhancing context versus a hypothetical additive effects
model. The 152 sequences from enhancing contexts are stratified according to interaction type, redundancy (e), cooperativity
(f), and additivity (g). Shaded region represents standard deviation of the mean.

are necessary. In this case, the hypothetical additive effect will appear stronger than the observed effect when both CREs are
perturbed, leading to negative TSS activities (Fig. 4f). As anticipated, the optimal CRE set identified by the greedy search
do not reflect the order given by the largest individual CRE effects (Supplementary Fig. 3). This suggests that CREs exhibit
strong dependencies, i.e. a CRE perturbation can influence the effect size of other CREs. Furthermore, we compared multi-tile
perturbations with a hypothetical additive model for silencer sets and found that silencers largely exhibit strong redundancies
(Supplementary Fig. 4).

Does Enformer learn a sigmoidal function of gene expression? In principle, CRE redundancy can be modeled as if
TSS activity follows a sigmoidal function, where saturation has been reached44–46. To test Enformer’s extrapolation behavior,
we used CREME’s CRE Multiplicity Test to measure the effect of greedily inserting multiple enhancers (or silencers) within
dinucleotide-shuffled sequences to maximize (or minimize) TSS activity (see Methods). Indeed, we observed that Enformer’s
predictions of gene expression saturate as more enhancers (or silencers) are incorporated, albeit different genes plateau at
different TSS activity levels (Supplementary Fig. 5).

Conclusion. In summary, CREME provides a suite of in silico experiments for hypothesis-driven interpretations of large-scale
DNNs. CREME enables moving beyond the limitations of existing model interpertability methods that are geared towards motif
analysis by focusing on a CRE-level analysis. This approach reveals how DNNs consider rules of gene regulation, such as the
dependence of TSS activity on distal context and the complex coordination of CREs. CREME helps to prototype experiments
and generate plausible hypotheses of cis-regulatory mechanisms. By interrogating Enformer, we found that TSS activity of
genes are affected by the complex interactions of multiple enhancers and repressors. This suggests that perturbations with
CRISPRi on a single locus (and in some cases pairs of loci) would be insufficient to fully characterize dependencies between
CREs.

A major limitation arises when a DNN’s understanding of gene regulation is not aligned with biological reality. Insights
gained through model interpretability should therefore be treated as a hypothesis and not a replacement for laboratory-based
experiments. As DNNs continue to improve, CREME is a general tool that will enrich our biological knowledge as well as to
understand their shortcomings. Another issue is that the perturbed sequences may introduce an out-of-distribution shift47, for
which model predictions can be less reliable – not grounded in biology. By staying close to genomic sequences, performing
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multiple trials, and carefully considering control experiments, we aimed to limit the negative impacts of distributional shifts.
While this study focuses on the impact of CRE-level perturbations on gene expression predictions within K562 cells given

by Enformer, CREME is general and can be applied to any sequence-based DNN at any desired resolution. By restricting the
tile size, the experiments performed by CREME can also be used to study motifs and their interactions. CREME provides a
roadmap to probe what cis-regulatory mechanisms the DNN has learned, moving beyond evaluations based on alignment to
experimental data. In the future, we aim to expand CREME to incorporate tests to study enhancer-promoter compatibility rules
at both the CRE- and motif-level, uncover local cis-regulatory networks, and design synthetic CREs that are optimal for a target
gene.

Methods
Enformer
Enformer is a previously established DNN that takes as input genomic sequences of length 393,216 bp and predicts 5,313
epigentic tracks for human and 1,643 epigenetic tracks for mouse through two output heads1. For each track, Enformer’s
predictions cover 896 binned positions, with each bin representing 128 bp. This represents the central 114,688 bp of the
input sequence. The extended input sequence, provides context for the edge cases, i.e. the start and end of the predictions.
The epigenetic tracks consist of processed coverage values of expression (CAGE), DNA accessibility (DNase-seq/ATAC-
seq), transcription factor binding and histone modification (ChIP-seq). Enformer is composed of convolutional layers that
initially summarizes the input sequence into representations that represent 128 bp bins. This is followed by 11 transformer
blocks that use multi-head self-attention48. We acquired code for the Enformer model along with trained weights from
https://tfhub.dev/deepmind/enformer/1 as per instructions in the Methods section of Ref.1

Transcription start site selection
We acquired human annotations from GENCODE23 (https://www.gencodegenes.org/human/) and filtered for
’transcript’ annotations. We then extracted sequences of length 393,216 from the hg19 reference geneome centered at each
filtered TSS. We converted the sequences to a one-hot representation, treating N characters as a uniform probability (i.e. 0.25).
We calculated Enformer’s prediction for these sequences and only considered position 448 (of the 896 binned predictions),
which corresponds to the central TSS, of track 5,111 of the human output head (corresponding to K562 CAGE predictions).
We refer to this scalar coverage value as the TSS activity. To focus our study on genes that yield high TSS activity, we
removed sequences from this set if the predicted TSS activity was below 30, our minimum activity threshold. To simplify
interpretations of perturbation experiments, we focus on sequences where the central TSS is the highest expressed gene. This
was accomplished by further filtering out sequences that where the max predicted coverage value was not located at the central
bin (i.e. bin 448). Further, we filtered out duplicate genes from our list, reducing the set to 4,527 total sequences.

CREME: cis-Regulatory Element Model Explanations
CREME is an in silico perturbation assay toolkit that can uncover rules of gene regulation learned by a large-scale DNN. The
rationale behind CREME stems from the concept that DNNs are function approximators. Thus, by fitting experimental data,
the DNN is effectively approximating the underlying “function of the experimental assay”. By treating the DNN as a surrogate
for the experimental assay, CREME can be queried with new sequences and provide in silico “measurements”, albeit through
the lens of the DNN. Inspired by wetlab experiments, such as CRISPRi21, 22, 49, that perturb genomic loci to uncover how CREs
influence gene expression, we devised a suite of in silico perturbation experiments that interrogate a DNN’s understanding
of long-standing questions of gene regulation, including the context dependence of gene expression27, 50, identification of
enhancing and silencing CREs and their target genes21, 26, distance dependence of CREs to target genes on gene expression,
and the complex higher-order interactions of CREs on gene expression31, 32, 41–44. Since DNN predictions may not fully capture
the underlying biology when fitting experimental data, CREME is strictly a model interpretability tool. Below, we detail the
different in silico perturbation tests explored in this paper.

CREME investigation of Enformer. For the vast majority of the experiments, we only considered TSS activity, which we
define as the central 5kb tile centered on the input sequence. Enformer’s receptive field for this tile covers roughly 200kb
sequences, so the 200kb region centered on the sequence is what is probed in our expeirments. We split the central 200kb
sequences into 40 non-overlapping 5kb tiles, with the central tile corresponding to the TSS of an annotated gene. We define the
TSS activity as the central bin in Enformer’s prediction, i.e. position 448 of track 5,111 of the human output head. Note that we
only consider perturbations to the central 200kb sequences, which spans the receptive field of the central TSS.

TSS Context Dependence Test
The TSS Context Dependence Test aims to measure the effect size of TSS activity in random contexts (derived from dinucleotide
shuffled versions of the wild type sequence). This test measures the extent to which a prediction of a given TSS activity is
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influenced by its context which may contain enhancers and silencers. To perform the Context Dependence Test, we executed
the following steps:

1. Predict TSS activity for the wild type sequence (denoted as WT).
2. Dinucleotide shuffle the sequence (except the 5kb tile centered at the TSS).
3. Predict TSS activity for the shuffled sequence (denoted as MUTANT).
4. Normalization: compute context effect on TSS using WT as control: (WT - MUTANT) / WT
5. Repeat steps 2-4 10 times and average across different random dinucleotide shuffles.

Interpretation. Effect size of 0 means that the context is neutral and has no effect on the TSS predictions (i.e. wild type and
mutant yield the same prediction). Positive effect size means that the central TSS prediction for the mutated sequence is lower
than wild type, which indicates that we have perturbed a enhancing context. Negative effect size means that the central TSS
prediction for the mutated sequence is higher than wild type, which suggests that we have perturbed a silencing context.

Analysis. We categorized the sequences into silencing, neutral, and enhancing contexts based on their context effect on TSS.
We identified 3 regions: (i) enhancing context were chosen based on an effect size of more than 0.95 (N=152), (ii) neutral
context was chosen if the absolute effect size was less than 0.2 (N= 40), and (iii) silencing context was chosen based on an
effect size of less than -0.5 (N=11). We used these groups (combined N=203) throughout the experiments.

TSS Context Swap Test
A TSS Context Swap Test aims to measure the extent that TSS activity depends on a specific genomic context. To perform the
Context Swap Test, we executed the following steps:

1. Cut out the central TSS (5Kb tile) from the source sequence.
2. Insert the source TSS in each of the target sequences at the central TSS position, thereby replacing the existing TSS of

the target sequence.
3. Predict TSS activity for the mutant sequence (denoted as MUTANT), the wild type target sequence (UNPERTURBED),

and the wild type source sequence (WT).
4. Normalization: compute fold change over control according to: MUTANT-UNPERTURBED / WT

As a control, we considered a control experiment, where we performed a dinucleotide shuffle of the target sequences to test the
extent of influence simply from dinucleotide frequencies within each context category.

1. Cut out the central TSS (5Kb tile) from the source sequence.
2. Dinucleotide shuffle the sequence contexts of the target sequences, keeping the central TSS intact.
3. Insert the source TSS in each of the target sequences at the central TSS position, thereby replacing the existing TSS of

the target sequence.
4. Predict TSS activity for the mutant sequence (denoted as MUTANT), the shuffled target sequence (DINUC), and the wild

type source sequence (WT).
5. Normalization: compute fold change over control according to: MUTANT-DINUC / WT

Analysis. We performed the Context Swap Test on the 203 sequences filtered by the Context Dependence Test. Specifically,
we placed the TSSs in each context category across all other context categories, separately keeping track of the source TSS and
the context category.

CRE Necessity Test
The CRE Necessity Test measures the importance of a CRE on the central TSS activity for a given sequence context while the
other CRE tiles remain intact. To perform the CRE Necesity Test, we executed the following steps:

1. Predict TSS activity for the wild type sequence (WT).
2. For each 5Kb tile not overlapping with the central TSS:

(a) Dinucleotide shuffle the 5Kb tile under investigation.
(b) Predict TSS activity for the shuffled sequence (SHUFFLE).
(c) Repeat 10 times and calculate the mean TSS activity.

3. Normalization: compute the normalized shuffle effect as: (WT - SHUFFLE) / WT

Analysis. We performed the CRE Necessity Test on the subset of sequences from Context Dependence Test that had
enhancing, silencing or neutral backgrounds (as classified by selected thresholds).

CRE Sufficiency Test
The CRE Sufficiency Test measures the effect of a given CRE on its TSS in otherwise random context, i.e. in isolation from the
rest of the CRE tiles from the original wild type sequence. This essentially measures whether the CRE by itself is enough to up
or downregulate the TSS. To perform the CRE Sufficiency Test, we executed the following steps:
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1. Predict TSS activity for the wild type sequence (WT).
2. Dinucleotide shuffle the sequence.
3. Add the TSS 5Kb tile and predict TSS activity (TSS-CONTROL).
4. Add the CRE and the TSS tiles to the sequence and predict TSS activity (CRE-TSS-MUTANT).
5. Normalization: compute the normalized CRE effect as (CRE-TSS-MUTANT - TSS-CONTROL) / WT
6. Repeat each shuffle 10 times and average the normalized CRE effect per sequence.

Analysis. We performed the CRE Sufficiency Test on the same subset of sequences as CRE Necessity Test that had enhancing,
silencing or neutral backgrounds (as classified by selected thresholds), 203 sequences and 7917 tiles in total. Based on CRE
Sufficiency Test results, we denote CREs within 0.3 - 0.5 range as weak enhancers, 0.5 and above as strong enhancers. Similarly,
we define weak silencers as tiles with addition effect size between -0.3 and -0.5 and strong - the ones with values smaller than
-0.5.

TSS-CRE Distance Test
TSS-CRE Distance Test is a GIA experiment where we systematically shift the position of a tile in shuffled sequences and
measure its effect on TSS activity. For each CRE tile, we performed the TSS-CRE Distance Test by executing the following
steps:

1. Predict TSS activity for the wild type sequence (WT).
2. Dinucleotide shuffle the sequence except the central 5kb tile and insert the CRE at its native position and predict TSS

activity (denoted as CONTROL).
3. For each test position P:

(a) Insert the CRE tile at position P in the dinucleotide shuffled sequence (with an intact TSS) and predict TSS activity
(TEST).

(b) Normalization: Compute the fold change over control as TEST / CONTROL
(c) Repeat each shuffle 10 times and average the fold change over control per sequence.

Analysis. We used the definition of enhancers and silencers based on CRE Sufficiency Test results. We performed the
TSS-CRE Distance Test on CREs defined as (strong and weak) enhancers within enhancing contexts (59 in total) and (strong
and weak) silencers in silencing contexts (26 in total).

Higher-order CRE Interaction Test
The aim of Higher-order CRE Interaction Test is to dissect CRE networks. Specifically, we compute the combined effect of
multiple tile shuffles that have large effect through a greedy search. For enhancers, the iterative greedy search systematically
identifies tiles that lead to a lower TSS activity when shuffled. We followed the same steps for silencer search but instead of
choosing the minimum predicted value we chose the maximum predicted value. To perform the Higher-order CRE Interaction
Test, we executed the following steps:

1. Predict TSS activity for the wild type sequence (WT).
2. For each greedy search iteration:

(a) For each tile that is not fixed (i.e. fixed tiles are central TSS and tiles selected from previous rounds):
i. Dinucleotide shuffle the tile

ii. Predict TSS activity for the mutant sequence (SHUFFLE-MUTANT)
iii. Normalization: Compute the fold change over control, i.e. SHUFFLE-MUTANT/WT
iv. Repeat each shuffle 5 times and average normalized output per sequence.

(b) Fix the tile that yields the maximum effect on TSS activity. For enhancers, maximal decrease in TSS activity; for
silencers, maximal increase in TSS activity. The shuffled version that is most representative is chosen when fixing.
This is selected based on the instance that yields a prediction closest to the mean across 10 shuffles.

(c) Repeat for the desired number of rounds in the greedy search or until the entire sequence is fixed.

Analysis. We performed Higher-order CRE Interaction Test for maximally enhancing TSS activity and maximally silencing
TSS activity for all sequences from different context categories.

Comparison to additive effects. To help understand the trajectories from the Higher-order CRE Interaction Test, we
calculated the hypothetical effects of an additive model. In brief, the additive effects are calculated based on combining the
effects on TSS activity from the individual effects of each CRE (i.e. calculated in the first round of the greedy search), following
the CRE tile order found by the greedy search. This does not take into account cooperative or redundant relationships within
sets of CREs, as would be captured in the greedy search.

To compute the hypothetical additive effects for sequences categorized as enhancing context, we performed the following
steps:
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1. Predict TSS activity for the wild type sequence (WT).
2. Get the order of tile shuffling from greedy search results iteration 1 (denote ordered vector of tiles as T).
3. Compute effect sizes (E) of tile shuffles (as done in the 1st iteration of the greedy search). For enhancer search, compute

as shuffled - WT. For silencer search, compute as WT - shuffled.
4. Following the tile order of T, calculate the cumulative sum of the individual tile effects (M_additive). This assumes an

additive model assumption.
5. Normalization: compute the hypothetical fold change over control according to (M_additive)/WT.

Interpretation. If the hypothesis of additive effect holds, we would expect the tile greedy search trace to be the same as the
additive or hypothetical trace for each sequence. Let us assume two enhancers are cooperating, i.e. their combined effect is
larger than individual effects (a non-additive case). We would expect their individual shuffle effects to also be larger than
shuffling them simultaneously (because disabling one leads to a large effect size already). We call such cases cooperative
enhancer contexts. In contrast, if two enhancers are redundant, i.e. their roles are overlapping, the effect size will be small
when only a single tile is shuffled (because the other enhancer tile can compensate). Therefore, the estimated additive effect
(based on single tile shuffles of iteration 1) will underestimate the effect of shuffling both of the enhancers. This will thus lead
to the additive hypothetical trace being higher than the one based on the greedy search.

Analysis. To characterize deviations, we computed the mean squared error of the greedy and hypothetical additive outputs for
each sequence. We classified the cases where the MSE value is above 0.3 (arbitrary threshold) and the greedy search results on
average is greater than the average of additive. Similarly, we classified the cases where the MSE value is above 0.3 (arbitrary
threshold) and the greedy search results on average is lower than the average of additive as redundant cases.

CRE Multiplicity Test
The Multiplicity Test measures how TSS activity scales upon repeated addition of an enhancing or silencing tile. With this
GIA experiment, we aim to test the model’s extrapolation behavior. Specifically, we probed whether TSS activity reaches
saturation upon over-representation of CRE context; saturation is when the predictions reach a plateau when we enrich for
enhancers or silencers. The Multiplicity Test is similar to the greedy search used in the Higher-order CRE Interaction Test, with
the exception that we are systematically adding the same CRE of interest into optimal positions in each round of dinucleotide
shuffled sequences. To compute the Multiplicity Test, we performed the following steps:

1. Define the CRE tile and number of times the CRE will be inserted.
2. Dinucleotide shuffle the sequence while maintaining the central TSS tile intact (S).
3. Add the CRE of interest in its original position and predict TSS activity (CONTROL).
4. Systematically scan the CRE of interest and measure predicted TSS activity at each unfixed position (MUTANT_POSITION).
5. Normalization: calculate the fold change over control given by MUTANT_POSITION / CONTROL
6. Fix the CRE at the position where it maximally affects TSS activity.
7. Repeat steps 3 to 6 until the number of insertions is complete.

Analysis. Using the strong and weak enhancers defined in CRE Sufficiency Test, we performed 10 iterations of the Multiplicity
test for each CRE.

Data Availability
Results from this paper is deposited at zenodo: doi.org/10.5281/zenodo.8111754.

Code Availability
Open-source code to deploy CREME can be found at GitHub: https://github.com/p-koo/creme-nn. The code for
reproducing the analyses in the manuscript is available at GitHub: https://github.com/shtoneyan/CREME.
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Supplementary Figure 1. Context Swap Test results for dinucleotide shuffled sequences. a-c, Box plots of normalized
context effect on TSS for sequences with context perturbations given by a dinucleotide-shuffle of the sequences from different
context categories. Results are organized according to the original TSS category: neutral (a), enhancing (b), and silenced (c).
The number of data points in each box-plot represent an all-vs-all comparison of each respective TSS in each possible context.
Box plots show the first and third quartiles, the median (central line) and the range of data with outliers removed (whiskers).
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Supplementary Figure 2. Comparison of CRE necessity and sufficiency. a,b, Schematic of the tile perturbation process for
CRE Necessity Test (a) and the CRE Sufficiency Test (b) in a toy sequence categorized as enhancing context. Checkered tile
represents shuffled sequence. c-e, Scatter plot of the results for matched CRE tiles from the Necessity Test versus the
Sufficiency Test for sequences categorized as enhancing context (c), neutral context (d), and silencing context (e). Each dot
represents a different sequence, which contains a different shuffled tile. The value for Necessary CREs is given by the
normalized shuffle effect size, which is calculated by the average change in TSS activity upon 10 tile shuffles, normalized by
the original TSS activity. The Sufficiency CREs represent the normalized CRE effect of adding a given tile along with the TSS
tile to dinucleotide-shuffled sequences in their original positions for different context categories. Values represent the average
across 10 dinucleotide-shuffled sequences.
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Supplementary Figure 3. Comparison of order of CREs from greedy search versus individual CRE effect size. Top row,
Example comparison of the normalized TSS effect for a representative sequence categorized as enhancing context versus a
hypothetical additive effects model for different interaction types, additivity (a), cooperativity (b), and redundancy (c). Bottom
row, the corresponding effect size f individual CREs on TSS activity following the same order as the greedy search.
Normalization is given according to the fold change over wild type TSS activity. Non-monotonicity demonstrates that greedy
search leads to more effective interaction sets than the naive approach of grouping CREs according to their individual effects.
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Supplementary Figure 4. Comparison of silencer sets from greedy search versus a hypothetical additive model. a,
Comparison of the average fold change over control for silencer sets for sequences across all context categories versus a
hypothetical additive effects model. The 203 sequences from all context categories are stratified according to interaction type,
redundancy (b), cooperativity (c), and additivity (d). Shaded region represents standard deviation of the mean.
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Supplementary Figure 5. Saturation of gene expression predictions. The results from a CRE Multiplicity Test applied to
sequences from enhancing context (left) and silencing context (right). Each line represents a CRE identified as an enhancer (or
silencer) and placed in dinuclotide shuffled sequence along with the central TSS tile. Each greedy search round adds the same
CRE along the sequence from the previous round in a location that aims to maximize (or minimize) TSS activity. 10
dinucleotide shuffled sequences were explored for each CRE. The normalized TSS effect represents the TSS activity of the
mutated sequence divided by the TSS activity of the control, which is the shuffled sequence with the TSS tile and the CRE in
their original positions (i.e. the same as the CRE Sufficiency Test). The average across all CREs is shown with a thicker line
and the shaded region represents the standard deviation of the mean.
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