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Drug discovery is driven by the identification of new chemi-
cal entities (NCEs).[1,2] Virtual screening and de novo design
techniques have been proven to serve this purpose, there-
by complementing experimental biochemical and biologi-
cal approaches.[3] Still, it remains a matter of debate, which
particular molecular representation and similarity index are
preferable for a given drug target in order to identify ap-
propriate NCEs with minimal synthetic and testing effort in-
volved.[4] Ligand-based chemical similarity approaches have
been effectively applied to large-scale activity and target
prediction for known drugs, some of the prominent meth-
ods being PASS developed by Poroikov et al. ,[5] the tech-
niques conceived by Mestres and co-workers,[6] and the
similarity ensemble approach (SEA) implemented by the
Shoichet group.[7] Here, we compared several popular two-
dimensional molecular representations for their ability to
retrieve actives (enrichment potential) and chemotypes
(scaffold-hopping potential) from a collection of druglike
bioactive compounds. Subsequently the applied chemical
advanced template search (CATS)[8] was applied to predict-
ing potential drug targets for a virtually assembled combi-
natorial compound library, from which we synthesized and
successfully tested candidate compounds. The results dem-
onstrate that CATS is not only suited for its intended pur-
pose of NCE retrieval by scaffold-hopping,[9] but also for re-
liable target profiling of ‘orphan’ virtual molecules.[10] It
thereby complements the suite of available validated tools
for target prediction.

A framework for retrospective evaluation of similarity
searching runs with different molecular representations
(‘descriptors’) was established on basis of the COBRA collec-
tion of druglike bioactive compounds,[11] employing Eucli-
dean distances for metric descriptors and the Tanimoto co-
efficient for fingerprint descriptors.[12] COBRA contains
12 642 manually curated entries with 980 target protein
subtype annotations. For 170 macromolecular drug targets
with a minimum of 20 annotated active ligands per target,
each compound annotated as ‘active’ was selected as
a query in turn, and compared to all remaining compounds
in the screening pool in terms of molecular descriptor simi-

larity, finally yielding sorted results lists with the most simi-
lar or least distant pool compounds sorted to the top. Al-
though there are large collections of bioactive compounds
available in the public domain,[13] we used the carefully
compiled COBRA collection to i) reduce the risk of errone-
ous activity data and faulty compound structures,[14] and ii)
avoid redundancy with existing tools that are based on
such public structure-activity data. In addition, we intend
to probe the value of a comparably small but well curated
reference compound pool for target prediction.

We used a representative set of descriptors and finger-
prints for benchmarking. ‘Morgan’ fingerprints, closely relat-
ed to extended-connectivity fingerprints (ECFP), are based
on radial assessment of non-predefined potentially infinite
molecular fragments.[17] The ‘AtomPair’ descriptor can be
seen as a CATS predecessor merely denoting the occur-
rence of all pairs of atoms at a given topological dis-
tance.[18] The ‘MACCS’ keys represent substructure-based
fingerprints,[19] and the ‘RDkit’ fingerprint implements a Day-
light-like fingerprint based on hashed molecular sub-
graphs.[20] Latter fingerprints and descriptors were calculat-
ed using the open-source software package RDkit.[21] Finally,
the ‘MOE2D’ descriptor consists of a standardized vector of
physicochemical properties provided by the Molecular Op-
erating Environment (v2011, Chemical Computing Group,
Montreal).

At this point, we analyzed two versions of CATS vectors,
namely the originally described CATS1[8] and CATS2, which
distinguishes lipophilic from aromatic atoms during typing,
thereby resulting in more pharmacophore type pairs and
consequently a higher dimensionality of the descriptor
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than CATS1, which lacks the aromatic atom type. For both
descriptors we employed ‘types scaling’, which mitigates
the potential dominance of prevalent pharmacophore fea-
ture types, and a maximal correlation distance of 10
bonds.[22] An example of CATS descriptor calculation is pre-
sented in Figure 1.

We employed the Receiver Operating Characteristic
(ROC) related BEDROC score for actives-retrieval bench-
marking.[15] For our study, the alpha level of the BEDROC
method was set to 160.9, which corresponds to the top 1 %
of the screening list contributing 80 % of the score. Murcko
scaffold[16] diversity among the set of actives within the top
1 % of respective screening lists served as measure for scaf-
fold-hopping potential.

Albeit state-of-the-art radial fingerprints and atom-pair
fingerprints outperformed CATS descriptors in terms of the
number of actives retrieved (Figure 2A), the latter ratify
their intent of design by delivering the overall highest ratio
of diverse scaffolds among retrieved actives. Scaffold-hop-
ping potential was determined by examining the distribu-
tion of relative scaffold diversities r, which is the ratio of dif-
fering scaffolds s to the number of retrieved actives n
among the top 1 % of respective screening runs. While
s correlates to the BEDROC scores when comparing differ-
ent descriptors, r unveils the CATS1 descriptor as the most
suitable descriptor for scaffold-hopping among the com-
pared molecular representations (Figure 2B). In terms of
BEDROC scores estimating the enrichment potential, radial
fingerprints (Morgan) and Carhart-type atom pairs (Atom-
Pair) performed similar, as did the CATS2 and MOE descrip-
tors, while MACCS, CATS1, and RDkit fingerprints formed
a third group (Figure 3A). With respect to scaffold-hopping

Figure 1. Principle of CATS descriptor calculation. The molecular structure (Step 1) is reduced to the molecular graph, and feature types
are assigned (Step 2; L, lipophilic ; R, aromatic; A, hydrogen-bond acceptor; D, hydrogen-bond donor). Then, atom pairs for all feature pairs
are counted (Step 3), and the final descriptor values are scaled (Step 4). Here, the raw values were divided by the respective l value (sum
of atom type pair occurrences). Note that not all vertices in the molecular graph are considered ‘pharmacophoric’. These possess no feature
types.

Figure 2. Comparison of molecular representations for their abili-
ties to retrieve known actives (A) and scaffolds (B) from a collection
of druglike bioactive compounds (COBRA). Violin plots show the
shapes (gray), medians (white circle) and quartiles (thick lines) of
the distributions.
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potential, the groups vary, with CATS1 and MOE2D pairing
up, as well as CATS2 and MACCS (Figure 3B). It might thus
be advisable to select one method from each group for
similarity searching and compare ranked results lists, e.g. by
data fusion.[23] We wish to point out that the grouping of
methods depicted in Figure 3 should be treated with cau-
tion, as the dendrograms are likely to vary for other refer-
ence data sets and chemotype/target coverage.

The outcome of this limited benchmark study is in agree-
ment with a large-scale systematic analysis of 2D finger-
print methods by Sherman and co-workers, who conclude
(…) if the objective of a screen is to identify novel, diverse
hits, then a less specific atom-typing scheme may be more
appropriate.[26] The CATS representation of molecular
graphs and pharmacophoric features serves this purpose of
finding new chemotypes. When using the descriptor, one
should not expect highest possible enrichment of actives
among the top-scoring virtual hits, but can anticipate sur-
prising new ideas for synthesis and activity testing.

This intended permissiveness (‘fuzziness’)[27] of the CATS
molecular representation, which is achieved by coarse-
grained atom-typing and feature pair correlation, not only
enables scaffold-hopping but may also be used for predict-
ing mutual targets of structurally diverse bioactive ligands.
Here, we started from an Ugi-type three-component combi-
natorial synthesis (Scheme 1)[28] and tested whether we
could use CATS for ‘de-orphanizing’ some of the com-
pounds by target identification. All prospective experi-
ments were carried out with the CATS2 implementation.

We constructed a virtual combinatorial library from 12
aminopyridines, 40 aldehydes and 8 isocyanide building
blocks, resulting in 3840 virtual products (Scheme 1 and
Supporting Information). To predict potential bioactivities
for these compounds we computed their CATS similarity
values to known drugs and lead structures (COBRA v11.10).
Briefly, we trained a self-organizing neural network (SOM,
Kohonen network) on the pool of COBRA reference com-
pounds and the virtual combinatorial products, followed by
visualization of compound distributions as a two-dimen-
sional toroidal map (Figure 4).[29,30] For the purpose of pre-
diction, we only considered annotated targets of the refer-
ence compounds that were co-clustered with the combina-
torial products. In this way, target predictions are limited to
a conservative ‘application domain’ of a reference com-
pound cluster, and the risk of false-positive prediction is re-
duced.[31] For further target prioritization, we computed p-
values from the similarity score distribution between li-
gands binding to different targets (complete training
data).[32] The p-values are an estimate of the probability of
making a false-positive prediction (type-I error).

For the whole library, this method suggested six targets
with average p-values <0.01: phosphoinositide 3-kinase
(PI3K), biphenyl-2,3-diol 1,2-dioxygenase, diacylglyceride O-
acyltransferase, smoothened receptor, interleukin receptors,
and cytochrome P450 reductase. We decided to investigate
the PI3K prediction in more detail because this enzyme is
a relevant drug target in antitumor research. Of note, the
underlying scaffold was previously shown to afford PI3Ka

inhibitors.[33]

First, we synthesized and tested the nine top-predicted
compounds for PI3Ka inhibition. In total, four of them ex-
hibited the desired activity. Compound 1 (Scheme 2)
turned out to be the most active (IC50 = 131 mM). Although
the measured activities might be considered as weak, this
result nevertheless proves the CATS + SOM-based approach
valid for suggesting plausible macromolecular targets for
small molecules.

We then synthesized and tested an additional set of 57
compounds from the virtual combinatorial library, for which
the highest joint prediction scores for PI3K and DNA topoi-
somerases were computed. These were simply the top
DNA topoisomerase hits that were also predicted to inhibit
PI3K with relatively high confidence. Previous studies sug-
gested that simultaneous inhibition of these two enzymes

Figure 3. Similarity of molecular representations in terms of their
enrichment (A) and scaffold-hopping potential (B). Pair-wise, one-
sided Wilcoxon rank sum tests[24] were performed for the BEDROC
score distributions of the descriptors. Clustering the obtained p-
values with Ward’s method[25] resulted in the depicted dendro-
grams.

Scheme 1. Ugi-type three-component reaction used for construct-
ing a virtual combinatorial library and synthesizing selected com-
pounds. Scheme 2. Structures of compounds 1 and 2.
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might allow for more efficient chemotherapy with reduced
chemoresistance of tumor cells.[34] Molecules with a target
profile that includes both these targets will constitute an
important step in anti-cancer research. Moreover, the scaf-
fold of our library has already been proven to produce bio-
active compounds against both those targets.[33, 35] In fact,
in the present study six of our compounds, at a concentra-
tion of 75 mM, turned out to be moderately active against
PI3Ka, where compound 2 (Scheme 2) was the most
potent (IC50 = 230�30 mM). We wish to point out that we
cannot completely rule out measurement artifacts caused
by compound aggregation.[36] None of the 57 synthesized
compounds inhibited human DNA topoisomerse II (EC
5.99.1.3), but in a preliminary test four of them inhibited
bacterial DNA gyrase, a bacterial type II topoisomerase (EC
5.99.1.3) (data not shown). Apparently, the scaffold of the
combinatorial library positions R-group vectors appropriate-
ly, but proper side-chain functionalities are required for po-
tency and target selectivity. There is ample opportunity for
optimizing compound 2 in this regard by including addi-
tional building blocks in the combinatorial synthesis.

For comparison, we also predicted targets for the ob-
tained PI3Ka inhibitors using SEA[39] . In SEA, compound 2
yielded no target predictions at all when using ChEMBL[40]

as reference data. For the remaining compounds SEA re-
ported maximal Tanimoto similarity below 0.35 and E-
value>1.2, rendering them low confidence predictions.
Compound 1 was suggested as ligand of quinone reduc-
tase 2 (NQO2) and melatonin receptor 1B (MTNR1B). PI3K
was not reported as a potential target for compound 1 by
SEA.

Finally, it is of particular note that CATS suggested
human muscarinic receptor 1 (M1) ranking among the top
predictiones on the target list computed just for compound
2. In a first cell-based functional assay[41] compound 2, in
a concentration of 10 mM, actually exhibited substantial M1
agonistic activity yielding 34�5 % of the effect caused by
100 nM acetylcholine. Follow-up concentration-dependent
activity determination yielded an approximate EC50 of 5 mM
for compound 2 (Figure 5). This result confirms the CATS +

Figure 4. Toroidal self-organizing map (SOM) visualizing overall data density (A), distribution of the virtual combinatorial library (B), known
PI3K inhibitors (C), and known muscarinic receptor ligands (D). 16 � 10 data clusters (‘neurons’, Voronoi fields) are shown as squares. Gray
shading represents local compound density (note that the shading in each plot is scaled between minimal and maximal values). Com-
pound 1 is located in cluster (9,7), compound 2 in cluster (10,5). For compound 1 an overlap with PI3K inhibitors is predicted. Compound
2 is found in a cluster that contains muscarinic receptor ligands and few PI3K inhibitors.

Figure 5. Concentration-dependent agonistic activity of com-
pound 2 on the human M1 receptor. Acetylcholine served as posi-
tive control agonist (EC50 = 1.9 nM). At ligand concentrations>
10 mM compound 2 aggregated and interfered with the measure-
ment (data not shown).
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SOM-based target prediction as viable and de-orphanizes
compound 2 as a novel (no entry in CAS[42]) functional M1
receptor agonist. We would like to mention that the SOM
projection shown in Figure 4D may actually serve as
a guide for structure optimization,[29,37] due to the fact that
compound 2 is located in a sparsely populated region of
the activity island formed by known muscarinic receptor li-
gands. Side-chain alteration could steer the design towards
the center of the distribution thus potentially improving
potency.[38]

In conclusion the results of this study corroborate
CATS + SOM as a useful similarity-based approach for iden-
tifying pairs of molecules with similar bioactivity but differ-
ent molecular scaffolds. Inclusion of the aromatic feature
type in the CATS2 implementation increased enrichment in
a retrospective analysis. Results of a preliminary prospective
target-profiling study demonstrate that (i) the CATS2 de-
scriptor may be employed to predict targets of virtually
generated compounds with potential applications in de
novo design and drug re-purposing, (ii) relying only on
a single prediction algorithm bears the danger of missing
relevant drug targets or focusing on false-positive predic-
tions, and (iii) different molecular descriptors (here: CATS2;
SEA with ECFP4 fingerprints) in combination with its associ-
ated knowledge base (here: COBRA or ChEMBL) comple-
ment each other in their domains of applicability. It will
therefore be worthwhile to construct a prediction tool that
is based on multiple reference databases, descriptors and
models, e.g. as a jury decision approach. Whether activities
in the micromolar range give rise to desired poly-pharma-
cology effects or turn out to be actually sufficient for drug
re-purposing certainly depends on the particular pharmaco-
logical activity, therapeutic area, and intended applica-
tion.[43] Many more practical examples will be required to
allow for a statistically motivated assessment. Irrespective
of the shortcomings of each method, our study validates
ligand-based target prediction as viable for rapid com-
pound profiling in medicinal chemistry and chemical biol-
ogy.

Experimental

Synthesis and analytics. Chemical synthesis was performed
with a Biotage Initiator microwave synthesizer (Upsala,
Sweden). Aminopyridine (1.0 mol. eq.), aldehyde (1.0 mol.
eq.), isocyanide (1.0 mol. eq.) and perchloric acid (11 mol%)
were dissolved in EtOH (1.1 mL � mmol�1). The solution was
heated at 170 8C for 5 minutes under microwave irradiation.
The resulting crude product was purified via preparative
HPLC using CH3CN:H2O (+ 0.1 % trifluoroacetic acid in each
phase) as eluent, in a gradient of 5–50 % CH3CN run over
16 minutes, to afford compounds 1 and 2 as yellow oils.

Compound 1 (methyl 2-((2-(2,4-dimethoxyphenyl)-
imidazo[1,2-a]pyridin-3-yl)amino)acetate), 81 %: 1H-NMR
(CD3OD, 400.13 MHz): d 3.44 (3H, s, OCH3), 3.67 (2H, s, CH2),

3.75 (3H, s, OCH3), 3.80 (3H, s, OCH3), 6.57–6.61 (2H, m, Ar-
H), 7.32–7.36 (1H, m, Ar-H), 7.53 (1H, d, J = 8.0 Hz, Ar-H),
6.77–7.75 (2H, m, Ar-H), 8.68 (1H, d, J = 2.4 Hz, Ar-H). 13C
NMR (CD3OD, 100.61 MHz): d 48.54, 52.52, 56.18, 56.48,
99.77, 107.08, 108.44, 112.51, 117.43, 123.13, 126.42, 129.04,
132.62, 133.56, 137.46, 159.91, 164.60, 173.19. HRMS-ESI
calc. (C18H19N3O4 + H+): 342.1448, found: 342.1448.

Compound 2 (methyl 2-(1-methyl-1H-pyrrol-2-yl)-3-((2-
morpholinoethyl)amino)imidazo[1,2-a] pyridine-7-carboxyl-
ate), 74 %: 1H-NMR (CD3OD, 400.13 MHz): d 3.08 (2H, m,
CH2), 3.21 (2H, t, J = 6.4 Hz, CH2), 3.37 (2H, m, CH2), 3.45 (2H,
t, J = 6.4 Hz, CH2), 3.72 (3H, s, CH3), 3.81 (2H, m, CH2), 3.97
(2H, m, CH2), 4.05 (3H, s, CH3), 6.32 (1H, dd, J = 3.8 Hz, Ar-H),
6.63 (1H, dd, J = 3.8 Hz Ar-H), 7.06 (1H, m, Ar-H), 7.93 (1H,
dd, J = 1.6 and 7.2 Hz, Ar-H), 8.40 (1H, m, Ar-H), 8.80 (1H,
dd, J = 0.8 and 7.2 Hz, Ar-H). 13C NMR (CD3OD, 100.61 MHz):
35.01, 41.04, 53.33, 53.84, 57.27, 64.81, 110.04, 114.52,
115.63, 116.03, 116.31, 118.78, 126.40, 127.62, 131.28,
134.24, 137.07, 165.19. HRMS-ESI calc. (C20H25N5O3 + H+):
384.2030, found: 384.2031.

We used dynamic light scattering (Brookhaven 90Plus) to
determine potential aggregation of compound 2 in aque-
ous solution with 1 % DMSO. Aggregate particles were ob-
servable at concentrations ranging from 15.5–250 mM.

Self-organizing map. We use our software tool molmap
for generating a toroidal SOM containing 160 clusters ar-
ranged in a 16 � 10 rectangular grid, as described previous-
ly,[31] with number of training cycles = 106 and Gaussian
neighborhood radius = 8.

CATS molecular descriptor. Descriptor calculation was per-
formed with a proprietary Java-based software tool (for li-
censing options, contact G. S.). Free online access to dem-
onstration software is provided at URL:
http://modlab-cadd.ethz.ch/

Biochemical activity determination. Activity against PI3Ka

was measured by Reaction Biology Corp. (Malvern, PA, USA)
in a 10-dose IC50 determination (n = 3), in the presence of
10 mM ATP. Preliminary DNA topoisomerase and gyrase in-
hibition tests were performed with a compound concentra-
tion of 5 mM by Inspiralis Ltd (Norwich, UK).
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