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Abstract: To harness the applicability of microribonucleic acid (miRNA) as a cancer biomarker, the
detection sensitivity of serum miRNA needs to be improved. This study evaluated the detection
sensitivity of miRNA hybridization using cyclic voltammograms (CVs) and microelectrode array
chips modified with peptide nucleic acid (PNA) probes and 6-hydroxy-1-hexanethiol. We investigated
the PNA probe modification pattern on array chips using fluorescently labeled cDNA. The pattern
was not uniformly spread over the working electrode (WE) and had a one-dimensional swirl-like
pattern. Accordingly, we established a new ion-channel sensor model wherein the WE is negatively
biased through the conductive π–π stacks of the PNA/DNA duplexes. This paper discusses
the mechanism underlying the voltage shift in the CV curves based on the electric double-layer
capacitance. Additionally, the novel hybridization evaluation parameter ∆E is introduced. Compared
to conventional evaluation using oxidation current changes, ∆E was more sensitive. Using ∆E
and a new hybridization system for ultrasmall amounts of aqueous solutions (as low as 35 pL),
140 zeptomol label-free miRNA were detected without polymerase chain reaction (PCR) amplification
at an adequate sensitivity. Herein, the differences in the target molar amount and molar concentration
are elucidated from the viewpoint of hybridization sensitivity.

Keywords: new ion-channel sensor model; cyclic voltammograms; ∆E measurements; PCR-less;
label-free; new hybridization system; 140-zeptomol sensitivity

1. Introduction

Since the initial discovery of miRNA [1], its functions have been investigated worldwide,
particularly with regard to cancer. In fact, miRNA contributes to tumorigenesis through numerous
genetic mechanisms, and its expression profiles in serum or plasma serve as potential noninvasive
diagnostic and prognostic biomarkers for cancer [2–8].

To harness the applicability of miRNA as a cancer biomarker, we must establish appropriate
methods for its detection. Among the many requirements that must be satisfied to accomplish this,
a high miRNA detection sensitivity is paramount because miRNA levels in the human blood are
very low. The levels of circulating miRNA in cancer patients depend on the miRNA type, of which
mir-21-5p is present at relatively high levels. However, its mean serum levels are approximately
50–100 copies/µL [9], corresponding to 83–166 zmol/mL. Even if 10 mL of serum is available during
cancer screening, miRNA levels will only be approximately 830 zmol to 1.7 amol.

Currently, the fluorescent labeling of target nucleic acids is a gene detection method that is
widely used in genetic diagnoses, facilitating the simultaneous detection of thousands of genes [10–14].
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However, these methods are time-consuming, costly [15], and a potential cause for concern if the
fluorescent labeling alters the hybridization. Alternatively, label-free electrochemical detection has
many advantages, including simplicity, rapidity, low cost, and ease of analysis. Aoki et al. [15]
developed electrochemical gene sensor array chips based on the principle of ion-channel sensing
with peptide nucleic acid (PNA) probes on ∅1.6-mm gold electrodes and detected 100 µM of target
DNA. By estimating an aliquot amount of 10 µL or more for hybridization from the modification
data of 6-hydroxy-1-hexanthiol (6-HHT), this method yields a target DNA level of approximately
1 nmol or more, which greatly exceeds the required miRNA detection sensitivity of approximately
1.7 amol or less. The further improvement of label-free electrochemical gene detection sensitivity is
highly anticipated.

Peterson et al. [16] investigated the influence of DNA probe density on the gold substrate surface
of a DNA target using surface plasmon resonance. They changed the probe density from 2.0 × 1012 to
12.0 × 1012 molecules/cm2 and demonstrated that the hybridization efficiency strongly depended on
the probe density. In other words, the efficiency increased as the density decreased. Because DNA
has negative charges, DNA probe modification should be uniform due to the electrostatic repulsion
between DNA probes. Therefore, the DNA probe average density is a good parameter for evaluating
hybridization efficiency. Modified probe uniformity over an array chip surface is also implicit in an
ion-channel sensing model [17–19]. However, this may not be the case for PNA probes, which do not
possess negative charges [20].

The objective of this study was to evaluate the detection sensitivity of miRNA hybridization
using PNA probes in cyclic voltammograms (CVs). We investigated the PNA probe modification
pattern on an array chip surface using fluorescently labeled cDNA and observed a one-dimensional
swirl-like pattern. Accordingly, we established a new ion-channel sensor model and introduced a
novel evaluation parameter for hybridization, namely, ∆E, into the cyclic voltammetry measurements.
Compared to conventional evaluation parameters, ∆E has a higher sensitivity. This model also predicts
that the sensitivity of ∆E improves if the size of the working electrode (WE) is reduced. Furthermore,
we developed a new hybridization system that minimizes the amount of the aqueous solution and
target miRNA involved and then confirmed the detection sensitivity of 140 zmol using a ∅67-µm WE.

2. Materials and Methods

2.1. Reagents

Antiparallel PNA probes were synthesized using Panagene (Daejeon, South Korea) and modified
using H-(Cys-(AEEA)). Here, Cys refers to cysteine, which is used for covalent attachment to gold
electrodes using gold/thiol bond formation [15,16,21] and AEEA refers to 2-aminoethoxy-2- ethoxyacetic
acid. Their sequences were as follows:

PNA(N1); H-(Cys-(AEEA)-TCGATGTAACAGACGACC)-NH2,
PNA(N3); H-(Cys-(AEEA)-ATGTCATGACACTATTGACTT)-NH2, and
PNA(N16); H-(Cys-(AEEA)-ATCGTCGTGCATTTATAACCGC)-NH2.

The target miRNA and DNA were purchased from Eurofins Genomics (Tokyo, Japan). Their
sequences were as follows:

miRNA(R3); 5’-r(UACAGUACUGUGAUAACUGAA)-3’ and
DNA(D1); 5’-d(AGCTACATTGTCTGCTGG)-3’.

The miRNA (R3) sequence complemented that of the PNA probe (N3), whereas the DNA (D1)
sequence complemented that of another PNA probe (N1).

Analytical reagent-grade chemicals were used along with Milli-Q reagent-grade water (Millipore,
Bedford, MA, USA).
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2.2. Microelectrode Array Chip

A 120-channel gold microelectrode array chip was particularly designed for statistical data analysis
and to perform various PNA probe modifications (Kyodo International, Inc., Kawasaki, Japan). We
designed the 120-channel microelectrode array chip with reference to the basic structure of sensor
array chips reported in a previous study [15], with a few modifications in the materials used and the
dimensions. The array chip was fabricated on a glass substrate of 25.8 × 25.8 mm2 (BK7) and patterned
by a chromium adhesion layer (500 Å) and a sputtering gold layer (2000 Å). To achieve high sensitivity,
the diameters of the working electrodes (WEs) were limited to ∅67 µm and ∅95 µm through openings
in a photosensitive epoxy resin (S2000) that was spin-coated over the metal layers and glass substrate.
Figure 1a depicts the scanning electron microscope (SEM) image of one block of the microelectrode
array chip, which contained 15 pieces (pcs) of WEs (top view, ∅67 µm). Figure 1b presents the SEM
image of a single WE (45◦ tilted view, ∅67 µm).

Figure 1. (a) SEM image of one block of the microelectrode array chip, which contained 15 pieces
(pcs) of working electrodes (WEs) (top view, ∅67 µm). (b) SEM image of a single WE (45◦ tilted view,
∅67 µm).

2.3. Array Chip Preparation

We developed the process of preparing the array chip by referring to the processes and conditions
of the aforementioned study [15]. The microelectrode array chips were surface-cleaned under oxygen
plasma using a plasma ion bombarder (PIB-10, Vacuum Device; Ibaraki, Japan) at 20 Pa for 2 min
before modification of the gold electrodes with the PNAs and 6-HHT. Next, the 120-channel gold
electrodes were divided into eight blocks (15 channels per block) using a punched parafilm placed
on the array chip for the various PNA modifications. Ten-microliter aliquots of 10-µM aqueous PNA
probes were poured into each block, and the PNAs were modified at 25 ◦C for 30 min. The PNAs
were modified by placing the array chip and a wet gauze inside a small plastic case equipped with a
lid to prevent the evaporation of aliquots. After being rinsed with Milli-Q water at 25 ◦C, the array
chip was immersed in 100 mL of Milli-Q water at 80 ◦C for better cleaning. Thereafter, the 200-µL
aliquots of the 1-mM aqueous 6-HHT solution were poured onto the surface of the entire array chip
at 25 ◦C for 30 min. After being rinsed with Milli-Q water at 25 ◦C, the array chip was subjected to
electrochemical measurements.

2.4. Electrochemical Measurements

We developed a 120-channel potentiostat that could perform cyclic voltammetry (CV) and square
wave voltammetry measurements. Sixteen channels were simultaneously used for assessment, and the
assessment was repeated eight times to acquire data from all electrodes on the array chip: the measured
data were stored on a personal computer. During the CV measurements, the applied voltage was set to
±2 V at 62.5-µV increments, with a maximum voltage scan speed of 1 V/s. The current measurement
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range was selected from two ranges: ±200 nA (max) and ±2 µA (max) at a resolution of 25 fA. The
background current was suppressed to 0.5 pA (rms) by setting the current–voltage converter close to
the array chip.

Using this potentiostat, electrochemical measurements were carried out using an RE-1B reference
electrode (RE; BAS Inc. Tokyo, Japan) and a platinum counterelectrode (CE; BAS Inc.) in an aqueous
solution of 0.25 mM of phosphate buffer and 0.5 mM of NaClO4 with 1 mM [Fe (CN)6]4− as an
electroactive marker. The applied voltage range was −0.15 to +0.5 V at a scan speed of 500 mV/s.

3. Results and Discussion

3.1. New Ion-Channel Sensing Working Model

With regard to electrochemical gene sensor array chips based on ion-channel sensing,
Aoki et al. [17,18] have discussed the working principle of a sensor with oligonucleotide targets
and PNA probes. Before PNA/DNA hybridization, the negatively charged markers can access the
electrode and transfer electrons to the WE. After hybridization, the electrostatic repulsion between the
negatively charged marker and the PNA/DNA duplexes on the WE surface hinders the redox reaction
in the marker. We term the abovementioned mechanism an ordinary sensor working model: this
mechanism is depicted in Figure 2a. This working model was established based on the assumption
that PNA/DNA duplexes are uniformly spread over the WE.

We assessed the patterns of the hybridized PNA/DNA duplexes over the WE modified by
antiparallel PNA (N1) and 6-HHT using fluorescently labeled cDNA (D1, carboxytetramethylrhodamine
(TAMRA)). The electrode diameter was ∅300 µm, and the target cDNA concentration was 100 nM.

Figure 2b shows the fluorescence hybridization images. The PNA/DNA duplexes were not uniformly
spread over the WE but rather exhibited a one-dimensional swirl-like pattern. This fluorescence pattern
was considered to be a modified PNA (N1) pattern in which the fluorescently labeled cDNA (D1) was
hybridized. The self-assembled 6-HHT monolayer had high orientation and stability [21]. Therefore,
the 6-HHT modification after PNA modification may have helped align the PNAs in a swirl-like pattern
because PNA is electrically neutral. A large area of the WE did not contain the PNA/DNA duplex.
Therefore, the previously mentioned working principle does not explain the mechanism governing the
hindrance of the redox reaction over the entire WE.

Eley and Spivey [22] have reported on the conductivity of dsDNA and proposed a conductivity
model for transferring π electrons through the π–π stacks of the base pairs. After this, numerous
controversial studies have investigated whether dsDNA is conductive [23–29]. Guo et al. [30] assessed
dsDNA conductivity by attaching carbon nanotubes to dsDNA and reported that dsDNA without
mismatches was as conductive as graphite, while the mismatched dsDNA had 300-fold greater
resistivity. Therefore, the matched PNA/DNA and PNA/miRNA duplexes should be conductive
through their π–π stacks.

Figure 2. Cont.
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Figure 2. (a) Ordinary sensor working model where the PNA is uniformly distributed over
the WE. Prior to hybridization, negatively charged markers can access and transfer electrons
to the WE. After hybridization, electrostatic repulsion between the negatively charged marker
and the uniformly distributed PNA/DNA duplexes at the WE surface hinders the redox reaction
of the marker. (b) Fluorescence image (OLYMPUS Fluorescent Microscope; BX53M) of peptic
nucleic acid (PNA)(N1)/DNA(D1) duplexes obtained after the fluorescent labeling of cDNA
(carboxytetramethylrhodamine (TAMRA)). The electrode diameter was ∅300 µm, and the target
DNA concentration was 100 nM. The fluorescence pattern was not uniformly spread over the WE, but
rather exhibited a one-dimensional swirl-like pattern. (c) New sensor working model wherein PNA is
modified in a one-dimensional swirl-like pattern. Prior to hybridization, negatively charged markers
can access and transfer electrons to the WE. After hybridization, the negative charge of the PNA/DNA
duplexes imparts a negative potential to the WE through the π–π stacks and hinders the redox reaction
of the marker over the entire WE.

The new sensor working model is presented in Figure 2c. Prior to PNA/DNA hybridization,
negatively charged markers can access the electrode and transfer electrons to the WE, similarly to the
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original sensor working model. However, the modified PNA pattern after 6-HHT modification is a
one-dimensional swirl-like pattern and is not uniformly spread over the WE. After hybridization, the
negative charge in the backbone of the hybridized oligonucleotides is electrically connected to the WE
through the π–π stacks of the hybridized base pairs. As the surface of the WE is a gold layer, this
electrically connected negative charge generates a uniform negative potential over the entire WE and
hinders the redox reaction of the marker.

3.2. ∆E Potential Shift

The total negative charge of the hybridized oligonucleotides, ∆Q, leads to a potential difference
∆E in the electric double layer capacitance C when measuring the CV as follows:

∆E = ∆Q/C. (1)

The diagrams show the differences in the electronic potential between the reference electrode (RE)
and the WE pre- and posthybridization. During prehybridization, the electronic potential between the
RE and WE that is required to yield the current (im) is shown in Figure 3a, where the external bias can
be expressed as follows:

V0 = (∆ϕ0r + ∆ϕb) + (∆Vb0 + ∆ϕ0w). (2)

Figure 3. (a) Electric potential between the WE and reference electrode (RE) prehybridization for a
measurement current (im) at an external bias of V0. (b) After hybridization, the electronic potential
between the RE and WE decreases by ∆E due to the negative charge on the hybridized oligonucleotide,
∆Q. There will be a reduction in the current if the external bias is identical to V0. (c) To retrieve the
identical current (im), the external bias V1 must be increased by ∆E: (V1 = V0 + ∆E).

After hybridization, the electronic potential between the RE and WE decreases by ∆E due to
the negative charge on the hybridized oligonucleotide, ∆Q, as shown in Figure 3b. There will be a
reduction in the current if the external bias is identical to V0. To retrieve the identical current (im),
the external bias V1 must be increased by ∆E to yield the same potential difference between the RE and
WE, as shown in Figure 3c and expressed by Equation (3):

V1 = V0 + ∆E, (3)
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where V0: the external bias to yield (im) in prehybridization; V1: the external bias to retrieve (im)
in posthybridization; ∆E: the potential difference caused by the hybridized charge (∆Q); ∆Φ0r: the
potential difference between the RE and the aqueous solution (spontaneous potential); ∆Φb: the
potential difference in the bulk aqueous solution (generally close to zero); ∆Φ0w: the potential
difference between the WE and the aqueous solution (spontaneous potential); and ∆Vb0: the potential
difference controlled by external bias (V0).

Similar equations have been proposed with regard to DNA target detection sensitivity using
ion-sensitive field effect transistors (IS-FETs) [31] and potentiometry [32]. Ohtake [31] investigated
the effect of using DNA or PNA probes with IS-FET electrodes on target DNA hybridization. He
calculated the increase in the quantity of electricity per gate area using Equation (4), where ∆VT is
the threshold voltage shift of the IS-FET caused by hybridization and L and W are the gate length
and width, respectively. Here, C is the capacitance of the gate fabricated using SiO2 (100 nm), Si3N4

(100 nm), and Ta2O5 (40 nm) thin films and not the electric double-layer capacitance, as expressed in
Equation (1):

∆Q = (C∆VT)/(LW). (4)

Goda et al. [32] have investigated the sensitivity of potentiometric DNA detection performed using
PNA and DNA probes. Using Equation (5), they discussed the potential shift caused by hybridization.
Here, CDL is the electric double-layer capacitance, as in Equation (1). However, ∆Q is the negative
charge of the captured DNA within the electrical double layer. Goda et al. insisted that the DNA
located outside of the electrical double layer fails to generate an interfacial potential as a result of the
charge-screening effect caused by the external electrolytes in the buffer solution:

∆V = (Q + ∆Q)/(CDL + ∆CDL) − (Q/CDL). (5)

Apart from the differences between the equations used in this study and Equations (4) and
(5) in terms of parameter definition, our new model is different from existing models because our
objective is to understand the complete mechanism governing the influence of the negative charge
of the captured DNA on the potential shift of gold WEs through electric double-layer capacitance.
Therefore, discovering the one-dimensional swirl-like pattern of PNAs and the mechanism of the
electrical conductivity caused by the π electrons in the PNA/DNA duplexes is important. For example,
Goda et al. [32] discussed the average surface density of immobilized PNAs; however, the PNA
pattern was not considered. Additionally, their discussion with regard to Equation (5) was based on
an analogy of the IS-FET model. However, as long as the electric double-layer capacitance is used
instead of the gate capacitance, ∆Q should exist on the gold electrode (on which the PNA or DNA
probes are modified) and will not be confined to the electrical double layer itself, as is known from
basic electromagnetic theory.

3.3. ∆E Evaluation

The potential shift ∆E was investigated and compared to the conventional evaluation
parameter [15] of hybridization in the CV measurements, that is, the changes in the oxidation current.
Five blocks were modified using the PNA probe (N3) and 6-HHT. After the prehybridization CV
measurements, miRNA (R3) hybridization was performed at 40 ◦C for 40 min with an aqueous solution
of 1 × saline sodium citrate (SSC) and 20% dimethyl sulfoxide (DMSO). Thereafter, we performed
posthybridization CV measurements.

Figure 4a compares the curves between the pre- and posthybridization CVs. The prehybridization
curve is indicated by the solid line, and the posthybridization curves are indicated by the dotted lines,
where the short dots denote 240 nM and the long dots denote 4 nM. In the conventional evaluation
method, the sensor response is expressed as the ratio of posthybridization current reduction (i0 – i) to the
prehybridization peak current (i0), where (i) is measured at potential (Ep), determining the peak current
(i0). When the target miRNA levels were markedly high, that is, up to 240 nM, the posthybridization
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CV current at Ep was suppressed to a low value (i’) in accordance with the hybridized negative charge
of the target miRNA. Therefore, the conventional evaluation parameter, that is, (i0 - i)/i0 or i/i0, can be
useful in evaluating the degree of hybridization.

Figure 4. (a) Cyclic voltammograms (CVs) of gold electrodes modified with a PNA probe (N3) and
6-hydroxy-1-hexanthiol (6-HHT). The solid line indicates the prehybridization curve, while the dotted
lines indicate the posthybridization curves at 240 nM and 4 nM of miRNA (R3). At 4 nM, the sensitivity
of i/i0 was poor, while the sensitivity of ∆E was high. (b) A 74-pc correlation chart for i/i0 and ∆E is
shown, representing when the complementary target miRNA (R3) concentration was 4 nM. Compared
to the conventional i/i0 evaluation parameter, ∆E has higher sensitivity and is more suitable for detecting
low miRNA concentrations.

However, evaluations based on this parameter have several disadvantages. First, in the
prehybridization CV measurements, we could not explicitly set the peak current voltage Ep due
to gradual changes in the oxidation current around the peak current. When the oxidation current
approached its peak value, there was a decrease in the concentration of the reductant marker [Fe(CN)6]4–,
whereas the concentration of the oxidant [Fe(CN)6]3– increased. At peak current, the concentration
gradient of the reductant perpendicular to that of the WE peaked, which yielded the peak current
value. Along with this gradual change in the gradient, the oxidation current also gradually changed,
which resulted in errors when setting the Ep value and evaluating (i0 - i)/i0 or i/i0.

Another difficulty occurred when the amount of the hybridized target was as low as 4 nM.
The current i, at the Ep on the posthybridization CV, was approximately identical to that of the i0 on
the prehybridization CV. Thus, the evaluation parameter i/i0 remained constant at approximately one.

Compared to the prehybridization CV, the posthybridization CV exhibited a shift to a higher
potential value, as expressed by Equation (3), and maintained a similar oxidation curve. Therefore,
the voltage shift value ∆E at an identical measurement current (im) is a potentially good evaluation
parameter for the amount of hybridized target miRNA, because it is based on the simple physical
model of Equation (1).

Figure 4b shows a 74-pc correlation chart of i/i0 and ∆E when the concentration of the
complementary target miRNA (R3) was 4 nM. Because the target miRNA concentration was low,
the majority of the i/i0 plots tending toward one remained unchanged and exhibited poor detection
sensitivity for the hybridized target miRNA. However, the ∆E plots had a wide spread from 0 to 90 mV.
Compared to the conventional i/i0 evaluation parameter, ∆E had higher sensitivity and was better
suited to the detection of hybridized miRNA at a low concentration.

3.4. New Hybridization System for Ultrasmall Aqueous Solution Amounts

To detect the small amount of miRNA (1.7 amol or less) in the serum through ∆E measurements,
the volume of the aqueous solution for hybridization must be limited to 425 pL or less to maintain the
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concentration at 4 nM. Figure 5 shows a comparison between (a) an ordinary hybridization system
and (b) a new hybridization system, where a small well caused by an opening in the epoxy resin and
Teflon plate limits the volume of the aqueous solution. This sandwich structure ensures a constant
small well volume over each WE and allows for comparing the hybridization results between the WEs.
Moreover, the Teflon plate suppresses the evaporation of the aqueous solution during hybridization
and prevents the aqueous solution from being removed from each well through capillary forces due to
its hydrophobicity property when pressed to the array chip by a metal weight.

Figure 5. (a) Ordinary hybridization system and (b) new hybridization system, where a small well
formed by an opening in the epoxy resin and Teflon plate limits the volume of the aqueous solution.
The Teflon plate allows for the suppression of aqueous solution evaporation during hybridization and
prevents the aqueous solution from being removed from each well when pressed to the array chip by a
metal weight.

In the new hybridization system, the size of the WE must be considered from the point of view
of sensitivity. Assuming two differently sized WEs, e.g., WE1 and WE2, are used to detect the same
minimal potential shift ∆E in Equation (1), the following Equation (6) can be derived:

∆Q1

∆Q2
=

C1

C2
, (6)

where ∆Q1: the charge required to achieve the minimal potential shift ∆E in WE1; ∆Q2: the charge
required to achieve the minimal potential shift ∆E in WE2; C1: the electric double-layer capacitance of
WE1; and C2: the electric double-layer capacitance of WE2.

If the area of WE1 is less than that of WE2, the electric double-layer capacitance C1 is less than C2,
because the capacitance is proportional to the area of the WE. Therefore, the charge required to achieve
the same minimal potential shift ∆E becomes smaller in ∆Q1 compared to ∆Q2. To confirm this, two
well-sized array chips were prepared in the new hybridization system by changing the well sizes to
∅67 µm/t10 µm and ∅95 µm/t10 µm: the respective well volumes were 35 pL and 71 pL. Both of the
well volumes were significantly smaller than the target well volume (less than 425 pL). Here, ∅67 µm
was selected, considering the ease of processing the photosensitive epoxy resin to obtain a clean WE
surface without etching debris, and ∅95 µm was selected to make the area of the WE approximately
twice of ∅67 µm (to conform to Equation (6)).
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3.5. MiRNA Detection Sensitivity

Five of the eight blocks in the array chip were modified using a PNA probe (N3) for complementary
miRNA hybridization. Two more blocks were modified by PNA (N1) and (N16) for noncomplementary
hybridization. The remaining block was not modified by PNA to check whether there were any target
miRNA chemisorbs and remained on the 6-HHT-modified working electrodes. The ∆E detection
sensitivity data are box-plotted in Figure 6a (35 pL (∅67 µm)) and Figure 6b (71 pL (∅95 µm)) at
various target miRNA molar amounts. In each box plot, (N3/R3) indicates 75 pcs of data of a
complementary system, (N1/R3) and (N16/R3) each refer to 15 pcs of data of noncomplementary
systems, and (PNA-less/R3) indicates 15 pcs of data of a reference system (to identify the occurrence of
the chemisorption of miRNA onto 6-HHT).

.
Figure 6. Cont.
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Figure 6. Boxplots of ∆E detection sensitivity data for (a) 35 pL (∅67 µm) and (b) 71 pL (∅95 µm) at
varying molar amounts. In each box plot, (N3/R3) indicates 75 pcs of data of a complementary system,
(N1/R3) and (N16/R3) each refer to 15 pcs of data of noncomplementary systems, and (PNA-less/R3)
indicates 15 pcs of data of the reference system (to identify the occurrence of the chemisorption of
miRNA onto 6-HHT).

In Figure 7a, the median values of the complementary system (N3/R3) in Figure 6a,b are plotted
on a linear scale as a function of the molar amount N. The smaller well volume of 35 pL had the
highest ∆E detection sensitivity at 140 zmol. The sensitivity increased with the decrease in the WE
size, as predicted in Section 3.4. When ∆E was replotted against the target molar concentration D,
the sensitivity to the well volume varied, as shown in Figure 7b. The sensitivity was the highest at
4 nM for the well volume of 35 pL (∅67 µm). In terms of molar concentration, the sensitivity appeared
to depend less on the size of the WE, while the sensitivity appeared to depend more on the size of the
WE in terms of the molar amount.
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Figure 7. (a) The median values of the complementary system (N3/R3) in Figure 6a,b are plotted against
the molar amount, N, on the linear scale, which is then (b) replotted against the molar concentration, D,
on the linear scale. The highest ∆E detection sensitivity for the molar amount and concentration was
140 zmol and 4 nM, respectively, for the 35-pL well.

Equation (1) can be modified to Equation (7), where N is the target miRNA molar amount, and α
(0 ≤ α ≤ 1) is the hybridization efficiency representing the hybridized miRNA molar amount divided
by the total miRNA molar amount originally preserved inside the well:

∆E =
qmNAd0

εε0

(
α
S

)
N, (7)

where q: the charge of the electrons; m: the base length of target miRNA; NA: Avogadro’s number; d0:
the thickness of the electric double-layer capacitance; ε: the permittivity of the electric double-layer
capacitance; ε0: the permittivity of the vacuum; α: the hybridization efficiency (0≤ α ≤1); S: the area of
the WE; and N: the target miRNA molar amount in the well.

To achieve a higher detection sensitivity in the molar amount, the gradient of Equation (7) should be
increased. Therefore, decreasing S, that is, the area of the WE, and increasing the hybridization efficiency,
α, are both effective. The nonlinear curve in Figure 7a means that α has nonlinear characteristics.
This may be the reason for the tangential line around the lowest molar amount not crossing the origin.
In Figure 7a, the gradient of Equation (7) at the lowest molar amount is calculated as 5.86 × 1016 (V/mol)
for ∅67 µm and 8.58 × 1015 (V/mol) for ∅95 µm. By taking the ratio of these gradients, the hybridization
efficiency ratio of the two differently sized WE can be calculated, as expressed in Equation (8).
As expected, decreasing S by decreasing the diameter from ∅95 µm to ∅67 µm contributes to an increase
in sensitivity. However, the ratio of S is two, whereas the ratio of α is 3.4 and 1.7 times higher than the
ratio of S. This means that the hybridization efficiency α is strongly dependent on the WE area:

α∅67

α∅95
= 3.4. (8)

Equation (7) can be modified to Equation (9) using the molar concentration D, where t is the
thickness of the well. Notably, Equation (9) expresses that decreasing the WE size does not directly
increase the molar concentration sensitivity; rather, only the hybridization efficiency α does:

∆E =
qmNAd0t
εε0

αD, (9)

where t is the thickness of the well, and D is the target miRNA molar concentration in the well.
The increase in the hybridization efficiency α due to the decreasing WE size is probably caused by

the differences in the PNA modification pattern. The one-dimensional swirl-like PNA pattern may be
more congested in WEs of a smaller size. This is plausible because the congestion degree of the PNA
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pattern directly dictates the interaction probability between the PNA probe and the target miRNA. In
other words, as the congestion degree becomes higher, the interaction probability increases.

Unfortunately, the congested one-dimensional PNA pattern is not as effective for hybridization as
the PNA probes uniformly spread over the WEs. However, the realization of the latter remains unclear.
Using DNA probes may be an effective solution; however, this decreases the hybridization with
negatively charged miRNA. If the PNA modification pattern can be changed from one-dimensional
to two-dimensional while keeping a reasonable distance between the PNA probes, a remarkable
sensitivity improvement will occur in terms of molar concentration.

3.6. Statistical Analysis

We statistically analyzed the ∆E data obtained from all tests. To specify the highest ∆E detection
sensitivity of this incubation system from a statistical perspective, we performed an unpaired test
(two-tailed) between the 75 pcs of complementary data (N3/R3) and the other systems (N1/R3, 15 pcs;
N16/R3, 15 pcs; PNA-less/R3, 15 pcs), followed by determining the p-value. To prevent a type 1 error in
this multiple comparison, we performed Dunnett’s test. Equation (10) yields the t-value using the VE
expressed by the unbiased variances in Equation (11), as follows:

t1i =
X1 −Xi√

VE
(

1
N1

+ 1
Ni

) , (10)

VE =

∑a
i=1(Ni − 1)u2

i

(N1 + N2 · · ·Na − a)
. (11)

The p-value (based on Dunnett’s test) only indicates a rare risk where there are no differences
between the mean values. To determine the degree of separation between the mean values, the effect
size was evaluated using Cohen’s d-value (defined in Equation (12)), where the unbiased variances in
Equation (13) express ud as follows:

d =
X −Y

ud
, (12)

ud =

√
(N1 − 1)u2

X + (N2 − 1)u2
Y

N1 + N2 − 2
. (13)

Figure 8a,b shows the calculated Dunnett’s p-value and Cohen’s d-value. Three groups were
used for statistical analysis: (N3/R3) versus (N1/R3), (N3/R3) versus (N16/R3), and (N3/R3) versus
(PNA-less/R3) for the 35-pL and 71-pL hybridization.
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Figure 8. (a) Dunnett’s p-value and (b) Cohen’s d-value shown between the complementary and
noncomplementary systems as (N3/R3) versus (N1/R3) and (N3/R3) versus (N16/R3). Computations
were also performed between the complementary and PNA-less systems as (N3/R3) versus
(PNA-less/R3). All computations were performed for the 35- and 71-pL hybridizations.

Dunnett’s test revealed that in the 35-pL hybridization system, if the miRNA levels were 140 zmol
or greater, the mean value of the complementary and noncomplementary systems was not equal at a
95% significance level. Moreover, Cohen’s d-value revealed that, under this condition, the mean value
of the complementary and noncomplementary systems had good separation that exceeded the medium
(≥0.5) or large (≥0.8) effect size criteria. Figure 8 shows that the possibility of miRNA chemisorption to
6-HHT was low.

These statistical analyses indicate that in the 35-pL system, the maximum ∆E detection sensitivity
was 140 zmol. This new hybridization methodology exhibited good sensitivity against our initial
target value of 830 zmol to 1.7 amol. Compared to the calculated sensitivity of 1 nmol (discussed in
Section 1), we achieved a 1010-fold improvement for the molar sensitivity, which implies that in an
ordinary incubation system, most miRNA targets are wasted, while only the targets close to the WE
contribute to the hybridization results.

3.7. Two Aspects of Sensitivity

Sensitivity in a hybridization system has two aspects. One is the measurement sensitivity itself,
which is associated with the molar amount of the target. The ultrasmall amount of the incubation
system in the aqueous solution revealed that the novel ∆E measurement and smaller WE could detect
miRNA amounts as low as 140 zmol with a ∅67-µm WE with adequate sensitivity.
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The second aspect is associated with the target molar concentration. Figure 7b shows that the
highest sensitivity for a molar concentration with a ∅67-µm WE was 4 nM when the incubation condition
was 40 ◦C for 40 min. For successful hybridization, there should initially be a reasonable interaction
probability between the PNA and the miRNA. Thereafter, hydrogen bonding occurs between the
bases, followed by π–π stacking to complete the hybridization process. A reasonably high molar
concentration of miRNA ensures the occurrence of this interaction. Even if 1.7 amol of miRNA were
present in the 10 mL of serum, the molar concentration was 0.17 fM, which is much lower than 4 nM
and does not yield a reasonable interaction probability.

To accomplish the direct detection of miRNA in serum, these two aspects of sensitivity
must be fulfilled simultaneously. From this viewpoint, increasing the sensitivity in terms of the
molar concentration becomes an issue. One approach is to investigate a method of changing the
PNA modification pattern from one-dimensional to two-dimensional to dramatically increase the
hybridization efficiency α. The other approach is to extract and concentrate the miRNA from the serum
and deliver it to a small incubation well for hybridization.

4. Conclusions

This study investigated an ion-channel sensing model. On the basis of the PNA/DNA duplex
fluorescence pattern, which was a one-dimensional swirl-like pattern nonuniformly spread over the
WE, we proposed a new model wherein the negative charges of the PNA/DNA (and PNA/miRNA)
duplexes develop a uniform negative potential over the WE through their conductive π–π stacks,
which hinder the redox reactions of the marker. Within the context of this model, the novel evaluation
parameter ∆E was introduced and defined as the hybridized negative charge of oligonucleotides,
∆Q, divided by the electric double-layer capacitance C. This model is different from the IS-FET- and
potentiometry-based models discussed in References [31] and [32], respectively. Moreover, the ∆E
sensitivity was investigated through the development of a new hybridization system that uses an
ultrasmall amount of aqueous solution, which can be as low as 35 pL. The maximum detection
sensitivity, which was 140 zmol at a 95% significance level, was achieved for the smaller WE (∅67 µm),
as was expected based on the model. This system had sufficiently high molar amount sensitivity for
the detection of cancer-related miRNA in 10 mL of serum without PCR amplification.

The sensitivity of a hybridization system has two aspects, namely, the target molar amount and
the target molar concentration, where both must have sufficient sensitivity at the same time for the
direct detection of miRNA in serum. To this end, increasing the sensitivity of ∆E in terms of molar
concentration, which is currently 4 nM and markedly below the required 0.17 fM, is an issue that
should be addressed in future work. The congestion degree of the one-dimensional PNA modification
pattern probably determines the interaction probability between the PNA probe and the target miRNA.
Therefore, it is important to investigate how the pattern of PNAs can be changed from one-dimensional
to two-dimensional to improve the hybridization efficiency α and/or to examine how to extract and
concentrate miRNA from serum.
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