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What is the significance of the extensive variability observed in individual members of a single-cell phenotype? This
question is particularly relevant to the highly differentiated organization of the brain. In this study, for the first time, we
analyze the in vivo variability within a neuronal phenotype in terms of input type. We developed a large-scale gene-
expression data set from several hundred single brainstem neurons selected on the basis of their specific synaptic input
types. The results show a surprising organizational structure in which neuronal variability aligned with input type along
a continuum of sub-phenotypes and corresponding gene regulatory modules. Correlations between these regulatory
modules and specific cellular states were stratified by synaptic input type. Moreover, we found that the phenotype
gradient and correlated regulatory modules were maintained across subjects. As these specific cellular states are a func-
tion of the inputs received, the stability of these states represents ‘‘attractor’’-like states along a dynamic landscape that is
influenced and shaped by inputs, enabling distinct state-dependent functional responses. We interpret the phenotype
gradient as arising from analog tuning of underlying regulatory networks driven by distinct inputs to individual cells. Our
results change the way we understand how a phenotypic population supports robust biological function by integrating
the environmental experience of individual cells. Our results provide an explanation of the functional significance of the
pervasive variability observed within a cell type and are broadly applicable to understanding the relationship between
cellular input history and cell phenotype within all tissues.

[Supplemental material is available for this article.]

What is a cell type? This question has been a central project of

biology and molecular biology. Typically, we deconstruct a tissue

or organ into its constituent cell types based on anatomical,

physiological or biochemical features, and examine each distinct

cell phenotype to understand its larger function. In this context, it

has been a major biological aspiration to connect cell phenotype to

the genome via gene expression. But elucidating the organization

of cell types by linking cell phenotype analysis to transcriptional

state has been largely elusive. This elusiveness is due to the vari-

ability seen in transcriptional data sets produced from what are

expected to be homogeneous cell populations. As high-through-

put data acquisition methods have now become highly precise, it

has become obvious that the variability observed in the results is

not a mere distribution around a mean, but reflects true hetero-

geneity, the activity of cells in a range of distinct states. Even when

we take single-cell genomic measures, this variability within cell

types persists (Guo et al. 2010; Eberwine and Bartfai 2011). This

variability is not only present at the individual cell level, but ex-

tends to the levels of electrical and neural network function

(Eberwine and Bartfai 2011; Marder 2011; Marder and Taylor

2011). Reconciling cell type in the face of such heterogeneity in the

adult mammalian brain and accurately defining post-development

diversity continue to be difficult challenges, as expressed by Birren

and Marder (2013) and Wichterle et al. (2013). The significance of

understanding and defining brain cell type is highlighted in the

recently announced BRAIN Initiative, which seeks to understand

how ‘‘cellular phenotypes based on transcriptional profiles may

change as a function of developmental stage, age, cell state (e.g.,

cell cycle for mitotic cells), activity levels, and experience among

other things’’ (NIH RFA-MH-14-215 2013). We believe our results

are part of a solution to this problem.

Defining cell type within the highly differentiated and net-

worked mammalian brain relies on location, connectivity, mor-

phology, histochemistry, neurotransmitter type, and most recently

on transcriptomic profiles. Significant efforts have detailed how

coordinated transcriptional mechanisms lead to neuronal di-

versification and connectivity in the context of developmental

dynamics (Chen et al. 2006b; Kramer et al. 2006; Luo et al. 2008;

Friese et al. 2009). However, an increasing amount of evidence

demonstrates significant heterogeneity and plasticity caused by

further post-developmental, adaptive changes within developed

lineages. Cells remain plastic and are able to change adaptively in

response to inputs; rather than reaching a final stable state or cell

fate they continue to acquire new response capabilities in the

mature organism. Thus, the current state of a cell is a product of the

cumulative influences or inputs received throughout its history.

Recent results support the idea that this cumulative record is rep-

resented by the transcriptome, representing an essential ‘‘snapshot

state memory’’ of the phenotype (e.g., Kim and Eberwine 2010).
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The cell’s transcriptome adapts to inputs to change the cell, in ef-

fect becoming a repository of the cell’s input history.

In the context of mature neurons, recent experiments dem-

onstrate how cellular experience influences heterogeneity through

‘‘neurotransmitter respecification’’ in adult rat brains, which was

accomplished by modifying the amount of light/dark stimulus

received by these adult rats (Dulcis et al. 2013). Another example

shows in vivo reprogramming of circuit connectivity in mature

neocortical neurons in mice (De la Rossa et al. 2013). As cutting

edge discovery of plasticity and diversity within and across neuron

types continues, the causes of these phenomena remain unclear

(De la Rossa et al. 2013; Dulcis et al. 2013). We suspect that adap-

tive responses to inputs of this kind may cause the variability that

is observed in high-throughput studies of phenotypically similar

cells (Eberwine and Bartfai 2011; Kim et al. 2011). In other words,

a cell type that might have been expected to be homogenous,

sharing a common end fate, might rather be heterogeneous due to

each cell within the cell type adapting to a distinct input history.

Therefore, we hypothesize that neuronal transcriptomic variability

reflects synaptic input variability to the phenotype’s individual

cell members. We test this hypothesis by examining gene expres-

sion differences within individual mature neurons of the same

neuroanatomical phenotype. We analyze the potential organiza-

tion of these differences in terms of neuronal input types. If such

an organization were supported by the data, expression variability

would be functionally meaningful by facilitating alternative re-

sponses within the phenotype.

We now have been able to investigate this, for the first time,

by taking in vivo measures of each cell’s high-throughput tran-

scriptional state in several hundred neurons taken from a single

nucleus. Specifically, we investigated this hypothesis by studying

the nucleus tractus solitarius (NTS), a brainstem nucleus consisting

of the anatomical phenotype of medium sized, fusiform neurons

forming a column in the dorsal medulla as the sensory nucleus

for the viscera. The neurons surround and are innervated by the

tractus solitarius (ts) that conveys afferent inputs of the glosso-

pharyngeal and vagus cranial nerves from visceral organs, in-

cluding blood pressure sensory baroreceptor afferents. The NTS

plays an integrative role in autonomic homeostasis, receiving in-

puts that place demands on homeostasis such as inputs conveying

visceral states, pain, posture, exercise, temperature, circadian time,

and mood. As individual NTS neurons must integrate distinct

combinatorial input sets, their variability may reflect their inputs.

We examined the NTS phenotype in vivo in its native tissue con-

text using microfluidic qPCR across several hundred NTS neurons

(Supplemental Material and Methods). In these single neurons we

assayed the expression of 96 key genes derived from a previous

microarray study of the nucleus (Khan et al. 2008).

NTS neurons were identified by two cell markers signifying

distinct inputs, FOS and tyrosine hydroxylase (TH) (Fig. 1). A very

extensive amount of literature demonstrates the use of immediate

early gene Fos as an indicator for the subset of NTS neurons re-

sponsive to acute hypertensive disturbances. FOS is an established

indicator of cellular activation—in the present case identifying

cells directly influenced by blood pressure baroreceptor afferent

inputs (Li and Dampney 1992, 1994; Rogers et al. 1993; Chan and

Sawchenko 1994, 1995, 1998; Glass et al. 2007). Carefully con-

ducted control studies have shown that high Fos levels depend on

neurons being directly influenced by the increased activity of the

blood pressure baroreceptor afferent inputs (Potts et al. 1997; Chan

et al. 2000). Simultaneously, the NTS population of norepi-

nephrine cells, indicated by the expression of the catecholamine

synthesis enzyme TH, receives ‘‘higher order’’ influences through

one or more additional interneurons and integrative inputs rather

than direct blood pressure inputs from baroreceptors afferents

(Chan and Sawchenko 1994, 1995, 1998; Rinaman 2010, 2011).

Thus, the markers for FOS and TH identify discrete NTS neuronal

populations in term of their expected inputs. Using Fos and Th as

markers for distinguishing the expected input types, we inves-

tigated the differences in transcriptional states of individual NTS

neurons with respect to these inputs.

Results
We obtained a high-dimensional single neuron gene expression

data set comprised of 28,880 data points representing expression

of 96 genes each in 300 single neurons lifted from the NTS of six

rats (Supplemental Material and Methods). Gene expression levels

were measured using a high-throughput qPCR platform (BioMark,

Fluidigm), which has demonstrated the ability to reproducibly

measure gene expression over five orders of magnitude with

minimal technical variability (Supplemental Fig. S1). Our quality

control workflow followed established procedures for minimizing

nonspecific contamination of samples (Espina et al. 2006). In ad-

dition to visual inspection of tissue and captured cell body, we

measured neuron, astrocyte, microglial, and endothelial specific

gene expression in a separate set of single neurons and astrocytes

collected from the NTS via laser capture microdissection (LCM) to

test for potential cross-contamination from nontargeted cell types

that may affect our single cell samples (Supplemental Material and

Methods). Our results showed minimal to nonexistent crossover

contamination (Fig. 2; Supplemental Figs. S2, S3) consistent with

the repeated performance of LCM approaches used by a number

of other groups (e.g., Wang et al. 2002; Ye et al. 2003; Zhang et al.

2003; Espina et al. 2006; Macdonald et al. 2008). We normalized

the high-dimensional single neuron gene expression data using

established approaches that evaluated multiple reference genes to

select those suitable for data normalization and comparison across

single cells (Supplemental Fig. S4; Vandesompele et al. 2002;

Andersen et al. 2004).

Our results revealed significant variability in normalized gene

expression across all single cells (Fig. 3). Approximately two-thirds

of the genes showed expression values spanning three orders of

magnitude as measured over multiple high-throughput qPCR

runs, multiple rats, and in hypertensive and baseline states. Ini-

tially we analyzed the variability in single cell gene expression

using Principal Component Analysis (PCA). Our results revealed

an unstructured scatter of cellular states, as shown by the PCA

scores along the first five principal components that accounted for

48.94% of the variability in the data (Fig. 1B,C). We derived

a subset of 48 genes that significantly contributed to the observed

variability, using the five highest and lowest corresponding load-

ing values along the first five principal components as a basis for

gene selection (Fig. 1B; Supplemental Fig. S5; Supplemental Table

S4; Supplemental Material and Methods). Next, we analyzed the

single cell states, characterized by this 48-dimensional gene ex-

pression (i.e., transcriptional) profile per cell, to determine the

presence of any structure or organization subtending these seem-

ingly disparate cell states. We performed all possible pairwise

comparisons of the single cells using a Spearman rank correlation.

The high-dimensional data set of correlation coefficients (Fig. 1D)

were then converted to corresponding similarity values, which

were projected into three dimensions using multidimensional

scaling (MDS) (Fig. 1E). MDS is a technique useful to visualize
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similarities and dissimilarities of high-dimensional data in a lower-

dimensional space (Fuller et al. 2002; Ross et al. 2003; Taguchi and

Oono 2005). In this context, the proximity between any two cells

in the MDS space corresponds to how similar or dissimilar the

rank correlation of gene expression is between that particular cell

pairing. The single cells were distributed in a cloud in this MDS

mapping (Fig. 1E), revealing no initially obvious structures or or-

ganization to cell states.

We subsequently analyzed the single cell variability with

respect to gene expression of the two input-type markers Fos

(transcript of Fos) and Th. Both Fos and Th expression levels are

surrogates for different neuronal response capacity to particular

inputs; Fos expression denotes neurons directly receiving barore-

ceptor afferent inputs, and Th expression denotes catecholamin-

ergic neurons receiving ‘‘higher order’’

integrative inputs. We first considered the

extremes of the single cell multiplex gene

expression distribution (Fig. 1E) with

respect to the two input-type markers to

identify and annotate two input-based

subtypes (Fig. 4A): cells with Fos ex-

pression and minimal to no Th expression

(Th�/Fos+) and cells with Th expression and

minimal to no Fos expression (Th+/Fos�).

Categorization of the same single cells

based on mRNA expression or immu-

noreactivity to the respective markers

was nearly identical. Only six single cells

categorized as ‘‘Fos�’’ showed FOS im-

munoreactivity. Although a single cell

may be labeled as ‘‘Fos�’’, this annotation

is simply an indicator of low Fos mRNA

levels present in that particular cell. Given

the dynamic and transient nature of Fos

regulation, this slight discrepancy is un-

surprising.

Applying the mRNA-based annota-

tion of these single cell subtypes to the

MDS visualization of cell states revealed

a surprisingly structured organization.

The two subtypes were distinctly clus-

tered at the opposing extremes of the

overall distribution of cells (Fig. 4B; Sup-

plemental Fig. S6A,C,E). The separation

of the two extreme subtypes was statisti-

cally significant as no such clustering was

observed in randomized permutations

of the data (Supplemental Fig. S7). Cells

categorized by their input types (i.e., Fos

or Th expression level) maintained close

proximity to each other in the transcrip-

tional space, indicating that individual

cells receiving a particular input type

share similar transcriptional profiles, an

indicator of cell response.

This structured organization sup-

ports a novel perspective that differential

inputs to individual cells may drive vari-

ation in the transcriptional profiles of

NTS neurons. It is interesting to note that

the highly variable genes identified using

PCA were rank-correlated across many

single cells categorized by the two input-type markers (Fig. 4C).

The underlying gene expression was organized into two correlative

modules with the Fos and Th expression profiles serving as exem-

plars for each group to distinctly separate the two populations of

NTS cells (Fig. 4C,D). Note that the expression of other key genes

relevant to catecholaminergic function (e.g., Dbh and Slc6a2) was

most highly correlated with Th gene expression, consistent with

a well-regarded expectation of co-regulation of these genes (Qadri

et al. 1991; Stadler et al. 1992; Lu et al. 1996; Blume et al. 1999;

Richards et al. 1999; Gallinat 2001; Dogan et al. 2004). This result

serves as an internal validation of our analysis. The alignment of

the two input-type markers with the variation seen in the mea-

sured transcriptional profiles of NTS cells implies a causal re-

lationship where inputs to individual cells play a major role in

Figure 1. Single neuron gene expression analysis. (A) Workflow summary of our experimental ap-
proach to obtain single cell samples and measure gene expression. (B) PCA of the gene expression data
of single cells from hypertensive rats was performed to analyze variation within gene expression data.
Projection of single cells (scores) along the first two principal components (PCs) is shown. Additional
components were explored (Supplemental Information). (C ) Loading values of the genes along the first
two PCs. Genes with the five highest and lowest loading values along PC 1 and genes with the five
highest loading values along PC 2 are labeled. The highest and lowest genes along the multiple PCs
explored provided the basis for the selection of a subset of 48 genes with significant contributions to
variability observed in the data. (D) Pairwise comparison of single cells based on Spearman rank cor-
relation coefficients. Single cells are compared based on their respective 48-gene rank order. Red in-
dicates a high correlation between cells; black represents no correlation between a pair of single cells. (E)
The Spearman rank correlation coefficients are used to determine the similarity distance between each
cell. The high-dimensional set of similarity values between all possible single cell pairs are then projected
into three dimensions using MDS. Thus each sphere in this three-dimensional space represents a single
neuron. The relative distance between two spheres in this 3D space corresponds to the relative similarity
(or dissimilarity) between two cells.

Park et al.
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shaping the transcriptional profiles. This relationship argues that

inputs influence neuronal transcriptional states and is further

substantiated by the quantitative nature of this relationship. Re-

gardless of the defined threshold for Fos expression or Th expres-

sion, cells with the highest Fos or highest Th expression tended to

be the same cells having extreme expression of the 48 variable

genes highlighted by PCA (Supplemental Figs. S8–S11).

While the majority of the cells expressed either Fos or Th,

there were smaller populations with lower expression of one or

both input-type markers. We interpret these various expression

levels as indications of different populations with respect to the

two input types. For example, some sub-

set of Th-expressing cells may respond

weakly to baroreceptor inputs through

interactions with interneurons, yielding

variable Fos expression in those cells. If

so, the NTS cell types may form a contin-

uous distribution with respect to strength

of input from different sources, and by

implication a continuous distribution of

expression patterns may result. With this

expectation, we categorized cells with

lower expression of Th and Fos based on

median expression for each input-type

marker to yield four ‘‘intermediate’’ sub-

types (Fig. 5A; Supplemental Material and

Methods, section ‘‘Single Cell Subtypes’’).

Mapping these annotations onto the

MDS visualization of cell states revealed

that the subtypes showing lower Th or Fos

levels were located in between the two

extreme cell types (Fig. 5B). Similarly,

subtypes showing higher levels of Th or

Fos aligned closer to the corresponding

extreme input-based subtype. Addition-

ally, these results indicate that the 48

highly variable genes show correlated ex-

pression within these intermediate sub-

types (Fig. 5C). The gene expression in

the intermediate subtypes was correlated

based on the same modules observed

in the cases of the extreme Th+/Fos�
and Th�/Fos+ subtypes (Supplemental

Fig. S12).

The coordinated gene expression

patterns, or transcription modules (Fig.

4C), further differentiate the expression

states of cells. The various active states

that lie along the gradient structure are

governed by underlying gene regulatory

networks, which can be used to further

distinguish these states. A comparison of

rank correlative gene networks, a surro-

gate for the regulatory interactions oc-

curring in single cells within the extreme

states of Figure 4, shows distinct structures

of correlative gene expression behavior

(Fig. 6). In the baseline Th+/Fos� network,

transcription factors (TFs) showed a high

degree of connectivity, i.e., correlative re-

lationships, with genes across both tran-

scription modules. However, under the

hypertensive challenge, the relationships between TFs and genes

within the transcription modules were reduced and shift mainly

to genes in transcription module 2 in the Th+/Fos� (higher-

order input cell) and Th�/Fos+ (second-order input cell) networks

(Fig. 6).

These input-driven shifts in expression correlation and po-

tential gene regulation effects were also reflected in the con-

strained space occupied by hypertensive Th+/Fos� cells relative to

the Th+ cells from control animals at baseline blood pressure levels

(Supplemental Fig. S13). Although there was some individual rat-

to-rat variability within these transcriptional modules, the same

Figure 2. Single neuron and astrocyte LCM. (A) Tyrosine hydroxylase (TH) immunohistochemical
staining and collection of TH+ single cells from a coronal section of a normotensive rat brainstem.
Colored outline images represent magnified tissue sections from which TH+ single cells were captured.
(B) Glial fibrillary acidic protein (GFAP) immunohistochemical staining and collection of GFAP+ single
cells from an adjacent coronal section of a normotensive rat brainstem. Colored outline images repre-
sent magnified tissue sections from which GFAP+ single cells were captured. (C ) Gel electrophoresis
image of reverse-transcribed cDNA from whole-brain tissue (positive control) (lanes 1–3), a represen-
tative single neuron sample (lanes 5–7 ), a representative astrocyte sample (lanes 8–10), and a no-
template control (NTC) (negative control) (lanes 11,12). All samples underwent 22 pre-amplification
cycles prior to undergoing a 40-cycle PCR. Products from the 40-cycle PCR were placed on an E-Gel EX
Agarose Gel 4% (Invitrogen). The rat whole brain positive control shows product bands for Gapdh
(148bp), Th (68bp), and Gfap (93bp). Both single neuron and astrocyte samples show formation of
Gapdh. However, the neuron sample does not show any Gfap product at the expected 93-bp size. A light
band in lane 7 at <50 bp suggests a nonspecific product. Similar behavior is observed in lane 9, where
the astrocyte sample shows no Th product at the expected 68-bp size. Only a light product band at <50
bp is present, suggesting a nonspecific product. The results indicate minimal to no crossover contam-
ination occurring between astrocytes and neurons.

Inputs drive cell phenotype variability
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pattern of structured variation across input classes was present in

each animal (Supplemental Fig. S14).

Discussion
Having analyzed NTS neurons of the same neuroanatomical phe-

notype in vivo in the context of their specific input connectivity,

we found that post-developmental neuronal cell type is strongly

associated with the specificity of connections. Studying gene ex-

pression profiles of NTS neurons at the single cell level provided us

with the appropriate resolution to distinguish cell types with re-

spect to the inputs they received. Our results support the impor-

tance of connectivity in defining a cell type, through the tran-

scriptional regulation of neurons by their inputs. Viewing the

distribution of neuronal cell types as a function of specific inputs

allowed us to interpret cell-to-cell variability as structured hetero-

geneity rather than noise around a mean.

This single cell variability likely reflects cellular functional

heterogeneity (Enver et al. 2009), influencing a cell’s position

along the gradient of the observed multiplex gene expression

(Fig. 4D). This structure is evident in the MDS visualization where

single cells fall into input-defined clusters of cells that are posi-

tioned along an expression pattern gradient (Figs. 4D, 5C). Since

input history of an individual cell influences the cell’s tran-

scriptomic state, we postulate that the cumulative input history of

a cell provides a driving force for adjustment or analog tuning of

the transcription modules, placing cells within interchangeable,

stable states along the gradient of catecholaminergic (Th+/Fos�)

and non-catecholaminergic (Th�/Fos+) hypertension responsive

cell states.

Visualization, using MDS, of gene expression gradients, dy-

namic landscapes, and analog tuning of expression defining cell

development and function is a recent application used most no-

tably in hematopoietic and embryonic stem cells and cell signaling

systems, such as NFKB signaling (Hough et al. 2009; Tay et al. 2010;

Bendall et al. 2011). Our application of such techniques and con-

cepts to ostensibly terminally differentiated single cells is novel as

far as we are aware. The input-based ordered structure within the

Figure 3. Gene expression and variance distributions. Boxplots overlaid with in-line scatter plots showing the spread of expression data for all
genes (�DCt). Each gray dot corresponds to a particular gene expression level in a particular single cell sample. (A) Baseline-normotensive cells. (B)
Hypertensive cells.

Park et al.
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heterogeneous gene expression of single neurons in the MDS space

now allows us to contextualize single cells along transcriptional

module gradients, suggesting a plastic rather than a discrete cell

phenotype. Finding correlated gene expression modules delineated

by inputs is consistent with transcriptional phenotypes that result

from combinatorial inputs. Subsequent variability within a given

phenotype results from differences in input type and strength to

each cell. In this context, any additional variability within a sub-

phenotype, reflected in the spread of single cells of that particular

group, may reflect variability of other inputs to the cell population.

Additional input-driven analysis would be expected to further

fractionate the phenotype.

Our results, which suggest an input-based organization of the

NTS neuronal phenotype within a cloud of cellular states, raise

intriguing possibilities as to the mechanisms through which such

a gene expression gradient could be tuned in individual neurons. It

is likely that combinatorial actions of transcriptional and post-

transcriptional regulatory processes are involved in transducing

cellular inputs into the downstream regulation of transcriptional

states. Such regulatory network coordination to generate complex

patterns of gene expression has been well described with respect to

developmental dynamics, and typically involves a unique combi-

nation of regulatory factors for each cell type (Chen et al. 2006a,b;

Kramer et al. 2006; Luo et al. 2008; Friese et al. 2009). It is possible

that such formalism extends into post-developmental gene ex-

pression variability between neuronal phenotypes. We should also

consider alternative regulatory schemes where graded gene ex-

pression spanning the spectrum of cellular states may be driven by

a set of regulators in common with the NTS neuronal pheno-

types, with inputs tuning cell-to-cell differences in regulatory

Figure 4. Input-driven extreme phenotypes. (A) Input-based cell type identification. A bivariate plot of single cells obtained from hypertensive rats
based on their normalized expression of Th and Fos. The extremes of the distributions for each gene were initially explored, resulting in two extreme classes
of single cells: (1) cells with no Th expression and (2) cells with no Fos expression. The gray lines indicate the threshold criteria used to define the extreme
subtypes Th�/Fos+ (blue filled circles) and Th+/Fos� (orange filled circles). The effect of various thresholds used for classifying extreme classes is shown in
Supplemental Figures S8–S11. (B) Clustering of input-based cell types. Three-dimensional MDS projection of single cells with the extreme phenotype
classifications applied. These projects are based on the similarity of single cells with respect to their ranked expression order of the 48 gene subset.
Alternative viewing perspectives of the 3D MDS projections are included in Supplemental Figure S6A,C,E. (C ) Gene expression correlation modules. Gene-
to-gene pairwise Spearman rank correlation coefficients across the extreme subtype cells were calculated and are represented in the heat map. The highly
variable genes show that the underlying gene expression in these extreme subtypes can be organized into two correlative groups, or transcription
modules. These transcription modules group genes that show higher correlations (upper left quadrant and lower right quadrant of the heat map) with each
other across single cells of the extreme subtypes. Columns and rows with the same index representing a particular gene follow the row annotation in panel
D. (D) Gene expression gradients in input-based cell types. Heat map of normalized gene expression data. An overall gene expression gradient pattern can
be observed in the gene expression profile of the 48 highly variable genes across the extreme subtypes. Focusing on the extreme regions to the left and
right of the whited-out region on the heat map, opposite expression behaviors can be observed in the two transcription modules between the two extreme
input-based subtypes. The upper set of genes in the heat map shows an overall decrease in gene expression in Th+/Fos� cells and an increase in Th�/Fos+
cells. The opposite behavior is observed in the lower set of genes. The expression patterns of these extreme subtypes occupy opposite ends of the gene
expression gradient observed.

Inputs drive cell phenotype variability
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activity and combinatorial action. Given the 1-h duration of the

hypertension perturbation in our study, it is unlikely for the

transcriptional regulatory network to influence neuronal network

connectivity in such a short period. Hence, such feedback cannot

serve as an alternative explanation of association between cellular

inputs and correlated gene regulatory states.

These interchangeable cell states can be schematically repre-

sented as a dynamic gene expression landscape populated by in-

dividual cells based on their transcriptional response (Fig. 7A,B).

The landscape figures and two-dimensional

contour plots are used to help illustrate

the distinct cell states and the influence

of inputs. Such a conceptualization is an

evolution of the Waddington ‘‘canaliza-

tion’’ to describe developmental pheno-

types (Waddington 1942) and was used to

organize the interrelationships between

various cell types that emerge through

dynamic expression changes during de-

velopment (Enver et al. 2009). The con-

tour plots are a projection of the single

cells in the 3D MDS space onto a 2D

plane (Fig. 7A,B; Supplemental Material

and Methods, section ‘‘Contour Plots and

Dynamic Landscape’’). The ‘‘depth’’ of

a well along the landscape (Supplemental

Material and Methods, section ‘‘Contour

Plots and Dynamic Landscape’’) at any

given location was derived from the local

density of cells so that a cluster of many

cells is deeper and indicates a potential

local ‘‘attractor’’ reflecting constrained

gene expression in those particular cells.

In this representation, these valleys and

wells, or ‘‘attractor’’-like states, corre-

spond to dominant expression states of

relatively stable expression modules

(e.g., those corresponding to Th+/Fos�
and Th�/Fos+ extreme subtypes). The

remaining topography corresponds to

potential intermediary states that may be

transient in response to input histories of

individual cells and physiological pertur-

bations (Fig. 7A,B, color-coded group-

ings). The path that these cells take along

the gene expression landscape is a func-

tion of the input(s) received and is likely

to be as varied as the input(s) (Fig. 7C).

The exposure to a hypertensive challenge

changes the constraints (Supplemental

Fig. S13) and distribution of cells within

the gene expression landscape (Fig. 7A,B),

consistent with phenotypes that are de-

termined by distinct state-dependent re-

sponses. Ultimately, the type of inputs

received alters the regulatory network,

resulting in constrained cell states, akin

to a phenotype being an adaptive product

of cellular input.

Plausibly, NTS Fos+ cells receive

particular combinatorial inputs beyond

blood pressure and integrate variable sets

of cardiovascular homeostasis modulators such as pain, tempera-

ture, exercise, or mood, all of which affect cellular state and input

processing. The influence of various inputs on NTS cell states is

symbolically represented in Figure 7C (Paton 1998; Dampney and

Horiuchi 2003; Michelini 2007; Rinaman 2011; Grill and Hayes

2012). Such input-based influences imply that NTS neurons are

individually gated in dynamic responses to combinatorial inputs,

rather than behaving as a homogeneous population and integrating

all inputs into a population rate code. NTS neurons dynamically

Figure 5. Input-driven intermediate phenotypes. (A) Intermediate input-based cell types. Bivariate
plot of single cells obtained from hypertensive rats (Fig. 2A) based on their expression of Th and Fos. Finer
classifications of single cells that express both input-type markers are included. The gray line segments in
the upper right quadrant of the plot represent the threshold limits used to define four intermediary cell
subtypes: (1) Thhigh/Foslow (red circles); (2) Thhigh/Foshigh (yellow circles); (3) Thlow/Foslow (cyan circles);
(4) Thlow/Foshigh (gray circles) cells. A 30% quantile limit of Th expression of the single cells from hyper-
tensive rats was used to define which cells would be classified as Thlow and Thhigh. The median Fos ex-
pression value of the intermediary cells was used to define Foslow and Foshigh cells. (B) Locating
intermediate cell types in multidimensional gene expression space. Three-dimensional MDS projection of
single cells with the four intermediate subtype classifications applied. These intermediate subtypes lie in
between the extreme groups (smaller more transparent spheres). Cells with higher Th expression are
positioned closer to the extreme Th+/Fos� subtypes while cells with more dominant Fos expression are
positioned closer to the extreme Th�/Fos+ subtypes group. Alternative viewing perspectives of the 3D
MDS projections are included in Supplemental Figure S6B,D,F. (C ) Gene expression gradients in in-
termediate cell types. Gene expression gradient pattern observed in heat map across intermediate cell
groups. Focusing on the middle region in between the whited-out sections of the heat map, gene ex-
pression gradient patterns occur across the ‘‘intermediate’’ input-based cell groups. Moving from left to
right, the overall expression patterns of genes in transcription module 1 and transcription module 2
transition from one extreme subtype to the other. Single cells that have more dominant Th expression
have gene expression profiles more similar to cells within the Th+/Fos� subtypes, whereas cells with more
dominant Fos expression have expression patterns similar to the Th�/Fos+ subtypes.
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responding to inputs shape a mechanism of blood pressure ho-

meostasis based on the selection or gating of particular NTS

neurons activated by combinatorial demands on blood pressure.

Similarly demonstrating a functional meaning to variability,

Marder and Taylor (2011) have shown that variability extends to

the levels of electrical and neural network function. In this

Figure 6. Gene correlation networks. The correlative network structures represent correlative relationships shared between TFs and target genes of
each module across the three cell types: baseline Th+, hypertension Th+, hypertension Fos+. Cytoscape software was used to visualize the correlative
network relationships. Edge opacity represents the strength of the correlation shared between genes across the respective sample subset (e.g., Th+/Fos�
single cells): the darker the edge, the higher the correlation coefficient values. These network structures illustrate the pairwise Spearman rank correlative
relationships among the subset of 48 genes. TFs are separated from the subset while the remaining genes are organized into their respective transcription
modules 1 and 2 (Fig. 4C). The correlation network is based on pairwise gene correlations across various subsets of single cells. Only pairwise Spearman
correlation coefficients $0.4 were included. Node colors represent scaled �DCt values of a representative single cell sample from the respective neuronal
subtype. (A) Pairwise gene correlation network across normotensive single cells. Note the high number of correlative relationships shared between TFs and
genes from both modules 1 and 2. (B) Correlation network based on hypertensive Th+/Fos� single cells shows a significant change in the number of
correlative relationships between TFs and downstream target genes, and the majority of these relationships exist between TFs and genes within module 2.
Similarly, this same shift in pairwise relationships occurs in Th�/Fos+ single cells, shown in C. This shift in relationships suggests that a physiological
perturbation, in this case acute hypertension, causes a shift in the correlative relationships between TFs and downstream genes.
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mechanism, the ‘‘neural code’’ by which blood pressure regulation

is performed would be based on molecular states of individual

neurons. This novel explanation of blood pressure homeostasis in

terms of parallel distinct functional response pathways is some-

thing not found when assuming a rate code control by a homo-

geneous neuronal population (Fig. 7C). A mechanism of this kind

is consistent with the presence of variable activity and absence of

a blood pressure rate code observed in NTS baroreceptor neurons

(Rogers et al. 1993, 1996; Paton et al. 2001).

These principles of input-structured phenotype may extend

to other central neuronal phenotypes. Large populations of neu-

rons with multiple sources of inputs, adaptive response to inputs,

and variable activity of single neurons are

common in the brain. Measures of adap-

tive variability within a neuronal phe-

notype may enable development of a

molecular physiology interacting with

higher-level functions. This expectation

of the influence of input history on

neuronal cell type and function across

the brain is supported by the emerging

perspective reflected in the recently

announced BRAIN Initiative. With

the convergence of sophisticated experi-

mental techniques and accurate and

precise high-throughput technologies

we have a unique opportunity to de-

velop ‘‘. . .an integrated view of molecular

identity (DNA sequence, single-cell tran-

scriptomes, epigenomic information,

and protein expression). This picture, in

combination with information on ana-

tomical connectivity and functional mea-

sures (e.g. physiology) will afford an

unprecedented view of the vertebrate

brain.’’ (NIH RFA-MH-14-215 2013)

This perspective, supported by our

results, expands the definition of a neuro-

nal cell type to include post-developmental

plasticity and highlights the role of tran-

scriptional regulation in shaping these

phenotypes. Furthermore, an alternative

hypothesis can now be proposed on how

a cell population supports robust bio-

logical function: Functional robustness is

achieved through the development of a

graded set of cellular responses, rather than

a uniform population response. Analyses

of this type could also be extended outside

the brain to other environments where

cells clearly vary and receive different

inputs. Finally, the identification of cell

type specific gene network topologies

may be facilitated by the organization of

variability in the transcriptional identity

and response of individual cells.

Methods
We collected 300 single neurons lifted
from the NTS of six rats (hypertensive rats
n = 4, normotensive rats n = 2), 220 of

which were collected from hypertensive rats and the remaining 80

individual neurons collected from normotensive rats. Due to the

absence of a perturbation in arterial blood pressure in normoten-

sive rats, Fos+ cells responding to an acute hypertensive challenge

were only collected in hypertensive rats. The anatomical distri-

bution of collected Fos+ neurons within the NTS was consistent

with the extensive literature characterizing Fos expression in the

NTS (Li and Dampney 1992, 1994; Chan and Sawchenko 1994,

1995, 1998; Miura et al. 1994; Graham et al. 1995; Shih et al. 1996;

Chan et al. 1998, 2000). Acute hypertension challenge, immuno-

histochemistry staining, and LCM are described in greater detail in

Supplemental Material and Methods.

Figure 7. Reversible cell states within the phenotype landscape shaping the variability and organi-
zation of single cell states. Contour plots are used to illustrate the concepts of distinct cell states and the
influence that inputs have in determining these states. The contour plots are a projection of the single
cells in the 3D MDS space onto a 2D plane. The landscape topography is based on an inversion of the
probability densities of single cells. Cell states are represented by wells in the landscape and ellipsoid
regions in the 2D contour plot. The colored ellipsoids capture these states and symbolically represent
potential ‘‘attractor’’-like states within this landscape. These contour and landscape topographies
were created for single cells collected from rats undergoing an acute hypertension challenge (A) and
from baseline normotensive rats (B). Comparing these two landscapes (A and B) shows that the well in
which catecholaminergic cells (orange spheres in A and B) lie is much more constrained and local
under the hypertensive challenge than in the baseline state. The changing landscape between the two
physiological states suggests that physiological perturbation (e.g., hypertension) influences not only
the state of the single cells, but the very nature of the landscape in which they exist. Thus inputs have
a significant impact on transcriptional behavior and ultimately the phenotypic state of a cell. (C ) In-
put-based gene expression phenotypes in NTS. Schematic of the influence of various inputs into the
NTS shaping the cellular state and organization within a ‘‘homogeneous’’ single cell phenotype. In-
tegrative inputs place demands on homeostasis such as those conveying visceral states, pain, posture,
exercise, temperature, circadian time, mood etc. NTS neurons must integrate distinct combinatorial
input sets. Our data revealed that gene expression variability across single neurons reflects their
combinatorial inputs.
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High-throughput qPCR

Gene expression levels were measured across four high-through-
put qPCR assay chips on the BioMark (Fluidigm), a highly re-
producible qPCR platform, which has demonstrated minimal
technical variability over five orders of gene expression (Supple-
mental Fig. S1). Additional details regarding the high-throughput
qPCR (Spurgeon et al. 2008) are described in Supplemental Mate-
rial and Methods.

Data normalization

A total of 300 single cells and 96 gene assays were collected, which
were reduced by rigorous quality control (QC) to 192 single cell
samples (41 normotensive samples and 151 hypertensive samples)
and 81 different gene assays that were included in the present
analysis.

Raw Ct values for individual samples were normalized against
an average expression level between Actb and Rpl19 to obtain
a –DCt. A –DCt value (Spurgeon et al. 2008) was used in order to
relate this value to actual gene expression (e.g., a �DCt value of 10
in one cell has higher gene expression than a cell with a�DCt value
of 5 or �2 for a particular gene). The following equation was used
to calculate �DCt:

�DCgene
t ¼ averageðCActb

t ;C
Rpl19
t Þ � Cgene

t : ð1Þ

Actb and Rpl19, included as part of a set of potential house-
keeping genes, were selected based on previously developed
methods (Vandesompele et al. 2002; Andersen et al. 2004). The
–DCt values were used as a measure for relative gene expression
and used as the basis for the analytical methods utilized in this
report.

Principal Component Analysis (PCA)

The pcaMethods package (Stacklies et al. 2007) and associated func-
tions in the R statistical software (R Development Core Team 2013)
were used to perform PCA. A subset of 48 genes was derived as sig-
nificantly contributing to the observed variability, using the five
highest and lowest corresponding loading values along the first five
principal components as a basis for gene identification. For further
details please refer to Supplemental Material and Methods.

Gene correlation networks

The statistical software R was used to determine rank correlation
coefficients between the subset of 48 genes for the six different
single cell ‘‘sub-phenotypes’’ initially identified. A Spearman rank
correlation coefficient cutoff of 0.4 was used to define whether or
not two genes had a correlative relationship. Cytoscape (www.
cytoscape.org) was used to visualize the correlative relationships.

Distance and multidimensional scaling (MDS)

Relative distances between single cells were determined using the
Spearman rank correlations obtained for the set of hypertensive
samples and subset of 48 genes identified from PCA. The following
equations were used to determine distance:

r ¼
+i xi � �xið Þ yi � �yi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+i xi � �xið Þ2 +i yi � �yi

� �2
q ; ð2Þ

where xi and yi correspond to gene expression rank between two
single cell samples;

d ¼ 1� r; ð3Þ

where d corresponds to the Spearman rank distance between two
cells.

The pairwise relative distances between single cell samples
was performed using the stats package provided through the
R statistical software (R Development Core Team 2013).

Nonmetric MDS was performed on single cells in conjunction
with PCA in order to analyze single cells that lie in an n-di-
mensional space (due to the nature of the multiplex gene expres-
sion data). MDS was performed on the single cells obtained from
hypertensive rats since genes were rank-ordered for each sample
(based on �DCt). The MDS would then map the relative distances
between the samples onto a lower-dimensional plane, while
minimizing the error observed between the actual distances in the
n-dimensional space and the lower-dimensional space (i.e., mini-
mizing the stress) (Van Deun and Delbeke 2000). The isoMDS
function provided in the MASS package (Venables and Ripley 2002)
for R platform was used to perform the MDS. Following MDS,
single cell samples were plotted in the lower-dimensional MDS
space with the input-type marker categorization (combinatorial
expression levels of Th and Fos) overlaid on the samples. The first
MDS axis discriminates samples based on the rank-ordering of
expression levels of genes from transcription module 2. MDS axis 2
accounts for biological variability in both hypertensive and base-
line samples (Supplemental Fig. S13), and MDS axis 3 discriminates
cells based on rank expression levels of genes from transcription
module 1. Both two-dimensional and three-dimensional plots
were created via plotrix and rgl packages (Lemon 2006; Adler and
Murdoch 2013) provided by the R statistical software (R De-
velopment Core Team 2013).

Data access
Both raw Ct and –DCt values of samples passing quality control are
included as Supplemental Material (Supplemental Tables S1, S2).
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