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Generalization (or transfer) is the ability to repurpose knowledge in novel settings. It is
often asserted that generalization is an important ingredient of human intelligence, but
its extent, nature, and determinants have proved controversial. Here, we examine this
ability with a paradigm that formalizes the transfer learning problem as one of recom-
posing existing functions to solve unseen problems. We find that people can generalize
compositionally in ways that are elusive for standard neural networks and that human
generalization benefits from training regimes in which items are axis aligned and tem-
porally correlated. We describe a neural network model based around a Hebbian gating
process that can capture how human generalization benefits from different training cur-
ricula. We additionally find that adult humans tend to learn composable functions
asynchronously, exhibiting discontinuities in learning that resemble those seen in child
development.
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It is often asserted that humans are good at adapting to novelty (1, 2). For evidence of
this versatility, we are invited to consider the quotidian activities that most people mas-
ter as adults. Navigating the local environment, managing household resources, and
interacting socially all frequently require flexible responses to novel and unanticipated
challenges. Indeed, success at handling novelty has been touted as a key ingredient in
human intelligence (3–5) and is frequently counterpointed with the narrowness and
rigidity of current Artificial Intelligence (AI) systems (6).
However, while anecdotal evidence of human mental versatility abounds, capturing

this phenomenon in the laboratory has proved remarkably challenging. People can of
course readily perform complex tasks when offered clear instruction in natural language.
However, it is less obvious whether they spontaneously solve new puzzles without verbal
instruction. Dealing with unfamiliar situations requires the repurposing of existing
knowledge and skills to novel settings, which is called generalization or transfer. The
scope and limits of human transfer were the focus of a voluminous literature in cognitive
psychology across the 20th century. Many studies asked whether reasoning puzzles (such
as how to direct X-rays to destroy a tumor) were easier to solve after encountering prob-
lems with an analogous solution (such as how to deploy an army to conquer a fortress).
Prior exposure to test items with common structure sometimes improves performance,
but appeals to transfer have proved hard to disentangle from more mundane explanations
that rely on hints or implicit instructions from the researcher (7, 8). Moreover, the
human ability to handle novelty seems to depend on transfer distance: generalization is
often successful when old and new problems share physical features (near transfer) but
frequently fails when problems share common structure yet are superficially distinct (far
transfer). For example, more than 100 years ago, Woodworth and Thorndike (9) showed
that after extensive training on judging the area of a rectangle, human participants showed
no improvement at judging the area of other shapes. This graded dependence on transfer
distance makes it hard to make concrete claims about whether humans are adept at deal-
ing with novelty and has ultimately led to pessimistic claims that far transfer—moments
of extrapolative insight that link entirely distinct problems—are vanishingly rare (10).
Part of the reason why the detailed study of human generalization yielded unsatisfy-

ing conclusions is that researchers of the 1970s and 1980s lacked a computational lan-
guage for quantifying their study of transfer learning. A relevant framework has arisen
over recent years as transfer learning has become a central topic in machine learning.
Machine learning researchers conceive of learning as an optimization process in which
the parameters of a function are adjusted until inputs are mapped onto desirable out-
puts. In the setting known as supervised learning, learning proceeds by mapping inputs
to ground truth outputs defined by an external oracle or teacher. After being trained
on a task such as object classification, researchers measure network generalization accu-
racy on new, unseen instances of the trained object classes (11). This requires the net-
work to learn a mapping function that is sufficiently smooth to permit interpolation
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(or near transfer) to similar but nonidentical training exemplars,
and a large literature explores the principles that allow this to
occur (12–16).
However, the transfer to wholly novel settings—requiring

extrapolation or far transfer—remains an elusive goal in AI
research. One promising solution revives an old idea in cogni-
tive science, that thought and action are fundamentally compo-
sitional. The hypothesis is that the world is structured so that
new tasks can often be solved by combining old ones, and thus
systems with an inductive bias to explicitly compose new
knowledge and skills from existing building blocks may succeed
in novel settings (17, 18). For example, an agent that learns the
rhythms of jazz and then to play the harpsichord can combine
them to play music by Miles Davis on a 17th-century instru-
ment. Composing behaviors in this way has the merit of limit-
less generativity, which was a fundamental argument for the
compositionality of language put forward by early cognitive sci-
entists (19). However, canonical neural network models do not
naturally exhibit compositional behavior (17, 20) and instead
require architectural innovation (21, 22) or the addition of
neurosymbolic features (23) to solve far transfer tasks.
In the current paper, we set out to study the determinants

and limits of human compositional generalization and how it
might be modeled in a neural network. Participants performed a
task that involved learning the mapping between symbolic cues

(colored shapes) and spatial locations. We trained people on a
subset of the cues and evaluated them on held-out examples.
This allowed us to systematically probe the factors that help or
hinder transfer, including how the training examples are selected
and ordered. We identify conditions under which humans can
generalize but neural networks cannot. We then show how it is
possible to adapt the neural networks to match human perfor-
mance, including their sensitivity to different curricula. Our
results suggest that human transfer is facilitated by composition:
the ability to decompose a problem into distinct factors, which
can then be recomposed to solve novel problems. Together, these
findings provide a robust description of human compositional
generalization and offer a theory that might explain it.

Results

Human participants performed a computerized task. They learned
to drag a pirate figure to a target screen position within a circu-
lar arena in response to a symbolic cue (Fig. 1A). Each cue was
a colored shape. There were five possible shapes and colors,
forming 25 cues in total (Fig. 1C). Each participant performed
14 successive blocks; in each block, participants first received
supervised training (with feedback) on 9 unique cues (training)
and were then evaluated without feedback on the remaining
16 cues (test), each cue being shown exactly once in each block.

A

C

B

Fig. 1. Task and design. (A) Participant view. On every trial, the participant receives a symbolic cue from which they must predict the reward location by
moving a pirate avatar with the mouse. For training locations, the correct location is then shown, and points are awarded based on proximity. (B) Models
used for measuring generalization. Under the random model, any response location is equiprobable. Under the bilateral model, response probabilities are
modeled as a narrow Gaussian centered on the ground truth (defined in Cartesian coordinates for the grid task and in polar coordinates for the polar task).
Our main dependent measure is the LLR of responses under these two models (Eq. 1). (C) Left: Exp. 1 design overview. Mapping (grid or polar) was crossed
with axis alignment in a 2 × 2 design. In axis-aligned curricula, the training locations are sampled from each dimension while holding the other constant; in
axis-misaligned curricula, both dimensions vary at once during training. The ground truth locations for each condition are shown. Superimposed numbers
show an example temporal ordering of cues. Training locations are indicated with a white background and test locations are indicated with a gray back-
ground for visualization purposes. Right: Exp. 2 design overview. Mapping (grid or polar) was crossed with an axis-aligned blocked vs. interleaved curriculum
in a 2 × 2 design. In blocked curricula, all instances from a single dimension are trained together; in interleaved curricula, training examples are randomly
ordered. Example ground truth locations are displayed in each condition. Superimposed numbers show an example temporal ordering of cues.

2 of 12 https://doi.org/10.1073/pnas.2205582119 pnas.org



Importantly, training and test examples occupied distinct loca-
tions, so knowledge obtained during training had to be general-
ized during testing. Between groups, we manipulated the mapping
from cue to position. In the grid mapping, each color and
shape signaled a ground truth position on horizontal (row) and
vertical (column) axes, whereas in the polar mapping, the cues
signaled ground truth positions in polar coordinates so that
each shape indicated a level of expansion from the center (ring)
and each color indicated a degree of rotation (or spoke), or vice
versa. We also varied the curriculum specifying which nine
cues were chosen for training and their presentation order.
On test trials, generalization required participants to com-

bine information about two spatial factors (horizontal and ver-
tical coordinates in the grid mapping or radius and azimuth in
the polar mapping). We predicted that if participants focus on
one factor at a time, decomposing the mapping into two func-
tions during training, they will more readily recompose the fac-
tors during testing for successful transfer. Thus, in Experiment
(Exp.) 1 (n = 304), we compared human and network perfor-
mance as a function of whether training examples were aligned
(examples within an axis involved changes in only one feature,
e.g., selected from the central row and column in the grid task)
or misaligned (selected from the diagonals) to the spatial axes.
Our analyses focus on generalization performance among a sub-
set of participants who met a performance criterion during
training (n = 235; see Methods and SI Appendix for analysis of
training data in the full cohort). For axis-aligned groups, the
nine training trials in each block were selected such that first one
row/column was sampled and then the other, with the overlap-
ping item always shown in intermediate position 5 (Fig. 1C). In
other words, we selected all possible shapes of a single color and
a single shape in all possible colors as training examples. For
axis-misaligned groups, we selected first one diagonal and then
the other in a comparable fashion so that shape and color varied
together. The logic of this comparison between axis aligned and
axis misaligned was that if humans generalize compositionally,
they will benefit from a training regime that emphasizes in turn
the individual factors from which the state space is composed
and thus perform better in axis-aligned conditions. We also
applied these curricula to the polar mapping by substituting row
and column for ring and spoke.
To allow for fair comparison of errors between conditions, for

all analyses, we compared the likelihood of test trial responses
under a random model with that under a model describing
appropriate ground truth generalization (we are using these mod-
els as analytic tools rather than mechanistic theories of how peo-
ple behave). We call the latter a bilateral model as it assumes
generalization using both factors (shape and color), effectively
functioning as an oracle, but with Gaussian noise. In the bilateral
model, probability mass is a Gaussian distribution centered on
the single ground truth location. Under the random model,
every possible response location in the arena is equiprobable,
modeled by the uniform distribution. Our dependent measure
for all analyses is a log-likelihood ratio (LLR):

LLR = log
pðbilateral jresponsesÞ
pðrandomjresponsesÞ

� �
[1]

where log() denotes the natural logarithm. A detailed description
of these models can be found in SI Appendix, Model Fitting (also
Fig. 1C). When examining test trials using this metric, LLR > 0
signals evidence for generalization. We note that under this
metric, heuristic strategies such as matching to location associated

with the nearest training location do not yield spuriously positive
generalization.

Neural networks received color/shape values as inputs and were
trained and evaluated using the same cyclic schedule as humans.
The networks were also equipped with output effectors that
moved the cursor across the screen by directly mapping output
unit activations onto horizontal and vertical translation, rotation,
and expansion within the spatial arena. Their resulting perfor-
mance is summarized in Fig. 2A (Top, columns 1 to 4), where
we plot the average LLR on training trials (x axis) vs. test trials
(y axis). For convenience, we define generalizers as networks (or
participants) that were on average better fit by the bilateral
than the random model on test trials across the second half of
the experiment (mean LLR > 0 on training blocks 8 to 14).
Although training LLR values were positive in the later blocks
for all 208 networks in all four conditions, the networks gener-
alized poorly. According to our criterion, in the grid mapping,
we observed 0/63 generalizers in the aligned curriculum and
24/61 generalizers in the misaligned curriculum, whereas in the
polar mapping, we saw no generalizers under either curriculum
(Table 1 for full details). The change in performance over time
on test trials for standard (vanilla) neural networks is shown in
Fig. 2B (Top, columns 1 to 4). We show the change in perfor-
mance over training blocks in SI Appendix, Fig. S1.

Humans, however, exhibit a very different pattern of behav-
ior. In Fig. 2A (Middle, columns 1 to 4), we plot LLRs from
human training and test trials on Exp. 1. Like neural networks,
all human participants converged to LLR > 0 on training trials
under all curricula and both grid and polar mappings. This was
partly by design: we excluded participants who did not reach a
fixed training criterion (see Methods). Human generalization
performance was heterogenous but was much better than that
of neural networks. In all four conditions, human generaliza-
tion performance (mean test LLR) was greater than that of neu-
ral networks (Wilcoxon sign-rank test, all P < 0.001). In the
grid aligned condition, 47/64 participants were generalizers,
whereas only 21/61 participants were generalizers in the grid
misaligned condition (χ2 = 20.2, P < 0.001). In the polar
mapping, performance was better overall, but numerically,
more participants generalized under the aligned curriculum
(49/58 vs. 39/56; χ2 = 3.6, P = 0.06). A nonparametric boot-
strap test on LLR values across the cohort also favored the
aligned over the misaligned curriculum under both grid mapping
(LLR = 91.3 vs. �381.4; P < 0.001) and polar mapping
(LLR = 240.0 vs. 68.8; P < 0.03). Thus, humans generalized
better than neural networks, and humans, unlike neural networks,
tended to benefit from an axis-aligned selection of training trials.
Learning dynamics for humans are shown in Fig. 2B (Middle);
see also Fig. 3C and Table 1 for a summary of the findings.

Why did axis-aligned training help? We note that in Exp. 1,
axis-aligned and axis-misaligned curricula differ in at least two
ways. First, the precise training and testing items are different
between conditions. Second, the order in which items occur is
different, with the aligned curriculum ensuring that consecutive
trials share a dimension value (row, column, spoke, or ring)
and the misaligned curriculum ensuring that both spatial
dimensions change from trial to trial. To tease these factors
apart, next we asked whether a comparable benefit was
obtained when stimuli are drawn exclusively from an aligned
axis but manipulating whether they were drawn in a temporally
correlated fashion, i.e., when cues are blocked rather than inter-
leaved across a dimension (Fig. 1C).

In Exp. 2 (n = 301; n = 242 included for analysis of general-
ization), we always used axis-aligned training locations but
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compared two curricula which differed only in the presentation
order of the training locations. In the blocked condition, all
training locations belonging to one axis were shown before pro-
ceeding to the other axis. For example, a participant in the grid
task would receive feedback on an entire row and then on an
entire column (or vice versa) in any given block. By contrast, in
the interleaved condition, training locations were selected from
a single row and column but presented in a fully random order.
For generality, we sampled training trials from a random ring/
spoke or row/column (unlike in Exp. 1, where training trials were

always drawn from the central axes). The results for human partic-
ipants are shown in Fig. 2A (Middle, columns 5 to 8). Using the
same classification criterion (based on LLR in the second half of
the experiment), we observed that in the grid mapping, 47/58
human participants were generalizers under blocked conditions
but only 36/60 human participants were generalizers under inter-
leaved conditions (χ2 = 6.3, P < 0.02). In the polar mapping, we
observed more marginal findings based on this binary classification
alone, with 57/62 generalizers in polar blocked relative to 48/60
generalizers in polar interleaved conditions (χ2 = 3.6, P = 0.06).

Fig. 2. Data from Exp. 1 and Exp. 2. (A) Plots of average train vs. test LLR for vanilla neural networks (Top), humans (Middle), and Hebbian gating networks
(Bottom; see below). Columns 1 to 4 are from Exp. 1; columns 5 to 8 are from Exp. 2. Each dot is a participant or network colored by whether they were
denoted generalizers (dark lines) or not (light lines) for grid (blue) and polar (purple) mappings. (B) Learning dynamics, with the test LLR per condition as a
function of the experimental block in Exp. 1. Dots are individual participants, and lines are averages of generalizers (dark) or nongeneralizers (light), with
line thickness proportional to the number of participants being averaged.
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Bootstrap tests again showed an advantage for blocking in both
grid (LLR = 119.1 vs. �179.1; P < 0.002) and polar (LLR =
270.7 vs. 146.6; P < 0.04) mapping conditions. By contrast,
neural networks exhibited no benefit of blocking, and their
generalization was overall poorer than that of people (Fig.
2A,Top). Only 1/58 and 13/62 networks generalized in the
grid and polar blocked conditions, whereas 0/60 and 14/60
generalized after interleaved training in grid and polar condi-
tions, respectively χ2 < 1.1, P > 0.3 in both cases .
We wondered whether these effects might depend in part on

participants’ prior assumptions about how the stimuli should
be organized in this space. Thus, we collected data on a pre-
experimental task in which the 25 cues were placed randomly
in a circular arena and participants were asked to arrange them
according to their similarity using drag and drop with the
mouse. We found that while a grid arrangement was the most
popular (observed for 266/476 participants total), we also
observed nongrid schemes, including random, circular, and
polar arrangements. Participants who created a grid-like
arrangement in the pretask had higher test LLRs in the grid
task than those who did not, while performance on the polar
task was unaffected by grid priors. However, the curriculum
effects in both Exp. 1 and Exp. 2 continue to hold even in the
subpopulation who created a grid scheme and thus likely
already had grid-like priors. As polar arrangements were very
rare in the pretask (observed for 8/476 participants), no parallel
analysis was carried out for this subpopulation. We describe
these findings in detail in SI Appendix, Figs. S2 and S3.

Computational Theory of Curriculum Effects. Above, we report
two main observations. First, most participants can generalize in
both grid and polar tasks, whereas (without additional assump-
tions) neural networks do not. Second, human generalization
benefits from both axis-aligned and blocked training curricula.
We conjectured that these manipulations allow participants to
focus on a single dimension at a time and thus to learn a func-
tion that factorizes the two relevant dimensions (e.g., color, hori-
zontal and shape, vertical). Our next goal was to identify the
minimal constraints that could be placed on the neural network
model to make it display the same pattern of generalization as
humans, including sensitivity to curriculum.
Building on both recent (24) and more established (25) find-

ings, we propose a solution that combines error-driven training
with Hebbian learning. In this Hebbian gating network, units
are connected by two sets of weights (Fig. 3A). The feedforward
weights W are trained with stochastic gradient descent (SGD)
as in the vanilla neural network. The Hebbian weights U

(which are separately trained) gate the feedforward weights, so
only a subset of connections is active on the forward pass:

ẑ = WgτðU Þx , [2]

where x is the two-hot vector of input features; ẑ is the output
vector of spatial displacements (from the center of the arena) in
the four spatial dimensions transx , transy ,ρ, and ϕ (horizontal
translation, vertical translation, expansion, and rotation); and
gτðU Þ binarizes U with respect to a gating threshold τ.

On each training trial t , the Hebbian weights are updated in
proportion to the coincidence in discrepancy (or temporal differ-
ence) between inputs and outputs. Thus, we define input and
output surprise vectors Δxi,t = d ðxt , xiÞ and Δzi,t = 1ðzt ≠ ziÞ,
where xi is a previous trial from the same training block and
d ð�, �Þ is a function that computes the absolute difference (SI
Appendix, Eq. S3); 1(expression) is an elementwise indicator func-
tion, defined to be 1 if the expression is trues and 0 otherwise.
We update using a form of Hebbian learning that involves both
positive and negative updates, the latter of which is known as
preactivated depression (26):

U = U + αU ∑
t�1

i=1

λt�i

∑t�1
j=1 λ

t�j
ðΔU exc

i,t + ΔU dep
i,t Þ

" #
[3]

ΔU exc
i,t = ½Δxi,t ⊗ Δzi,t �Δð1� U Þ [4]

ΔU dep
i,t = ½Δxi,t ⊗ 1�ΔU , [5]

where ½�� denotes the dot (elementwise) product, [⊗] denotes
the outer product, 1 is the vector [1 1 1 1], and α is a small
learning rate. The relative contribution of each training trial i to
the total Hebbian weight update is determined by a discount
factor λ, resulting in larger updates for comparisons with more
recent trials.

The Hebbian gating network is illustrated in Fig. 3A, and
the convergence values for the Hebbian weights in different
curricula are shown in Fig. 3B. The feedforward weights W
begin by being fully gated. However, gates gradually open up
between inputs and outputs that change together. Thus, if,
over the course of a block, input xi and output zj (e.g., a color
feature and a horizontal location) are consistently changing
together from trial to trial, then this Hebbian connection is
strengthened, allowing supervised learning to proceed. The
model thus implements a simple principle: that by detecting
variables that change together over time, we can constrain the
solution space for function learning to a small set of generaliz-
able factors.

Table 1. Statistical summary of empirical results

Humans Vanilla neural network Hebbian gating network

Exp. Condition N Mean test LLR (SD) p* Mean test LLR (SD) p* Mean test LLR (SD) p*

1 Grid aligned 63 91.33 (586.39) <0.0001 �360.31 (74.11) 1.0000 �126.91 (340.99) 0.0027
Grid misaligned 61 �381.42 (528.11) �94.61 (59.37) �345.31 (490.55)
Polar aligned 58 240.08 (415.61) 0.0256 �601.51 (70.54) 1.0000 121.23 (246.04) <0.0001

Polar misaligned 56 68.82 (521.11) �427.61 (41.10) �645.46 (292.47)
2 Grid blocked 58 119.10 (499.39) 0.0019 �546.40 (164.18) 0.8937 53.44 (280.44) 0.0156

Grid interleaved 60 �179.12 (576.63) �507.05 (176.52) �65.65 (305.99)
Polar blocked 62 270.66 (368.15) 0.0389 �352.15 (223.49) 0.4476 174.91 (261.81) <0.0001

Polar interleaved 60 146.52 (383.28) �357.62 (216.58) �84.23 (297.74)

*One-sided bootstrap test.
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The Hebbian gating network was able to generalize and to
recreate the pattern of successful human performance in grid
and polar conditions (Fig. 2 A and B, Bottom). Moreover, using
the same set of hyperparameters for all conditions, the model
qualitatively reproduced the curriculum effects observed for
human learners (Fig. 3B), with the exception of the polar mis-
aligned condition from Exp. 1, where the Hebbian gating

network generalized more poorly than did humans (Fig. 2 A
and B). Overall, from Exp. 1, 52/63 networks were generalizers
in the grid aligned condition, whereas only 32/61 networks
were generalizers in the grid misaligned condition (χ2 = 12.8,
P < 0.001). For polar mapping, the corresponding proportions
were 52/58 and 8/56 for aligned and misaligned conditions,
respectively (χ2 = 64.9, P < 0.001). Similarly, in Exp. 2, there

Fig. 3. Hebbian gating model. (A) Illustration of the vanilla neural network (Left) and the Hebbian gating model (Right). The Hebbian model consists of a
vanilla neural network augmented by a set of Hebbian weights, which act as a gating signal. (B) Hebbian weights at convergence in each condition. The plot
shows the probability of exceeding the threshold τ at the end of training. The boxes with a red outline are ground truth mappings. Top: Exp. 1. Bottom:
Exp. 2. (C) Average LLR on test blocks per condition in Exp. 1 for the vanilla neural network (Left), human participants (Middle), and the Hebbian gating net-
work (Right). Gray dots are single participants or networks. Top: Exp. 1. Bottom: Exp. 2.
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were 47/58 generalizers in the grid blocked condition and
45/60 generalizers in the grid interleaved condition, with 52/62
and 43/60 respectively for the polar mapping; this difference
was not significant. However, bootstrap tests revealed an advan-
tage for aligned over misaligned curricula in grid (LLR =
�126.9 vs. �345.3; P < 0.005) and polar (LLR = 121.2 vs.
�645.4; P < 0.001) mapping conditions and, similarly, an
advantage for blocked over interleaved curricula in both grid
(LLR = 53.4 vs. �65.7; P < 0.02) and polar (LLR = 174.9 vs.
�84.23; P < 0.001) mappings.
We also considered other neural network models, including a

standard multilayer perceptron, with a hidden layer and outputs
that mapped to Cartesian coordinates, and another network
which learned separately about shape and color, embedding
them in a common hidden layer. None of these alternatives,
which are described in SI Appendix, Figs. S4 and S5, were able
to recreate the observed pattern of human data.

Asynchronous Generalization. The theory outlined above pro-
poses that humans (and Hebbian networks) learn to factorize the
mapping problem into two subproblems, one for each dimen-
sion of the cue. Thus (for example, in the grid task), participants
might learn independently that color maps onto horizontal loca-
tion and shape maps onto vertical location by tracking the coin-
cidence in change among these input and output dimensions. If
so, it may be the case that participants’ generalization exhibits an
asynchronous trajectory, whereby in between random and bilat-
eral policies, they exhibit a unilateral policy in which a single
dimension has been learned. We tested this by fitting a family of
models that additionally comprised a unilateral stage, plotting
the patterns of errors that participants made sorted by model
attribution. As for the analyses above, these were conducted only
with participants who met our training criterion (n = 478 total
across Exp. 1 and Exp. 2).
We fit participants’ choices on test trials using models that

relied on combinations of random, unilateral, and bilateral gener-
alization policies. Under a unilateral policy, the probability density
for a response is consistent with the ground truth for one dimen-
sion (e.g., a row) but uniform over the other. Thus, for example,
the likelihood of each response is calculated with response to an
entire row, column, ring, or spoke, rather than a unique location
(Fig. 4A). Using Bayesian Model Selection (27), e first compared
models that either were completely random throughout or
involved multiple consecutive stages, i.e., a random-bilateral or
random-unilateral-bilateral model. Across the entire cohort, the
random-bilateral model provided the best explanation of the data.
However, 38% of participants exhibited the highest posterior
probability for a model included a unilateral stage (and only 18%
were fit best by a purely random model). We show the expected
frequencies and posterior probabilities for each model in Fig. 4B.
To ask whether a unilateral policy was observed with greater likeli-
hood than chance, we created a simulated cohort whose perfor-
mance was matched block by block to our participants but whose
policy was constrained to lie on the random-to-bilateral axis (see
Methods). We fit an exhaustive set of models, which involved
ascending transitions among these stages—four of which
involved a unilateral stage funilateral, random-unilateral, uni-
lateral-bilateral, random-unilateral-bilateralg and three which
did not frandom, bilateral, random-bilateralg—to both human
and simulated datasets. Over the entire cohort, 277 participants
(43%) were fit best by models that comprised an interim uni-
lateral stage, whereas only 75 (16%) of the simulated partici-
pants were better fit by unilateral models (χ2 = 183.5, P <
0.001). We did not observe differences in the counts of human

participants using a unilateral strategy in each mapping or cur-
riculum condition in either Exp. 1 or Exp. 2 (all χ2 < 3.3, all
P > 0.07). These data are shown in Fig. 4C.

Another way to diagnose the existence of a unilateral stage in
behavior is to compute the change in error magnitude for each
dimension (horizontal vs. vertical translation and rotation vs.
expansion) and to ask whether they decline together across
blocks (as predicted by a solely bilateral account) or at different
times (as predicted by the unilateral model). Using half of the
test data (odd trials), we fit sigmoidal functions separately to
error magnitude over time and identified the best-fitting inflec-
tion points for dimensions i and j (in the grid mapping condi-
tions) and dimensions ρ and ϕ (in the polar mapping case).
This allowed us to order the dimensions into earlier and later
for each participant and use the other half of test data (even tri-
als) to compare the fitted inflection point for independently
defined earlier and later dimensions. This procedure was then
repeated, now using even folds to determine direction and odd
folds to determine amounts. The average of both outcomes was
then used for each participant. If the errors decline in parallel
for each dimension, we expect no consistent difference in
switch points between the two dimensions; if there is a unilat-
eral stage, we expect consistent earlier and later attributions for
odd and even trials. The latter is what we found. Inflection
points were consistently earlier for the early dimension in held-
out trials (median = 10 ± 32.5 trials; bootstrap test, P < 0.001),
and this effect was stronger for participants than in error-
matched simulated controls (median = 0 ± 32.9; bootstrap test,
P < 0.001). We plot the distribution of inflection points, and
their differences, in Fig. 4D. Finally, in Fig. 5, we plot data from
107,072 responses made by all 478 participants across our experi-
ments, sorted by model attribution, which shows the pattern of
unilateral and bilateral responses in both grid and polar mappings
(SI Appendix, Fig. S6 for the equivalent data divided by curricu-
lum and mapping).

Finally, we explored the temporal relationship between learn-
ing and generalization. Did test performance lag behind training,
or is learning immediately mobilized for generalization? To test
this, we computed ΔLLR, the change in LLR from block to
block for training and test trials, and compared them for each of
the eight curriculum and mapping conditions across two experi-
ments (we limited this analysis to generalizers). Although, as
expected, there was a reliable main effect of the block in each
case (as learning saturated over time; all F > 6.8, all P < 0.001),
there were no interactions between block and condition ftrain,
testg (all F < 2.2, all uncorrected P > 0.05). We plot ΔLLR for
each block and condition in SI Appendix, Fig. S7.

Discussion

We studied the nature, determinants, and limits of human
transfer learning and how it can be modeled with a neural net-
work. We designed a task that required participants to learn
and generalize a mapping function from symbolic cues to spa-
tial locations. On test trials, participants were faced with novel,
unseen cues but could solve the task by linearly composing pre-
viously learned mapping functions. We found that while there
was heterogeneity in human generalization, in total, 72% of
our participants showed above-chance performance on test
blocks from the second half of the experiment. This contrasted
sharply with just 11% of vanilla neural networks.

We studied human learning using a supervised task. A large
literature has previously studied how humans learn from super-
vision, with a focus on category learning, in which participants
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Fig. 4. Unilateral errors and modeling setup. (A) Probability mass functions under random, unilateral, and bilateral models for an example location
(Right, highlighted) in the grid task (Top) and polar task (Bottom). Hot colors are areas of higher probability density. These models were fit to individual
subjects, where we allowed switches between models but only in ascending order of number of dimensions learned. Full details on these models are pro-
vided in SI Appendix, Model Fitting. (B) Left: Expected number of participants best fit by a random model (rnd), a random-bilateral model (rnd-bi), and a ran-
dom-unilateral-bilateral model (rnd-uni-bi; expected model frequencies from Bayesian model selection). Error bars are 1 standard error of the mean.
Right: Model attributions (per-model posterior probabilities for each participant). (C) Marginal posterior probability of a unilateral stage for each human
participant (blue violin plot, Right) and simulated participants constructed to follow a rnd-bi policy (orange violin plot). A distribution of bootstrapped dif-
ferences in means between groups is included, whose black bars represent the 95% confidence interval. Right: Cross-validated (CV) difference in per-
dimension switch points (i.e., midpoint of a growth curve for the mapping of each dimension to a spatial variable) for simulated and real subjects. Only
subjects whose best-fitting model order included the bilateral model were included.
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Fig. 5. Individual responses under each model. (A) Each plot exhaustively shows responses made by participants in blocks classified as random, unilateral
(dimension 1 or 2), and bilateral (columns) for the grid task (rows). Top: Dots are colored according to the ground truth horizontal translation. Bottom: Same
responses, but colored according to the ground truth vertical translation. Right: Key. (B) Similar to A but for the polar task. Responses are colored according
to ground truth eccentricity (Top) or rotation (Bottom). (C) Example responses from individual participants for different mappings and curricula (columns)
and model assignments (rows). Dots are colored according to the ground truth spatial dimension indicated by the symbolic cue (red to blue in dimension 1
and light to dark in dimension 2; black dots are training responses). All responses made in the last stage of the best-fitting model order for the participant
in question (e.g., bilateral if the order was random-unilateral-bilateral) are displayed. The bar underneath shows the model assignation over blocks (light
gray, random; gray, unilateral; black, bilateral) for the participant in question.
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typically learn to discriminate multiattribute stimuli with
respect to a bound (28). In this literature, humans learn dis-
crimination boundaries more readily if they are parallel to the
input axes, mirroring the benefits of axis-aligned training
observed in our paradigm (29). Neuropsychological work has
motivated the theory that axis-aligned boundaries permit rule-
based categorization, which recruits flexible task representations
in the prefrontal cortex, complementing habitual visuomotor
association learning in corticostriatal circuits (30). Several neu-
robiologically informed models of rule-based learning have
been proposed, including one that (like our account) relies on a
combination of error-driven and Hebbian learning (25). How-
ever, it is unclear how readily these models can be adapted to
allow rule composition in a transfer learning setting, where
choosing the correct response explicitly involves extrapolating
beyond the training distribution, which is the challenge that we
tackle here. However, it seems plausible that the compositional
behavior we observe in human participants relies on the integ-
rity of the prefrontal cortex.
We formalized transfer learning in an uninstructed task that

afforded careful control over the relationship between training
and transfer. This allowed us to alternate between training and
test trials, and thus model the emergence of learning and generali-
zation over time, and to control the mapping and curricula,
allowing us to assess how they influenced human transfer. Our
results reveal nontrivial human generalization in a laboratory-
based experiment. By nontrivial, we mean that 1) the generaliza-
tion involves extrapolation (via composition), rather than mere
interpolation (far, rather than near, transfer); 2) it cannot be
described as a demand characteristic of the experiment; and 3) it
is a behavior that clearly is not shown by vanilla neural networks.
We note that the vanilla neural networks do not fail to solve

the generalization problem because they lack appropriate (or
human-like) priors for the task. In fact, we equipped them with
a rich set of spatial effectors so that outputs directly mapped
onto horizontal and vertical translation, expansion, and rotation
within the arena. This distinguishes our work from previous
comparisons of humans and neural networks (31). Instead, the
vanilla networks failed because there are many possible mappings
that solve the training task. In each task (grid and polar), only
one of these mappings allows for compositional generalization:
in grid, that which privileges horizontal and vertical translation,
and in polar, that which privileges expansion and rotation. To
successfully generalize, humans must have an inductive bias to
infer which pair of spatial effectors is appropriate for each task.
This is a bias that is lacking in vanilla neural networks.
Hints as to the nature of this bias were offered by data on

how human generalization performance varied with curriculum.
During training, manipulations that allowed symbolic features
(e.g., red color or crab shape) to be clustered in time—through
axis alignment and temporal autocorrelation—consistently
improved generalization success. It seems likely that these con-
ditions promote the learning of factorized mapping functions
(e.g., color maps to horizontal translation and shape maps to
vertical translation) in a disentangled fashion. The idea that
learning and generalization require factorization and disentan-
gling is a popular theme in current machine learning (32).
To test this idea, we built a neural network model that used

Hebbian learning to gate forward inference. The Hebbian
weights were updated when there was a coincidence in tempo-
ral difference between input and output features, biasing learn-
ing toward input-output connections that covary together
within a consistent time window. This principle was sufficient
to allow the network to learn and generalize in ways that closely

resembled humans and to recreate the effects axis alignment
and temporal autocorrelation on generalization success.

The idea draws upon several established themes in psychol-
ogy and neuroscience. On a computational level, the idea that
the brain uses temporal correlations to extract invariant infor-
mation during sensory representation learning is the basis for
slow feature analysis (33) and related approaches based on tem-
poral stabilization (34, 35). However, rather than serving as a
principle for local unsupervised representation learning, we
assume that temporal correlations help shape a series of gates
on the forward pass through the network, acting akin to an
attentional filter or control process. Another way of thinking
about the computation principle described here is in terms of
causal learning and hypothesis testing (36): by learning the rela-
tionship between two factors without additional confounding
variables, one can identify simple theories that lend themselves
to induction. This sort of scientific reasoning was the corner-
stone of Piaget’s notion of formal operations and has been
argued to be a uniquely human trait (2). Finally, our idea has
antecedents in the category learning literature, where temporal
autocorrelation of classification rules allows tasks to be learned
with minimal interference (37). This phenomenon can simi-
larly be modeled using a Hebbian gating process (24). Indeed,
the comparison process here is reminiscent of theories of cate-
gory learning that rely on encoding similarities and differences
between temporally proximal items (38) so that blocking high-
lights within-category similarity while interleaving highlights
between-category differences (39).

We note that the Hebbian network was not a perfect mirror of
human performance. It performed more poorly than human par-
ticipants on misaligned trials both at training and at testing. In
part, this is because we excluded humans who failed the training
task; in fact, analysis of training data indicated the most exclusions
from the misaligned conditions. However, the Hebbian network
learned poorly in the misaligned condition where the Hebbian
weights remained small (Fig. 4C). When faced with multiple,
rapidly varying pieces of evidence, people struggle to learn links
between the attendant variables, failing to latch on to a hypothe-
sis as the evidence changes quickly. But in its current form, the
Hebbian network is prone to overstate these costs. It may well
be that people can use other mechanisms, for example, those
that rely on hippocampal memory, to bootstrap learning more
effectively under misaligned curricula.

An interesting incidental finding was the presence of unilat-
eral errors. It has previously been suggested that human learners
attend to a single axis at any given time (40) and that shifts of
attention to a single dimension may have theoretical benefits for
learning (41). In fact, the idea that humans solve complex prob-
lems by breaking them down into simpler parts has a long tradi-
tion in cognitive science. During scientific reasoning, people
tend to test hypotheses by manipulating one variable at a time
(42, 43) and may learn causal associations locally, assuming that
variables that change together or share a common cause are nec-
essarily causally linked themselves (44). People are also prone to
entertain a single causal model at a time, leading to overly incre-
mental updates to inferred structure (45), a tendency to infer dis-
crimination boundaries one by one (46), or more generally a
positive test strategy (47). These phenomena are often attributed
to resource rationality, whereby the best possible policy is pur-
sued given limits on cognitive capacity, but our work suggests an
alternative: local learning may be beneficial where it allows sim-
ple rules to be composed to allow extrapolation away from the
training data (48). By contrast, in a vanilla neural network
trained from small weights, learning proceeds strictly in parallel
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across different dimensions: training more efficiently when con-
texts are interleaved rather than blocked, while the converse
applies to humans (37), and failing to show the sorts of extrapo-
lation observed in our human cohort.
Our work establishes that human learners can benefit from

temporally segregated training on cleanly dissociable task fac-
tors and offers a computational theory that explains this. Nev-
ertheless, there are alternative mechanisms that cannot yet be
dismissed. The theory embodied by our Hebbian model is that
coincidence in temporal difference allows the gates of learning
to open. However, given that our symbolic cues had only two
dimensions, we cannot rule out the possibility that people are
in fact prone to learn from coincidence in stability (i.e., to
form associations between dimensions, both of which do not
change) rather than coincidence in change. In our study, this
mechanism would have worked equally well. A task involving
symbolic cues with three dimensions could be used to arbitrate
among these possibilities.

Materials and Methods

Participants. In total, 605 subjects (293 female and 312 male) participated in
the studies described here. Participants were recruited on the crowdsourcing
platform Prolific and were rewarded £9, plus a performance-based bonus of up
to £6. An age range restriction of 18 to 40 y was applied, and participants were
required to have a submission approval rate of at least 85% over at least five
prior submissions. All experiments were approved by the Medical Sciences
Research Ethics Committee of the University of Oxford (approval reference
R50750/RE001). Before starting the experiment, informed consent was taken
through an online form, and subjects indicated that they understood the goals
of the study, how to raise any questions, how their data would be handled, and
that they were free to withdraw from the experiment at any time. Data rejection
was based on training accuracy in the second half of the experiment. This
allowed us to exclude participants in a way that was independent of our main
dependent measure (generalization performance). Throughout the experiment,
responses were considered to be correct (and positive feedback was awarded) if
they were within a Euclidean distance of 60 pixels of the ground truth. As the dif-
ficulty of learning the training locations was not necessarily identical between
conditions, our rejection criterion was based on the within-condition median
absolute deviation, using the default scale constant of b = 1.4826 (49), and a
rejection threshold of 3 median absolute deviations, described as very conserva-
tive in the same source. Application of this criterion resulted in a total of 127
rejections (Table 2). There was no significant difference in number of participants
excluded in either grid conditions (χ2 = 0.23, P = 0.63) or polar conditions
(χ2 = 1.15, P = 0.28). The training task was relatively straightforward and
involved learning between nine cues and nine locations over 126 trials. We
assumed that participants who failed to learn these mappings during training
may have been paying less attention to the task, in particular as our data were
collected online.

Procedure. Trials began with a central fixation point, which was on-screen for
1,000 ms. After this, a large version of the symbolic cue was presented in the
center of the screen for 1,000 ms. Then, this was replaced by the circular
response area, with an image of a pirate in a randomized starting location.
A smaller version of the stimulus was displayed above the response arena for
the remainder of the trial. The response arena was a circle with a radius of
265 pixels, delimited by a black perimeter line. A single dot was displayed in

the center of the response space as a reference point. Participants responded by
dragging the pirate within the arena using the mouse and pressing the d button
to confirm their response location. If this did not occur within 4 s, a visual timer
appeared, which gradually diminished in length. From onset, it took 20 s for
this timer to fully deplete. At this point, no response was logged if the pirate
was still in the starting position. If the pirate had been moved, its current posi-
tion was taken as the participant’s response. Upon timeout or response, the
pirate disappeared, and a black dot appeared in its place, more precisely indicat-
ing the response location. On generalization trials, this lasted 1,600 ms. On
feedback trials, this lasted 300 ms, after which an X indicating the ground truth
location was added to the display. After another 300 ms, three concentric circles
appeared around the X for 1,000 ms, indicating the maximum range at which
points would be rewarded. On either trial type, the previous feedback then dis-
appeared and was replaced by the text “no feedback,” the text “incorrect,” or a
treasure chest and the number of points earned on that trial, as appropriate. This
feedback was displayed for 1,300 ms, after which the trial was concluded. If any
trials remained in the current block, this was followed by the fixation stage of
the subsequent trial, which served as an intertrial interval.

Points were awarded as follows: 5 points were awarded if the distance
between response and ground truth location was less than 20 pixels, 2 points
were awarded for a proximity of 20 to 40 pixels, 1 point was awarded for a prox-
imity of 40 to 60 pixels, and 0 points were awarded otherwise. The three concen-
tric circles displayed on feedback trials indicated the ranges at which 5, 2, or 1
points were awarded, and participants could see how many points they earned
by which of the three circles was highlighted (or none in the case of no points).
The number of points obtained during feedback trials in the current block was
displayed on-screen. Participants were instructed that although they would not
see how many points they earned during trials for which no feedback was pro-
vided, their performance on these trials would contribute toward their bonus
payment. The bonus payout was the number of points earned in a block, with a
rate of 1 penny per point, up to a maximum of 36 pence per block. In addition,
subjects earned a £1 bonus for completing the stimulus dissimilarity rating task
prior to the main experiment.

Each experiment consisted of 14 blocks. In each block, each of the 25 sym-
bolic cues was queried exactly once. In the first 9 trials of each block, the training
locations were queried, whose order obeyed a condition-specific curriculum,
detailed in the next section. In the last 16 trials of each block, test locations were
queried in randomized order. Between blocks, a pause screen was shown, dis-
playing the bonus earned by the subject on the previous block and their accu-
mulated total bonus. The participant could continue to the next block when
ready by clicking the space button. Mapping of the stimulus dimension onto the
rule type and ordinal mapping of the dimension levels to the rule magnitudes
were randomized between subjects. In the polar task, the ground truth locations
were randomly rotated per subject but were derotated into a common space in
our visualizations.

Experimental Design. Data from a total of eight (between group) conditions
were collected, which are reported here in two experiments. Each experiment
crossed a curriculum condition with the (grid or polar) mapping condition in a
2 × 2 between-group design. Exp. 1 tested the effect of axis alignment. In
the aligned curriculum, feedback was provided for the central two axes: the
central row and column in the grid task or the central ring and one spoke in
the polar task. This meant that the set of training locations contained all
shape levels for a single color and all color levels for a single shape (e.g., all
red stimuli and all crabs). As different stimuli within an axis involved changes
in only one rule, we consider the stimulus dimensions and rules to be aligned
in this setup. In the misaligned curriculum, the stimulus axes were misaligned
with the rule space, forming an X shape in the grid task and an equivalent in

Table 2. Exclusion counts per condition

Task Grid task Polar task

Condition Aligned Misaligned Blocked Interleaved Aligned Misaligned Blocked Interleaved

Total subjects 73 79 76 74 75 77 76 75
Subjects rejected 13 16 15 16 19 19 16 13
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the space of the ring/spoke in the polar task. Exp. 2 tested the effect of blocked
vs. interleaved presentations. In these experiments, feedback was provided for
a random row and column (grid task) or a random ring and spoke (polar task).
Again, the first nine trials of each block queried the training locations. In the
blocked curricula, trials 1 to 4 queried the locations from one axis, trial 5 que-
ried the location shared between training axes, and trials 6 to 9 queried the
locations from the other axis. The axis that was queried first alternated between
blocks, with the dimension that was queried first in block 1 randomized
between participants. In the interleaved curriculum, training locations were
presented in a randomized order. The curricula in Exp. 1 were always blocked.
Further information about our model fitting, analysis methods, a pretask

performed to measure participant priors, and details of the neural networks
used can be found in SI Appendix, SI Methods.

Data, Materials, and Software Availability. Anonymized human behavior
data have been deposited in the Open Science Framework https://osf.io/g8jk5/ (50).
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