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Abstract: Several candidate gene studies have provided
evidence for a role of host genetics in susceptibility to
tuberculosis (TB). However, the results of these studies
have been very inconsistent, even within a study popula-
tion. Here, we review the design of these studies from a
genetic epidemiological perspective, illustrating important
differences in phenotype definition in both cases and
controls, consideration of latent M. tuberculosis infection
versus active TB disease, population genetic factors such as
population substructure and linkage disequilibrium, poly-
morphism selection, and potential global differences in M.
tuberculosis strain. These considerable differences between
studies should be accounted for when examining the
current literature. Recommendations are made for future
studies to further clarify the host genetics of TB.

Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a

growing public health problem in the era of the HIV/AIDS

pandemic. Among the one-third of the world infected by Mtb [1],

almost 8 million new cases of TB occur annually, with 2 million

deaths attributed to the disease each year. Only 10% of those

individuals infected by Mtb go on to develop clinical disease, and

disease presentation itself is heterogeneous, suggesting that

host factors play a large role in disease susceptibility and natural

history. An increased understanding of the host response to

Mtb will facilitate the development of new vaccines and

therapeutics [2].

Several studies have suggested a role for host genetics in TB

susceptibility. Support for genetic susceptibility to TB in humans

was first provided by twin studies [3,4], animal models [5–8], then

later segregation analyses [9,10]. Countless candidate gene studies

have been conducted, as well as seven genome-wide linkage scans

[11–17]. However, there is a great deal of inconsistency across

these studies. Among studies of any candidate gene, there are

always several reports that provide both positive and negative

evidence for an association with TB. Within genome scans, there

has been replication of some results across two of the studies

[14,15], but there is very little replication across the remaining

papers.

There are a number of key components of the design of these

studies that may explain the inconsistency in the literature. The

objective of this review is to discuss these issues, illustrated with

examples from the TB genetics literature, and propose some

approaches for taking a more thorough approach to the study of

TB genetics.

Impact of Study Design

Phenotype Definition
The first step in any epidemiological study is to define the criteria

used to diagnose disease. Then, one must define what is meant by

non-diseased individuals (‘‘controls’’). In TB, this is complicated,

because the pathogenesis of TB can be thought of as a two-stage

process [18]. The first stage consists of latent Mtb infection (LTBI),

in which Mtb establishes a productive infection but does not

produce symptoms. LTBI is diagnosed by a positive tuberculin skin

test (TST) and/or positive interferon-c response assay (IGRA) in the

absence of clinical signs and symptoms of full-blown disease [19,20].

Definitive diagnosis of pulmonary TB requires the recovery of Mtb

from sputum and cultivation in culture or detection of acid-fast

bacilli (AFB) on smear [19,21]. Studies have shown that AFB smear

is less sensitive than culture, and that AFB smear grade could reflect

differences in disease severity [21]. Smear-negative, culture-positive

TB is also a problem in developing countries [21]. Thus, the method

used to diagnose TB could affect the comparability of studies, and

these differences could reflect variation in disease severity or even

potential misclassification of disease status, generating a significant

impact on the type I and type II error of studies. Here, we will first

review the various diagnostic criteria used for TB disease, then the

clinical characterization of study controls, and how these differences

in study design may affect the interpretation of results across studies.

As stated by Möller and colleagues [22], studies of TB are

‘‘exquisitely sensitive to phenotype definition’’. Different criteria

have been used to diagnose TB in different study sites. Here, we

focus on studies of the NRAMP1 (SLC11A1) gene, which has been

studied most extensively (Table 1). To summarize, some studies

have used the gold standard definition for TB diagnosis based on

growth of Mtb in culture [19], though other studies only diagnosed

TB patients based on positive AFB smear. Some studies had

heterogeneous diagnostic criteria, classifying together cases

diagnosed by smear or culture or symptoms. Other studies have

combined pulmonary and extrapulmonary TB cases in the analysis

[23–27]. Notice that of the 12 studies demonstrating an association

between NRAMP1 and TB, only four used culture positivity as

their diagnosis method. Could these differences in diagnostic

criteria disguise differences in disease severity across populations?
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Related to this is the definition of controls. It is unknown in

many of these studies whether or not the ‘‘controls’’ were latently

infected with Mtb, as evidenced by either a TST or IGRA. Recent

studies have suggested some genes may actually be related to LTBI

and not progression to TB [15,28,29], while other studies have

suggested some genes may differentiate between LTBI and active

TB disease [30,31]. This is important in truly understanding the

role of these genes in disease pathogenesis and progression. If

controls are latently infected, and there is an association seen

between a gene and TB, that suggests the gene influences

progression from LTBI to TB. However, if controls are uninfected,

it is unclear whether an association implies susceptibility for

developing active disease or just acquisition of LTBI.

Finally, the selection of controls is not trivial. In a case-control

study, controls should be similar to cases in every way possible

except for the presence of disease. In studies of TB, this means

controls should be exposed to infectious TB cases, so that they

have the opportunity to acquire infection and then progress to

active TB disease. Some studies conducted in TB-endemic settings

assume all individuals are exposed to TB [25,32]. However,

studies have shown individuals may be persistently exposed to Mtb

but never develop LTBI [15,19]. Characterization of controls in

TB genetics studies has differed widely (examples in Table 1).

Many studies have utilized population controls, similar to the

approach taken in recent large genome-wide association studies

(GWAS) [33], i.e., by using blood bank donors. The disadvantage

of this design is possible misclassification bias [34]—the chance

that some of these ‘‘controls’’ may never become affected for TB,

which is problematic when the disease is common [35]. By

contrast, other studies have utilized unaffected household

members [26,31,36,37] or have conducted thorough clinical

evaluation with TST in those without disease [27,30,38]; in these

situations, exposure in unaffected individuals is known, so these

are true controls in the epidemiological sense. Note that only one

of the NRAMP1 associations was observed in studies where

exposure has been quantified (Table 1).

Epidemiological Study Design
The vast majority of genetic epidemiological studies, not just for TB

but for other complex traits as well, tend to be case-control studies.

Such studies are easier to conduct because they do not require

cooperation of the entire family, and a greater number of cases can be

Table 1. Summary of TB association genetic studies of NRAMP1/SLC11A1, including TB diagnostic criteria, characterization of
controls, and whether there was an association with any SNP in the gene.

Population (Reference) TB Diagnostic Criteria Characterization of Controls Association?

Gambia [80] Smear + Healthy blood donors Yes

Gambia [81] Smear + Healthy blood donors

Malawi [82] Smear + OR culture
+ OR histology

Unrelated with no history
of infectious disease

Yes

Morocco [37] Culture + Healthy family members

Tanzania [83] Culture + Blood donors Yes

Guinea [36] Microscopy (smear +? Culture +?) Unaffected relatives

South Africa [32] Smear + OR culture + Unrelated healthy Yes

Caucasian and African
American [26]

Culture + OR past diagnosis Household members
in close contact

Yes

Caucasian [84] Culture + OR response
to TB treatment

Clinic patients without
infectious disease

Yes

Caucasian, African
American, and Asian [27]

Culture + Tuberculin skin
test positive

Cambodia [85] Smear + Hospital/clinic patients Yes

China [86] Smear + OR culture + OR symptoms
and radiological evidence; males only

Unrelated healthy males Yes

Japan [87] Smear + OR culture + No history of TB disease Yes

Japan [88] Smear + Random clinic patients Yes

Taiwanese [89] Culture + Clinic patients without
pulmonary disease

Japan [90] Smear + Healthy blood donors
without history of pulmonary
or inflammatory disease

Thai [91] Culture + Healthy blood bank donors

China [92] Culture + Hospital patients and
healthy blood donors

Yes

Korea [93] Culture + (unclear) No history of TB disease Yes

Japan [94] Smear + OR culture + Unrelated healthy

Poland [38] Culture + TST negative

Smear + refers to AFB smear positive. ‘‘Culture +’’ could include more stringent definitions such as culture positive, smear positive, and radiological evidence consistent
with TB.
This table is limited to studies published in English so that case and control definitions could be determined. It is also limited to studies of pulmonary TB in all age
groups.
doi:10.1371/journal.ppat.1001189.t001
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recruited. One major advantage of family-based designs for the study

of infectious diseases is the characterization of exposure in the

‘‘controls’’, as discussed above. Individuals living in the same household

have a high likelihood of exposure to an infectious TB case, thereby

influencing the probability that they too will develop TB [39–41]. As

described above, epidemiological characterization of exposure is

important in order to construct a valid case-control study.

Another advantage of family-based studies is the ability to

account for population substructure. Hidden population stratifi-

cation may result in bias (false positive results) [42] or false

negative results [43]. Studies of TB genetics have been conducted

in many admixed populations, including African Americans

[26,27,44–46], Mexicans [30], and South African ‘‘Coloureds’’

[11,14,32,47,48]. Some of these studies [11,26,45,46] have

employed family-based designs. Other studies have examined

potential population substructure by analyzing genomic control

markers: one study in South Africa utilized ,25 markers [47,48],

and another study utilized .200 markers [49]. Marchini et al. [43]

point out genomic control markers will not adequately correct for

population substructure if too few markers are used, but it is

difficult to enumerate a sufficient number of markers in

populations of African descent. It is unclear if other studies were

able to account for population substructure. It may be impossible

for existing study cohorts to incorporate family-based designs or

retrospectively evaluate population stratification, but this clearly

may explain some of the heterogeneity among studies.

Population Differences—More Than Just Geography
A typical explanation for differing results by population is

population differentiation [22,50], including genetic heterogeneity

or inestimable polygenic effects. Another important genetic

difference between populations is in linkage disequilibrium (LD).

Early studies of TB genetics were restricted to well-character-

ized markers within genes (studies of SLC11A1/NRAMP1 in

Table 1 are examples). Often these markers were exonic or

restriction fragment length polymorphisms. The underlying

assumption of the power and design of such studies is that the

polymorphism being analyzed is the causal polymorphism.

There are millions of single nucleotide polymorphisms (SNPs)

throughout the genome [51,52]. Because of the LD structure in the

genome, certain SNPs can be used to ‘‘tag’’ haplotypes, such that one

or a few SNPs capture information about LD structure [53]. Many

trait-associated SNPs (.40%) are intergenic or intronic, suggesting an

important role for non-coding SNPs in complex disease [54]. This

serves as a reminder that disease risk alleles may actually be in LD with

genotyped markers, which serve as ‘‘tags’’ for haplotypes on which the

causal allele may reside. This is illustrated by Figure 1, where we

consider an underlying disease allele that is not directly genotyped but

surrounded by flanking markers. The ability to detect association with

the region where the disease allele resides depends entirely on the

strength of LD between the unobserved risk allele and flanking

markers. As patterns of LD differ between study populations, the

specific trait-associated SNPs will consequently differ.

Figure 1. Impact of variation in linkage disequilibrium (LD) in detection of disease risk alleles. For all three scenarios, D is the underlying
disease risk allele. (A) There is strong LD between D and marker #1 (M1), and weak LD between D and M2. In this situation, association will be
detected with M1, depending on study power based on sample size, strength of genetic effect, and minor allele frequencies. (B) There is no LD
between M1 and D but strong LD between M2 and D. Here, association will be detected only with M2 (again, depending on power). (C) There is weak
LD throughout the region. Association will likely not be detected.
doi:10.1371/journal.ppat.1001189.g001
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The impact of LD differences between study populations is

further illustrated in Figure 2. Here, LD patterns in NRAMP1 were

plotted using HapMap reference populations representative of

those populations where NRAMP1 has been studied: Caucasians

in Utah, United States (CEU), Yoruba in Nigeria (YRI), Maasai in

Kenya (MKK), Han Chinese (CHN), and African Americans in

the US Southwest (ASW). These LD plots were generated using

default parameters in the Genome Variation Server (http://gvs.gs.

washington.edu/GVS/), with no minor allele frequency cutoff.

African populations (YRI and MKK) have very little LD because

they are older populations, and their LD patterns differ. Newer

populations (CEU and CHN) have much greater LD, and recently

admixed populations (ASW) also exhibit LD between SNPs, but

there are differences. Also note that the SNPs themselves (rs

numbers) differ between populations, illustrating how different

polymorphisms exist within the same genes across world

populations. A perfect illustration of this phenomenon is provided

by Velez et al. [26], who analyzed a number of SNPs within

NRAMP1. Though they did not observe statistical association with

the markers that were examined in early studies, they did observe

association with intronic and exonic SNPs. If they had not

conducted such extensive genotyping, they may have missed these

associations.

Only a few other studies have accounted for global variations in

LD by analyzing several SNPs within candidate genes of interest.

Some studies have selected tag SNPs based on relevant HapMap

reference populations [26,28,31,46]. Other studies have sequenced

genes of interest first to identify novel SNPs within the gene(s), then

analyzed association with those SNPs [55–58]. Though other

studies did not utilize LD in their selection of SNPs, they later

estimated LD between markers in their dataset, and used this

analysis to guide haplotype analysis [48,49]. Since LD patterns

differ by population, it should not be surprising that genetic

association results differ, especially given the limited number of

markers analyzed per gene. There are many implications of this

variation. Differences in the strength of LD between the actual

disease locus and genotyped markers will affect the power to detect

association to markers (Figure 1). In populations with weaker LD

such as African populations, denser SNP observed maps are

necessary to detect association effects with untyped disease loci.

Thus, variation in number of polymorphisms analyzed, differences

in LD in the reference population, and existence of still-unknown

risk alleles all complicate replication across studies.

Another controversial issue is the study of common versus rare

genetic variants. The common disease–common variant (CDCV)

hypothesis posits that genetic risk for common diseases will often

be due to common risk alleles [59]. This is in contrast to the

common disease rare variant (CDRV) hypothesis, which states

that a significant proportion of common chronic diseases are

influenced by the summation of effects of multiple low frequency

variants in the same gene, where tagging SNPs will not be useful in

identifying a single haplotype because no single haplotype exists

[60]. Most candidate gene studies assume the CDCV hypothesis.

Recent sequencing studies [61,62] have detected rare SNPs in the

TLR family of genes; these could be important, but massive studies

will be needed in order to detect disease associations at a

statistically significant threshold. In addition, copy number

variants (CNVs) have recently attracted attention in their

association with complex traits, such as HIV acquisition and

progression and autoimmune diseases [63]. These are also

considered rare variants, so we are again faced with all of the

challenges of testing the CDRV hypothesis.

The above discussion focuses on population genetics of humans.

Another related issue is variation in Mtb strains. Researchers have

categorized Mtb into six main bacterial strain lineages that are

associated with particular geographical regions [64], as well as

differences in clinical presentation [65] and rate of progression to

active TB disease [66]. So, not only do different diagnostic criteria,

as discussed above, potentially reflect differences in disease

severity, but specific Mtb strains may also influence disease

severity. A recent study suggests a host genotype x Mtb genotype

interaction, whereby the TLR2 genotype is associated with TB

caused by the Beijing strain [67]. Very few studies have the

capacity to examine this potential host by Mtb interaction, but it

could easily be a potential explanation for differences between

studies.

Complex Genetic Effects
Complex traits such as TB are likely influenced by several

factors, including gene–gene interaction and gene–environment

interaction. Few studies have investigated gene-gene interactions

in the context of human TB. Many gene products (e.g., Toll-like

Figure 2. Linkage disequilibrium (LD) of the NRAMP1 gene for HapMap reference populations. Yoruba (YRI), Maasai (MKK), Han Chinese
(CHN), Utah Caucasians (CEU), and African Americans (ASW) are shown. The strength of LD is illustrated using the color scale shown in the figure key.
doi:10.1371/journal.ppat.1001189.g002
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receptors [TLRs]) are known to interact biologically [68], and

interaction effects have been demonstrated in mouse models of TB

[69]. A recent study identified interactions between the NOS2A

gene and IFNGR1 and TLR4 [45]. Interestingly, both IFNGR1 and

TLR4 showed no evidence of significant main effects in this

analysis. Another study by the same research group found

interaction between NRAMP1 and TLR2, but TLR2 did not itself

have a significant main effect [26]. This suggests many important

genes may influence TB in combination with other genes, but this

could be overlooked because their individual effects did not meet

criteria for statistical significance. Motsinger-Reif et al. used

multifactor dimensionality reduction to identify a potential gene–

gene interaction between TLR4 and the TNF-a gene (TNF) [70].

In addition, it is well known that HIV influences the pathogenesis

of TB, but most genetic epidemiological studies have been

restricted to HIV seronegative individuals. Our work [31] showed

an interaction between HIV and the TNF receptor 1 gene.

Because many studies have excluded HIV-positive individuals, this

hypothesis remains relatively unexplored. Similar to the TNF-a
pathway, the type I and II interferon pathways have been

associated with both TB and HIV pathogenesis [71], and so

should also be considered for future studies of gene–HIV

interactions. The challenge of examining interaction effects is

the requirement of even larger sample sizes, as discussed by Velez

et al. [45].

Conclusions, Recommendations, and Future
Directions

As reviewed recently by Möller et al. [22], the body of work

showing statistical associations between candidate genes and TB

continues to grow. This does not include potential unpublished

studies that failed to find significant associations and are not

readily available due to publication bias [22]. Even in the

published body of literature, however, there is a great deal of

inconsistency between marker-trait associations, so we are far from

reaching a consensus regarding genes involved in TB risk.

This review focused on methodological reasons for inconsisten-

cy across studies. One important factor is the diagnostic criteria for

TB disease, which have differed dramatically across studies.

Resources available for TB diagnosis differ by country, which is

confounded when there has been conflict [72]. Differences in

diagnostic criteria across studies can reflect differences in TB

severity and may lead to misclassification of cases as controls; this

would have a significant impact on the type I and type II error of

studies. It is impossible to standardize the diagnostic definitions

used across all study sites, but researchers should be mindful of

such differences when interpreting their findings. We strongly

recommend that researchers characterize the level of exposure to

Mtb in individuals without disease, which should include TST/

IGRA and careful epidemiological characterization. New studies

could utilize the household contact design, which facilitates the

characterization of all stages of Mtb exposure, infection, and

disease [41]. When the household contact study design is not

feasible, spousal controls are also ideal because of persistent and

prolonged exposure.

Recall that TB follows two stages of pathogenesis, and LTBI

precedes TB disease. Recent studies suggest that LTBI may have

unique genetic influences [15,28,29]. Persons with LTBI constitute

a major impediment to TB control efforts [73]. Since many

ongoing vaccine development efforts will focus either preventing

LTBI or progression to TB, it is important to understand host

factors that influence containment of Mtb infection. However, the

study of the genetics of LTBI is also not trivial. Indication of T cell

memory response via positive TST and/or IGRA does not

necessarily imply the presence of viable Mtb bacilli. In the US as

well as other public health systems, individuals with positive TST

are treated as though there are viable organisms present, adding

further confusion to this phenotype. According to Parrish et al.,

there is a 2%–23% lifetime probability of developing TB after

acquisition of Mtb infection (LTBI) [73]. This illustrates the

heterogeneity in this clinical group, since the risk of progression to

active TB may depend on a variety of known and unknown risk

factors. Furthermore, prophylaxis of LTBI with isoniazid (INH) is

the standard of care in many research settings, so that many

individuals with ‘‘LTBI’’ based on positive TST/IGRA, geneti-

cally predisposed to develop TB, may not. One way to investigate

the role of host genetics in LTBI would be to compare TST (or

IGRA) positive individuals that develop incident TB to those that

do not. Ideally, such a study would not include individuals on INH

prophylaxis, though that is unethical in many settings. For these

reasons, some may argue that it is more relevant to study TB

genetics, and not LTBI, from a public health standpoint.

Thus, it is essential to take a multidisciplinary approach [74] to

develop an all-encompassing picture of the natural history of Mtb

infection and disease. Few studies have examined the genetics of

TB immunology [15,31,75–77]. Gene expression studies using

microarrays may also shed light on host responses to Mtb [78].

Proteomic studies will further elucidate host factors involved in

pathogenesis. These various approaches should be analyzed

together to hopefully identify more meaningful clinical groups.

For example, genomic, proteomic, and immunologic data,

collectively, may better capture the heterogeneity in latently

infected individuals.

Additional complicating factors in comparing geographically

diverse studies are potential population substructure and LD

differences among populations. We recommend that future studies

analyze enough SNPs to capture LD in their study population.

Analyses of a few markers within a gene no longer advance the

field, particularly in light of LD differences between populations.

Even with advances in genotyping, many studies of ‘‘old’’ markers

continue to be published. The choice of a reference population for

tag SNP selection is not trivial [62]; thus, dense SNP mapping may

be necessary, particularly in studies of African populations. If it is

impossible to rigorously examine genes in this way, publishing the

LD patterns in the study data [28,45,48,49] is a good start.

Furthermore, studies in admixed populations should attempt to

examine population substructure to minimize this source of bias.

Populations also differ in the Mtb strain lineage that caused TB;

future studies examining host gene by Mtb gene interaction are

warranted. Finally, as in all genetic epidemiological studies of

complex traits, genes may act in complex ways. Genes may

interact with other genes and/or epidemiological factors; these

potential relationships should not be overlooked. Furthermore, too

many researchers (authors and journal reviewers alike) focus too

much on p-values. All p-values must be reported, even if greater

than 0.05. Markers with p-values greater than 0.05 may still be

important in their interaction with other markers or environmen-

tal factors. Researchers should collect sufficient data to explore

these meaningful biological effects.

There are GWAS of TB forthcoming. Given the issues discussed

in this review, we must interpret the findings of those GWAS

cautiously. Will these studies be underpowered due to the

heterogeneity among TB cases and controls? A recent summary

analysis of published GWAS found the reported SNP–trait

associations attaining significance (p,1025) had a median odds

ratio of 1.33, with an interquartile range of 1.20–1.61 [54]; thus,

the effect sizes of SNPs identified through GWAS are relatively
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small. Furthermore, the proportion of heritability explained by

these variants ranges between 1% and 50% [79]. TB GWAS may

provide new clues into the host biology of TB pathogenesis, but

the overall clinical relevance of these SNPs will be limited. In

addition, GWAS of other complex traits have often merged data

across ongoing research studies. Because of the dramatic

heterogeneity among studies described in this review, meta-

analyses of TB genetic association studies should be conducted

with care.

In sum, we have barely scratched the surface in understanding

the genetic determinants of TB pathogenesis. Because of the

significant public health impact of TB, additional studies are

necessary, and should be multidisciplinary in nature. Future

studies should carefully consider phenotype definition and genetic

epidemiological principles when designing, analyzing, and inter-

preting findings. Ideally, culture confirmation for pulmonary TB

should be conducted where feasible, thorough epidemiological

data should be collected in individuals without TB to better

understand LTBI and risk of progression to TB, and population

genetic factors should be carefully characterized and considered in

the analysis.

Accession Numbers for Genes Mentioned in This Paper
(GeneIDs from EntrezGene)

TLR2 (7097); SLC11A1, aka NRAMP1 (6556); IFNGR1 (3459);

TLR4 (7099); TNF (7124); TNFSF1A, aka TNF receptor 1 (7132);

NOS2A (4843).
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