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Significant uncertainty exists in magnitude and
variability of ammonia (NH;) emissions, which are
needed for air quality modeling of aerosols and
deposition of nitrogen compounds. Approximately
85% of NH; emissions are estimated to come from
agricultural nonpoint sources. We suspect a
strong seasonal pattern in NH; emissions; how-
ever, current NH; emission inventories lack intra-
annual variability. Annually averaged NH; emis-
sions could significantly affect model-predicted
concentrations and wet and dry deposition of ni-
trogen-containing compounds. We apply a
Kalman filter inverse modeling technique to de-
duce monthly NH; emissions for the eastern U.S.
Final products of this research will include
monthly emissions estimates from each season.
Results for January and June 1990 are currently
available and are presented here. The U.S. Envi-
ronmental Protection Agency (USEPA) Commu-
nity Multiscale Air Quality (CMAQ) model and
ammonium (NH,*) wet concentration data from the
National Atmospheric Deposition Program (NADP)
network are used. The inverse modeling technique
estimates the emission adjustments that provide
optimal modeled results with respect to wet NH,*
concentrations, observational data error, and
emission uncertainty. Our results suggest that
annual average NH; emissions estimates should
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be decreased by 64% for January 1990 and in-
creased by 25% for June 1990. These results il-
lustrate the strong differences that are anticipated
for NH; emissions.
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INTRODUCTION

Ammonia (NH;) emissions are a vital input for modeling
regional patterns of nutrient deposition, visibility, fine par-
ticulates, and acid precipitation. According to the U.S.
Environmental Protection Agency (USEPA) National Air
Pollutants Emissions Trends report[1], NH;emissions come
predominantly from agricultural sources, primarily from
livestock (Table 1). Most emission inventories are currently
limited to annual total estimates of NH; emissions[1,2]. We
qualitatively know that livestock agriculture and fertilizer
emissions vary seasonally according to meteorological con-
ditions and agricultural practices[2]. For example, NH; is
emitted into the air from livestock agriculture by the vola-
tilization of NH;, which is a function of the animal waste
temperature[3]. However, insufficient information exists to
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TABLE 1
National Emission Inventory NH, Emission
Estimates[1] by Major Sources (thousand short tons)

Source Type 1990 1991 1992 1993 1994 1995
Livestock agriculture 3307 3324 3341 3370 3399 3427
Fertilizer application 420 446 473 499 525 551
Other (industrial sources, mobile) 604 620 635 652 665 687
Total (All Sources) 4331 4390 4449 4521 4589 4665

deduce the seasonal variability of these emissions quantitatively
for a regional scale domain.

A seasonal factor is needed for these NH; inventories for
use in air quality models because NH; has a significant role in
tropospheric chemistry[2,4]. Pierce and Bender[5] roughly de-
rived seasonal allocation factors for a U.S. NH; emission inven-
tory using information available about the emission sources.
Allocation factors were estimated using patterns of crop plant-
ing and fertilizer application and a literature-based analysis of
livestock emissions. The resulting seasonal allocation factors were
highest during the summer (48% increase) and lowest during the
winter (36% decrease), as would be expected. These minimum
and maximum allocation factors are supported by concentrations
of NH; fluxes measured at a hog waste lagoon in North Carolina,
where the largest fluxes were observed during the summer months
and the lowest fluxes during the winter months[3]. Ambient con-
centrations in two European field studies also show strong sea-
sonal variability, where NH; concentrations are higher in summer
than in winter[6,7]

The purpose of this study is to quantify seasonal variations
in NH; emission estimates on a regional scale for the East-
ern U.S. as an inverse problem. Observed and modeled data
are used in an optimization formula to estimate emissions
that cannot been directly measured. Inverse modeling tech-
niques have been used in a variety of applications to esti-
mate quantities that are not directly available, including
estimation of emissions[8,9,10]. After describing the in-
verse modeling methodology, results for a winter and sum-
mer 1990 month will be presented herein, and our ongoing
work and future plans will be summarized.

METHODS

Inverse Modeling Technique

The adaptive-iterative Discrete Kalman Filter (DKF)[8] is a time-
independent version of the sequential DKF that has been used
for time-varying emissions[9,10]. The adaptive-iterative DKF has
been used in several inverse modeling studies to deduce time-
varying isoprene[11] and carbon monoxide[12,13] emissions. A
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synopsis of the technique is described below. For more details
on implementing this inverse modeling technique, refer to Haas-
Laursen et al.[8] and Gilliland and Abbitt[13]. The adaptive-it-
erative DKF formulation is summarized in Eq. 1:

Ein® | | Ei®
Eia(m| | Ei(m)
Gyi(1D) Gy (L n) ;a"bs() xt”?°d(1)
+ : . : - (D
Gi(m) ... Gyi(mn) z?bs( DIR P20
or without matrices written out:
Et i+1 — E + G ObS - ZtnTOd )’
where E ., (mx1) represents the adjusted value for the inte-

grated emlssmns for time 7 and the next iteration i + 1 of the air
quality model, and m denotes the number of source regions.
E . (mx1) represents the integrated emissions for the previous
model iteration . In this application, # = 4 weeks or approxi-
mately 1 month. As the name implies, the gain matrle ¥ deter-
mines the sensitivity of the final emission adjustment to the
differences between the observed and modeled concentra-
tions, Ztc’bs (nx]_) and lu mod (nxl) The array dimension n
denotes the number of observations. The optimal gain matrix G

is given by

Gt,i = Ct,i PtT (Ptct,i PtT + Nt )_1 @)

where N, is the variance of error in the observed concentrations, Pt
is the Jacobian of the change in concentration with respect to
emissions,

of

R=
o, |
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() is the function that calculates (Z 1 — X ) (i.e., the chemi-
cal transport model), and C;; is the variance of error in the previ-
ous emissions estimate Et'i .

Eq. 1 assumes that the modeled and observed concentra-
tions at the previous time step are equal[13], which can be an
issue when considering initial conditions in air quality models.
Since we are using monthly time increments # and our observa-
tional data are derived from accumulated wet deposition during
the model simulation, the agreement of initial conditions is in-
significant in this case.

Approaches for quantifying P, and C,; are similar to past
studies using this method[8,11,12,13]. Specifically, the Jacobian
matrix P, is quantified here in a brute-force fashion in that two
parallel simulations are performed for the time increment # where
the only difference is a 10% change in emissions. Because the
initial concentrations are equal in the two parallel simulations,
the Jacobian reduces to

P o  dy,
' OE, OF
The initial value for C, is set to equal 50 x ét o asan arbitrarily

large number. After Gt . and Et . are calculated, we adjust the
emission field £ . to ' '

A A

E E

~ ti+l |a ti+l |~
Eiin=| = i = = t,0 3)
, E , E ,
i £,0

for each source region m. £ « o fepresents our best initial guess in
emissions and is typically based on existing emission invento-
ries[1]. Sensitivity tests performed by Gilliland and Abbitt[13]
showed results are quite insensitive to the initial emission guess.
The air quality model simulation is then repeated for time incre-
ment ¢. C,; is then updated for the next iteration i+1:

Ct,i+1 = Ct,i - Gt,i RCt,i ’ 4)

and Eq. 1 and 2 are repeated. This process continues through
additional iterations until the final emission adjustment for that
time increment is sufficiently small, defined in this study as <1%
of the initial emissions estimate Et 0 The number of iterations
required to adjust the initial emission varies among applications.

Based on these equations, it is clear that the methodology
relies on an assumption that the differences in observed and
modeled concentrations are caused by emission misspecifications.
Model uncertainty can be introduced into the application through
the noise matrix N,[8]; however, quantifying this uncertainty is
not straightforward, particularly for air quality models. The un-
certainty in NH; emissions is very large compared to the general
uncertainty in the model structure; therefore, model uncertainty
is not quantified in this application. To test the rigor of the re-
sults, model outputs for other related chemical species were com-
pared against data with favorable results. This comparison will
not be included explicitly in this manuscript due to space limita-
tions; however, it will be presented in a later paper.
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In past studies where an air quality model was used[11,
12,13], only one source region m was defined for this methodol-
ogy. One reason for defining only one source region is that the
DKF technique as described above assumes that the emission
errors are Gaussian white noise. This assumption could be incor-
rect when multiple source regions m rely on the same raw data,
formulas, and emission factors, because the emission uncertain-
ties in the source regions would not be independent or
uncorrelated. Other pitfalls for defining multiple source regions
include situations where monitored data are not evenly distrib-
uted and a source region may not have much data or where a
source region is affected largely by boundary conditions. To avoid
these types of pitfalls and take a simpler approach initially, we
will assume that there is only one source region m. The implica-
tion is that the entire emission field for all sources will be ad-
justed by a single factor, leaving the spatial distribution of
emissions unchanged. In the Results section we will examine the
results to see if spatial biases exist. Depending on these results,
the methodology will then be refined to address spatial biases
and individual source types in more detail.

Pseudodata or twin-experiment tests[8,9,13] were performed
to test the approach described above. These tests use model-gen-
erated data as reference observations or pseudodata in Eq. 1.
Another simulation is then performed using perturbed or modi-
fied emissions. If the inverse modeling technique is applied cor-
rectly, adjusted emissions should equal approximately the original
emissions that were used to produce the reference observations.
The pseudodata tests were successful, thereby confirming that
the methodology was applied correctly and that the application
was suitable for the technique. Therefore, we could proceed us-
ing real observational data.

Air Quality Model and Observational Data

The USEPA Models-3 Community Multiscale Air Quality
(CMAQ) model[14,15,16] is used in this study to generate the
model data y "?Od . CMAQ is an Eulerian air quality model that
was developed to simulate O;, acidic deposition, and aerosol
chemistry for urban- to regional-scale domains. For this study,
CMAQ is configured with 21 tropospheric layers, a horizontal
grid resolution of 36 km, and the RADM2[17] chemical mecha-
nism.

The Fifth Generation Penn State/NCAR Mesoscale Model
(MMS5) is used to generate the meteorology input data fields for
CMAQ[18,19] Emissions fields for all chemical species were
produced based on the National Emissions Inventory (NEI)[1],
Mobile 5a[20] for mobile emissions, and BEIS2[21] for biogenic
emissions. The NEI provides county-scale NH; emissions data
that are processed to develop a gridded emission field for CMAQ.
The NEI NH; emissions data are total annual values (Table 1).
Therefore, the initial NH; emission fields used in these simula-
tions have no seasonality, and the DKF inverse modeling ap-
proach will be used to estimate emissions for the specific month.

The NEI inventory, as shown in Table 1, has been updated
since these simulations were developed. For this reason, emis-
sions used in these simulations are approximately 7% lower than
the current NEI inventory. These differences exist because mo-
bile emissions were not included in the previous inventory and
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because the area source emissions were 3% lower than current
estimates. Mobile emissions account for only about 4% of the
total NH; emissions; however, they may influence specific areas
significantly. Therefore, we plan to test the sensitivity of our re-
sults to the new emissions inventory as an extension of this re-
search.

To estimate NH; emissions for each month considered, we
will compare NH,* wet concentration (mg/l) rather than NH,"
wet deposition (kg/ha) and apply the DKF. An advantage to us-
ing wet concentrations is the consideration of the concentration
within the rainwater rather than the total amount deposited, which
can help to address differences between observed and modeled
precipitation. Alternately, using wet concentrations can ignore
the effect of diluting the modeled concentrations when precipita-
tion is over-predicted; however, predictions for these simulations
tended to under-predict rather than over-predict precipitation.
Theoretically, ambient concentrations of NH; could be used in
this application; however, there are no continuous networks col-
lecting ambient NH; concentration data, while extensive wet depo-
sition data are available from the National Acid Deposition
Program (NADP)[20].

We used NH," data collected by the NADP network[22] on
a weekly sampling frequency. We focused on January and June
1990 to represent winter and summer conditions. NH," wet depo-
sition and precipitation data were aggregated up to monthly or 4-
week values for both CMAQ and NADP to calculate monthly
NH," wet concentrations. The 4-week periods that were used for
monthly values coincide with the beginning and end of the NADP
collection time periods. The specific dates that represent Janu-
ary and June 1990 are January 9 to February 6, 1990 and June 5
to July 3, 1990, respectively. The 1990 period was used to lever-
age off a parallel CMAQ evaluation study that includes 1990
simulations.

Comparisons of daily and weekly collections in past studies
have shown that a low bias exists in the NADP NH," data be-
cause the collection remains in the field for a week[23,24]. For
this application, we accounted for a 15% NH," bias estimate in
the weekly NADP data, similar to the average bias estimates based
on multiple years of daily and weekly sampled data[23,24]. In
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addition, we are currently investigating the potential of a monthly
or seasonal variation in this bias.

When merging the CMAQ and NADP data, points were re-
moved from the analysis if fewer than 4 weeks of NADP data
were available. Also, data points were removed from the analy-
sis if the monitors were located within 9 grids (i.e., 324 km) of
the western boundary of the model domain to remove boundary
conditions from being a dominant influence.

RESULTS

Figure 1 compares the January 1990 NH,* wet concentrations
between NADP-monitored data and CMAQ model simulations
before and after emission adjustments. The adaptive-iterative
DKF converged on a 64% decrease in emissions (i.e., 0.36 X
annual NH; emissions) after three iterations. Note that the num-
ber of iterations is determined by the number of times the meth-
odology must be applied until the emissions changes are AE = 0,
as previously described. Decreased NH; emissions reduced the
large over-predictions while introducing an under-prediction at
other monitors, with largest under-predictions located at moni-
tors near the shoreline of the Great Lakes. The Root Mean Square
Error (RMSE) = 0.36 mg/I before and RMS = 0.23 mg/I after the
adjustment listed above. Based on a bias calculation for each
monitor ((observation—predicted)/observation), the emission ad-
justment reduced the mean bias for all monitors from a 70% over-
prediction to a —30% under-prediction. According to the RMSE
and the bias calculation, the 64% decrease in emissions improved
the model’s simulation of NH," wet concentrations. The correla-
tion coefficient (R) remained approximately the same before and
after the emissions adjustment (Ry.se = 0.44 and R 4., = 0.45). It
is expected that R will not change significantly in this applica-
tion because the spatial distribution of the emissions is not al-
tered, so that the scatter is similar before and after the emission
adjustments.

Being concerned about the under-predictions evident in
Fig. 1, these data were spatially mapped to see if any regionally
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FIGURE 1. January 1990 (a) before and (b) after NH, emission adjustment.
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coherent spatial biases existed before and after the decrease in
emissions (Fig. 2). If so, this would suggest that the spatial distri-
bution of the NH; emissions might have discrepancies. Many of
the extreme model over-predictions were improved with the 64%
decrease in NH; emissions (Fig. 2B). These over-predictions were
in central states such as Illinois, Indiana, Kentucky, Tennessee,
North Carolina, and Virginia, which are within a large area of
NH; emissions from hog and cattle sources. However, in some

TheScientificWorld (2001) 1(S2), 356-362

northeastern states and the coastline of the Great Lakes, a prior
under-prediction grew larger with the NH; emission decrease. If
the same plots were shown using the absolute differences, the
under-prediction bias in the Northeast would be less visible, since
the concentrations in this area are relatively low. Since mobile
emissions comprise more than 20% of the total NH; emissions
in states including New Jersey, New Hampshire, Connecticut,
Massachusetts, Maine, and New York, it is anticipated that this

| > 25% Increase
0 to +/—25%
m = 25% Reduction

FIGURE 2. January 1990 % bias before (A) and after (B) emission adjustments ((Modeled-Observed)/Observed). Note that bias values greater than £25% are

shaded the same color.
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FIGURE 3. June1990 NADP vs. CMAQ NH," before and after NH; emission adjustments.

northeastern spatial bias may improve once the simulation is re-
peated using the newest NEI NH; inventory, which includes
mobile emissions.

Figure 3 compares the June 1990 NH,* wet concentrations
between NADP monitored data and CMAQ model simulations
before and after two iterations of the adaptive-iterative DKF,
which converged on a 25% increase in emissions (i.e., 1.25 X
annual NH; emissions). From the scatter plot, the simulation us-
ing the annual average NH; emissions has a clear tendency to
under-predict NH,", and this under-prediction is reduced after
the inverse modeling adjustment to the emissions. The results
after emission adjustments show a slight improvement to the
RMSE and bias calculations. The RMSE = 0.24 mg/1 before the
emissions were adjusted, and RMSE = 0.20 mg/I after the ad-
justment listed above. The increase in emissions reduced the mean
bias from an under-prediction of -20 to -11%. The correlation
coefficient (R) remained the same before and after the emissions
adjustment (Ryr. = 0.47 and R, = 0.47).

Significantly varying spatial biases in NH," were not obvi-
ous in June 1990 (not shown). When the percentage bias between
the CMAQ model and NADP data was considered before and
after the 25% increase in NH; emissions, the comparison sug-
gested that no regionally coherent spatial biases exist in the June
1990 case. Prior to the emission increase, a broad under-predic-
tion bias was predominant over most of the domain and lessened
after the increase in NH; emissions. This suggests fewer errors
exist in the spatial distribution of NH; emissions for June 1990
as compared to January 1990. If so, the spatial distribution of
NH; emissions could differ seasonally, which is also important
information for the further development and refinement of NH;
emission inventories.

CONCLUSIONS

The adaptive-iterative DKF methodology is used herein to esti-
mate seasonally varying NH; emission based on NH," wet con-
centration data from the CMAQ model and NADP. A decrease
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of 64% and an increase of 25% from the annual average values
were estimated for January and June 1990, respectively. The
RMSE and mean bias summary statistics suggested that these
adjustments improved the results. A more rigorous comparison
of independent data including ambient concentrations of sulfate
and nitrate aerosols will also be included in this study to deter-
mine whether these NH; emission adjustments results in overall
improvements. The seasonality suggested here supports the gen-
eral findings of Pierce and Bender[5], where highest (lowest)
emissions were estimated for the summer (winter) periods. Since
the largest emission sources involve the volatilization of NH;
from animal waste or fertilizer application, it is logical that emis-
sions would be larger during higher temperatures typical of sum-
mer conditions than during colder winter conditions. More
importantly, the results confirm that annual average emission
fields can introduce substantial errors into air quality modeling
results. If temperature is a dominant factor in determining the
seasonal or temporal variability of the emissions, it suggests that
meteorological conditions must be considered when developing
NH; emission estimates for these models.

As a continuation of this study, NH; emission estimates
will be produced for the spring and fall periods of 1990 to
provide a complete seasonal cycle for analysis. Where avail-
able, we will also provide independent comparisons against
other ambient data. If the NH; emission adjustments im-
prove NO; and NH, concentrations as well as the NH," wet
concentration data that were used in the inverse methodol-
ogy, our confidence in the emission adjustments prescribed
by the inverse modeling application will increase. These
results will appear in a forthcoming paper.

DISCLAIMER

This paper has been subjected to U.S. Environmental Protection
Agency peer review and approved for publication. Mention of
trade names or commercial products does not constitute endorse-
ment or recommendation for use.
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