

**Research Paper** 



2020; 11(15): 4560-4570. doi: 10.7150/jca.45678

# Efficacy and Safety of Thalidomide for Chemotherapy-induced Nausea and Vomiting

Nan Wang<sup>1,2,\*</sup>, Peng Xu<sup>2,\*</sup>, Yu Liu<sup>1</sup>, Peng Zhao<sup>3</sup>, Jian Ruan<sup>3</sup>, Yi Zheng<sup>1,2</sup>, Junpei Jin<sup>1,2</sup>, Shuqian Wang<sup>1</sup>, Jia Yao<sup>1</sup>, Dong Xiang<sup>4</sup>, Dai Zhang<sup>2</sup>, Na Li<sup>1,2</sup>, Huafeng Kang<sup>2 $\cong$ </sup>, and Zhijun Dai<sup>1 $\cong$ </sup>

- 1. Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
- 2. Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- 3. Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

4. Celilo Cancer Center, Oregon Health Science Center affiliated Mid-Columbia medical center, The Dalles, OR, USA.

\*NW and PX contributed equally to this work.

Corresponding authors: Zhijun Dai, Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China (E-Mail: dzj0911@126.com); or Huafeng kang, Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (E-Mail: kanghuafeng1973@126.com).

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2020.03.05; Accepted: 2020.04.27; Published: 2020.05.18

#### Abstract

**Purpose:** A substantial number of cancer patients discontinue chemotherapy due to severe chemotherapy-induced nausea and vomiting (CINV). This study aimed to evaluate the efficacy and safety of thalidomide (THD) in CINV.

**Methods**: We searched different databases to identify related studies that investigated the efficacy and safety of THD in CINV. The primary outcomes were CINV in the acute (0-24 h), delayed (24-120 h), and overall (0-120 h) phases, respectively. The secondary outcomes were the safety of THD and the patients' quality of life (QOL).

**Results**: Fourteen randomized control trials (RCTs) including 1744 patients (42% male) reported the risk ratio (RR) and 95%Cl of the THD group versus control group in reducing nausea and vomiting. Meta-analysis showed that THD statistically enhanced the complete response rate of nausea and vomiting in the delayed (nausea: RR = 1.69, 95%Cl: 1.47-1.94; vomiting: RR = 1.38, 95%Cl: 1.26-1.51) and overall phases (nausea: RR = 1.54, 95%Cl: 1.31-1.81; vomiting: RR = 1.31, 95%Cl: 1.18-1.46). Furthermore, subgroup analysis based on THD dosage (100 vs 200 mg/day) demonstrated no statistical significance with respect to overlapping 95%Cl. Thirty studies monitored the adverse events (AEs) of THD, all under grade 3 based on the CTCAE criteria. We compared the eight most common AEs; sedation, constipation, and drowsiness/dizziness were slightly frequent compared with controls.

**Conclusion**: THD is an effective adjuvant and a potential alternative in reducing delayed and overall CINV. Other regimens might be added for CINV during the acute phase.

Key words: Thalidomide, Chemotherapy-induced nausea and vomiting, Emesis

#### Introduction

Chemotherapy-induced nausea and vomiting (CINV) is caused by neurotransmitters and chemical substances stimulating the receptors in either the vomiting center or the chemoreceptor trigger zone. These substances include dopamine, serotonin, histamine, acetylcholine, and substance P (NK1) [1-4]. CINV needs to be well controlled because it often poses difficulties in chemotherapy, making it hard to

maintain dose intensity and consequently reducing the patients' quality of life (QOL) [5]. The occurrence of CINV has been evaluated to be as high as 70–80% without proper antiemetic regimens [6]. Therapy has evolved considerably over the past four decades; the most recognizable and followed guidelines now recommend a four-drug combination including NK1 receptor antagonist, 5-HT3 receptor antagonist, dexamethasone, and olanzapine to prevent CINV in high emetic chemotherapy (HEC)[7, 8]. However, 60– 80% of patients still experience CINV alongside chemotherapy [9], and the high cost of the present treatments for CINV also limit their clinical practice and promotion to an extent.

Thalidomide (THD) is a derivative of glutarnic acid, which was initially used as a sedative to treat emesis in pregnancy but was withdrawn from the market as it caused a serious adverse reaction to the fetal seal. THD could attenuate cisplatin-induced delayed emesis and decrease the levels of NK1 in the medulla and gastric tissues in a rat model [10]. In 2009, Liu et al. initially reported its significant effects in preventing chemotherapy-induced gastrointestinal side effects in the delayed phase following a modified FOLFOX7 regimen [11]. THD is also a powerful immunomodulatory and antiangiogenic drug that can inhibit the expression of vascular endothelial growth factor proteins and induce cell apoptosis [12]. The US food and drug Administration approved it as a treatment for multiple myeloma. Current studies have shown that chemotherapy combined with THD can be applied to treat solid carcinomas including lung cancer, breast cancer, gastric cancer, rectal cancer, and pancreatic cancer with a prominent curative effect [13-17]. A report also showed that THD could alleviate the symptoms accompanying malignant tumors, including cachexia, chronic nausea, insomnia, cancer pain, and dysesthesia [18].

Studies in succession have reported the notable effects of THD on CINV prevention during chemotherapy in patients with solid tumors in recent years. However, neither a systematic review nor a meta-analysis has been conducted based on the current progress. Therefore, we collected the studies related to THD in reducing nausea and emesis in chemotherapy patients and conducted an integrated analysis based on the currently available studies to see if it is an adjuvant for the currently recommended anti-CINV drugs or a potential alternative for antipsychotic or hormonal drugs for patients who cannot tolerate them.

# Methods

# Search strategy

A comprehensive literature search of all publication years up to Nov.30th 2019 was performed in PubMed, Embase, Cochrane, Web of science, CNKI, and Wanfang. The website of clinicaltrials.gov was searched for unpublished studies. Keywords related to intervention ("thalidomide" OR "sedoval" OR "thalomid" OR "N-phthaloylglutamic acid") were combined with keywords related to therapy ("chemotherapy\*" NOT "radiotherapy\*") and terms related to CINV ("chemotherapy-induced nausea and vomiting" OR "CINV" OR "nausea" OR "vomit" OR "emesis" OR "gastrointestinal side effect" OR "gastrointestinal dysfunction"). Furthermore, the reference lists of all searched studies were also taken into consideration.

# Study selection and criteria

We evaluated the study eligibility with the PICO approach (population, intervention, comparison, and outcome). Only eligible randomized controlled trials (RCTs) contributed to the primary outcome assessment. Studies ineligible for the primary outcome but specifying the safety and QOL outcomes were included in analyzing the secondary outcomes.

Population: Patients received chemotherapy (e.g. cisplatin, oxaliplatin, nedaplatin). Any form of radiotherapy-involved treatment (e.g. Concurrent chemo-radiotherapy) was excluded.

Intervention: THD was used as an add-on treatment based on some regular anti-CINV regimen: 5-HT3 RA with or without dexamethasone/ methylprednisolone/metoclopramide.

Comparison: Eligible studies were required to apply the same regimen except for THD as the control group. Case studies, studies including two anti-CINV groups and no control group, and open trials without controlled pre-post designs were eliminated from the meta-analysis.

Outcome: Ranked data of nausea or vomiting degrees, or incidence rate of nausea or vomiting in the acute, delayed, or overall phase, which could be converted to the complete response rate were included. Studies providing effective response only, which equals the complete plus partial response, combining nausea and vomiting as a single outcome, were excluded.

# Quality assessment and data extraction

Two investigators (N W and P X) independently reviewed the included studies and extracted relevant data with a prespecified table (Table 1). Extracted information included year of publication, first author, sample size, and subject characteristics (such as mean ages, cancer types, treatment, and comparability of QOL). The overall quality of included studies analyzing the primary outcome was assessed according to the criteria for bias risk assessment in the Cochrane collaboration handbook 5.1.4[19]. eligible reported the application trials of randomization. Among these, two studies mentioned the method of randomization [20, 21]: one used a computer-generated sequence [20], another used a random number table [21]; the remaining studies did not report any details of randomization. None of the studies reported whether the treatment allocation was concealed except for one that used identical capsules [20]. Five studies [22-26] used a double-blinding method and one [20] used a triple-blinding method in the experimental process. Studies presenting the data with endpoints of subjects and baseline characteristics were regarded as reporting complete data. We further differentiated "other sources of bias" with three subdomains: "enrolment" (e.g. ratio of total attended to planned participants), adherence (e.g. ratio of planned therapy cycles successfully finished with the planned dosage in cycles attended), and loss to follow-up (e.g. uneven dropouts between the intervention and control groups). The detailed information about quality evaluation in each study is presented in Figure 2.

## **Outcomes of interest**

The primary endpoint was the rate of complete response (CR) for nausea and vomiting in the acute, delayed, and overall phases. The secondary endpoint was the safety of THD, which was assessed based on the common terminology criteria for adverse events (CTCAE) and patients' QOL changes, assessed by Karnofsky Performance Status (KPS) scores.

## Statistical analysis

For the primary endpoint, studies were stratified by the reaction phases (acute, delayed, overall) of prognosis (nausea and emesis). Pooled risk ratios (RRs) with 95%CI weighted by the Mantel-Haenszel method in the fixed model were used to calculate the difference of CR between the THD and control groups. The difference was tested with  $\alpha = 0.01$ . Subgroup analysis was performed based on the THD dosage (100 *vs* 200 mg/day) to investigate different therapeutic effects. The patients' QOL was estimated by improved rates of KPS scores, and the safety of THD was calculated by the pooled odds ratio (OR) in the fixed model.

Heterogeneity was investigated by I<sup>2</sup> and Q statistics [27]. A more liberal *P* value of  $\leq 0.10$  was referred to signify heterogeneity, considering the generally low statistical power of heterogeneity tests [28]. The I<sup>2</sup> statistic is an estimate of variance in a pooled effect size, which is explained by heterogeneity in the study samples and is unaffected by the study quantities (K) [29]. Values of 0%, 25%, 50%, and 75% were determined to indicate no, low, moderate, and high heterogeneity, respectively.

Negative and positive findings are partially published to some extent, and publication bias is a widespread problem when reviewing the available references [30]. We assessed publication bias using funnel plots and Egger's test [31-33]. If the results suggested possible publication bias, adjusted ESs were computed with the Duval and Tweedie trim-and-fill method [34]. We calculated a failsafe number in case of statistically significant results [33, 35]. This failsafe number is the number of unpublished studies without findings, which would reduce the results to statistical non-significance (P > 0.05). We also tested the robustness of the results by comparing the suggested criterion (5K + 10) to the failsafe number [35].

# Results

# **Characteristics of included studies**

In total, 283 studies were identified by screening the six databases mentioned above. We excluded 149 duplicates and reviewed the abstracts of the remaining 134 studies based on our inclusion and exclusion criteria. 47 studies met the eligibility criteria and were inspected further. We found that 13 of them were from duplicate population. Another 20 studies were combined in the secondary outcome analysis. Among these, 16 studies were excluded from the primary outcome analysis as they combined nausea and emesis as a single outcome or offered indefinite data (e.g. unable to extract complete response measurement). 4 studies were eliminated for positive comparison with control (e.g. dexamethasone/metoclopramide). Finally, 14 RCTs were subjected to our first endpoint meta-analysis. The flowchart of the study selection is shown in Figure 1.

The characteristics of the included studies are detailed in Table 1. The number of patients in the 14 RCTs varied from 52 to 638. Overall, 877 (50%, mean standard deviation age:  $55 \pm 5.5$  years) and 867 (50%, mean standard deviation age:  $56 \pm 4.4$  years) patients allocated to THD and control groups, respectively, were evaluated. The CR data of nausea and vomiting in the three phases were extracted from two studies [20, 22], with one presenting the original data on five separate days and over the entire study duration [22]. We selected the smallest records from days 2–5 of the two groups as the relative conservative indicator for the patient number that achieved CR in the delayed phase. One study offered the rates of CR for nausea in the three phases [23]. The CR data for nausea and vomiting in the acute and delayed phases were extracted from four studies [21, 36-38] with one giving the original data on five separate days [38]. Smallest records from days 2-5 of the two groups were extracted respectively to indicate the patient number that achieved CR in the delayed phase. One study reported the rates of CR for nausea and vomiting in the acute phase [11]. Three studies reported the rates of CR of nausea and vomiting in the overall phase [26, 39, 40]. Two studies reported the rate of CR for vomiting in the overall phase [24, 41], and one in the delayed phase [25]. Four of the included studies [24-26, 40] were from two same authors but were four independent trials with different patient characteristics, anti-CINV regimens, and cared outcome phases. Most studies used platinum drug-based combined chemotherapy, such as cisplatin, oxaliplatin, and nedaplatin of which cisplatin was most used.

#### Primary endpoint (no nausea and no vomiting)

In the selected 14 RCTs, the CR for nausea in the THD group did not significantly differ from that in the control during the acute phase (RR = 1.11, 95%CI: 1.02–1.21, P > 0.01; Figure 3A). The positive result of RR with the lower limit of 95%CI extremely close to 1

may be attributed to sampling error, since none of the studies in the acute phase showed a positive result. However, patients in the THD group showed a statistically better CR during both the delayed (RR = 1.69, 95%CI: 1.47–1.94, P < 0.01 Figure 3A) and overall phase (RR = 1.54, 95%CI: 1.31–1.81, P < 0.01 Figure 3A) compared to the control group.

The CR for chemotherapy-induced vomiting in the THD group did not significantly differ from that in the control during the acute phase (RR = 1.08 95%CI: 1.02–1.16, P>0.01 Figure 3B). We did not impart much clinical meaning to the pooled RR as well as the result of acute nausea. However, patients in the THD group had a statistically positive CR during both the delayed (RR = 1.38, 95%CI: 1.26–1.51, P < 0.01 Figure 3B) and overall phase (RR = 1.31, 95%CI 1.18–1.46, P < 0.01, Figure 3B) compared with the control.



Figure 1. Study selection flowchart.

#### Table 1. Baseline characteristics of 34 studies for meta-analysis

| First author     | Study  | Nun      | nber | Sexes |        | Age   |       | Cancer | Therapeutic                  | Antiemetic                        | QOL before     | Dosage  | Outcomes                                 |  |
|------------------|--------|----------|------|-------|--------|-------|-------|--------|------------------------------|-----------------------------------|----------------|---------|------------------------------------------|--|
|                  | design | T+C      | C    | Male  | Female | T+C   | С     | Types  | Regimen                      | Regimen                           | treatment      | (mg/d)  |                                          |  |
| Cui Y 2011       | RCS    | 26       | 26   | 0     | 56     | NR    |       | В      | AC-T                         | Tro+THD VS Tro+DEX                | ECOG PS<br>0-2 | 25X2    | AEs                                      |  |
| Chen YL 2012     | RCT    | 25       | 28   | 31    | 22     | 58.1  | 57.9  | L+C+B  | Cisplatin-based              | Tro+THD VS Tro                    | KPS≥70         | 50x3    | Anti-nausea and vomiting(O)              |  |
| Cao YX 2016      | RCT    | 30       | 30   | 31    | 29     | 45.98 | 50.53 | L+C+B  | Cisplatin-based              | PAL+THD VS PAL                    | ECOG PS<br>0-2 | 100x1   | Anti-nausea and<br>vomiting(O)           |  |
| Cao YX* 2016     | RCT    | 30       | 30   | 35    | 25     | 68.25 | 64.6  | L+G+C  | NR                           | PAL+THD VS PAL                    | NR             | 100x1   | Anti-nausea and<br>vomiting(O)           |  |
| Cheng QL<br>2018 | RCS    | 45       | 45   | 0     | 90     | 54.91 | 55.09 | C*     | Cisplatin-contained          | PAL+THD VS PAL                    | NR             | 50x1    | AEs                                      |  |
| Feng G 2015      | RCT    | 35       | 35   | 25    | 20     | 58    | 57    | L+E+O  | NDP-contained                | Aza+THD VS Aza                    | KPS<br>95 96   | 200x1   | AEs                                      |  |
| Gu AQ 2009       | RCS    | 33       | 33   | 20    | 21     | 56    | 54    | NSCLC  | NP                           | THD VS placebo                    | ECOG PS<br>0-2 | 200x1   | AEs                                      |  |
| He QS 2008       | RCT    | 21       | 20   | 20    | 21     | 56    | 54    | NSCLC  | NP                           | THD VS placebo                    | ECOG PS<br>0-2 | 200     | AEs                                      |  |
| Han ZX 2014      | RCT    | 38       | 32   | 40    | 30     | 50    |       | L+G+O  | Cisplatin-contained          | Tro+THD VS Tro                    | KPS>60         | 100-200 | Anti-vomiting(O);QOL                     |  |
| Han ZX 2016      | RCT    | 40       | 38   | 45    | 33     | 50.4  | 50.2  | L+G+O  | Cisplatin-contained          | Aza+TDH VS Aza                    | KPS≥60         | 100-200 | Anti-vomiting(D);AEs;QOL                 |  |
| Jiang WM<br>2010 | CCS    | 31       | 30   | 40    | 21     | 56    | 57    | NSCLC  | GP                           | THD VS placebo                    | ECOG PS<br>0-2 | 200x1   | AEs                                      |  |
| Jiang HR 2017    | RCT    | 138      | 128  | 94    | 172    | 59.4  | 59.5  | L+B    | CE or<br>cisplatin-contained | PAL+DEX+THD<br>VS PAL+DEX         | ECOG PS<br>0-2 | 100X2   | Anti-nausea(A;D;O);AEs                   |  |
| Luo Q 2011       | RCS    | 26       | 28   | 42    | 12     | 60    | 59    | NSCLC  | GP                           | THD VS placebo                    | KPS≥70         | 100-200 | QOL                                      |  |
| Liu YP 2009      | RCT    | 26       | 26   | 35    | 17     | 55.5  | 54    | G+C+O* | mFOLFOX7                     | RAM+DEX+THD VS<br>RAM+DEX         | ECOG PS<br>0-2 | 150X2   | Anti-nausea and<br>vomiting(A); AEs      |  |
| Li M 2016        | RCT    | 30       | 30   | 35    | 25     | 56.8  | 57.7  | L      | Cisplatin-contained          | OND+DEX+THD VS<br>OND+DEX         | ECOG PS<br>0-2 | 100x1   | Anti-nausea and<br>vomiting(A;D);AEs     |  |
| Peng Y 2014      | RCT    | 31       | 31   | 38    | 24     | 68.5  | 69.7  | NSCLC  | TP                           | 5-HT3 RA+THD VS<br>5-HT3RA        | KPS≥60         | 100-200 | AEs; QOL                                 |  |
| Qv H 2018        | CCS    | 47       | 47   | 0     | 94     | 46.81 | 47.52 | 0      | TC                           | Tro+THD VS Tro                    | KPS≥70         | 50x1    | AEs                                      |  |
| Shen ZL 2009     | CCS    | 26       | 10   | 22    | 14     | 46.8  | 45.2  | NSCLC  | NP                           | THD VS placebo                    | ECOG PS<br>0-2 | 100-400 | AEs                                      |  |
| Song XQ 2010     | RCS    | 35       | 31   | 52    | 14     | 56    | 55    | NSCLC  | Cisplatin-based              | THD VS placebo                    | ECOG PS<br>0-2 | 300x1   | AEs                                      |  |
| She MJ 2010      | RCT    | 33       | 32   | 44    | 21     | NR    |       | Е      | FP                           | OND+Met+THD VS<br>OND+Met         | KPS≥70         | 100-200 | AEs; QOL                                 |  |
| Sun YL 2010      | CCS    | 36       | 21   | 31    | 26     | 54    | 52    | NSCLC  | NP                           | THD VS placebo                    | ECOG PS<br>0-2 | 200x1   | AEs                                      |  |
| Song XG 2010     | RCS    | 35       | 31   | 52    | 14     | 56    | 55    | NSCLC  | Cisplatin-based              | THD VS placebo                    | ECOG PS<br>0-2 | 300x1   | AEs                                      |  |
| Sun XQ 2011      | CCS    | 30       | 30   | 36    | 24     | 57.5  |       | NSCLC  | DP                           | THD VS placebo                    | ECOG PS<br>0-2 | 300x1   | AEs                                      |  |
| Song G 2017      | RCT    | 40       | 43   | 57    | 26     | 57    | 54    | G+L+E  | FP or EP                     | OND+MET+DEX+THD<br>VS OND+MET+DEX | KPS 70-100     | 100x1   | Anti-nausea and<br>vomiting(A;D;O);AEs   |  |
| Wang SS 2018     | RCT    | 40       | 40   | 55    | 25     | 52.21 | 51.47 | L      | Cisplatin-contained          | PAL+DEX+THD<br>VS PAL+DEX         | ECOG PS<br>0-1 | 100x1   | Anti-vomiting(O)                         |  |
| Xu SN 2010       | CCS    | 30       | 30   | 32    | 28     | 55    |       | Е      | PTX+NDP                      | THD VS Placebo                    | ECOG PS<br>0-1 | 100-300 | AEs                                      |  |
| Yu YL 2009       | RCT    | 30       | 31   | 29    | 32     | 58    | 62    | NSCLC  | GP                           | Ram+Met+THD VS<br>Ram+Met         | ECOG PS<br>1 1 | 50x2    | Anti-nausea and<br>vomiting(A;D)         |  |
| Zhang GJ<br>2008 | RCT    | 30       | 30   | 39    | 21     | 57    |       | NSCLC  | DP                           | THD VS placebo                    | ECOG PS<br>0-2 | 300     | AEs                                      |  |
| Zhu ZT 2010      | RCS    | 40<br>40 |      | 50    | 30     | 48    |       | NSCLC  | GP                           | RAM+DEX+THD VS<br>RAM+DEX+Met     | NR             | 50x2    | AEs                                      |  |
| Zuo CY 2014      | RCT    | 41       | 40   | 0     | 82     | 55    | 57    | MBC    | GP                           | Tro+THD VS Tro                    | KPS 60-90      | 25x2    | Anti-nausea and<br>vomiting(A;D);AEs     |  |
| Zhang J 2016     | RCT    | 52       | 50   | 58    | 44     | NR    |       | SCLC   | EP or IP                     | PAL+MP+THD VS<br>Tro+MP           | KPS≥70         | 100x1   | Anti-nausea and<br>vomiting(A;D);AEs;QOL |  |
| Zhao W 2016      | RCS    | 39       | 39   | 42    | 36     | 57.2  |       | NR     | Cisplatin-contained          | Tro+DEX+THD VS<br>Tro+DEX         | NR             | 25x2    | AEs                                      |  |
| Zhao Y 2017      | RCS    | 33       | 33   | 36    | 30     | 57.5  |       | L      | GP                           | THD VS Tro                        | ECOG PS<br>0-2 | 100x1   | QOL                                      |  |
| Zhang LY<br>2017 | RCT    | 317      | 321  | 195   | 443    | 53    | 54    | L+B+O* | CE or<br>cisplatin-contained | PAL+DEX+THD VS<br>PAL+DEX         | ECOG PS<br>0-2 | 100x2   | Anti-nausea and<br>vomiting(A;D;O);AEs   |  |

Abbreviations

RCT: Randomized Clinical Trials; RCS: Retrospective Cohort Studies; CCS: Case Control Studies; T+C: Thalidomide group; C: Control group; L: Lung cancer; B: Breast cancer; G: Gastric cancer; C: Colorectal cancer; C\*: Cervical cancer; O: Ovarian cancer; O\*: Others; E: Esophageal cancer; NSCLC: Non-small cell lung cancer; SCLC: Small cell lung cancer; MBC: metastatic breast cancer; CE: Carboplatin+VP16; mFOLFOX7: Oxaliplatin+ Calcium Folinatc+ Fluorouraci}; EP: VP16+ Cisplatin; CP: Gencitabine+ Cisplatin; IP: Irinotecan+ Cisplatin; TC: Paclitaxel+ Carboplatin; AC-T: Anthracycline+ Cytotoxic agent-Taxol drugs; PTX: Paclitaxel; NDP: Nedaplatin; TP: Paclitaxel+ Cisplatin; FP: Fluorouracil+ Cisplatin; DP: Docetaxel+ Cisplatin; NP: Vinorelbine+ Cisplatin; Tro: Tropisetron; Aza: Azasetron; RAM: Ramosetron; DEX: Dexamethasone; PAL: Palonosetron; Met: Metoclopramide; MP: Methylprednisolone OND: Ondansetron; THD: Thalidomide; QOL: Quality of life; KPS: Karnofsky Performance Status; ECOG: The Eastern Cooperative Oncology Group; A: Acute phase; D: Delayed phase; O: Overall phase; AEs: Adverse Effects; NR: Not Reported



**Figure 2.** Risk of bias. Notes: Green cycle with plus sign indicates a low risk of bias; Yellow cycle with question mark indicates an unclear risk of bias; Red cycle with minus sign indicates a high risk of bias.

Subgroup analysis based on the THD dosage was conducted. We extracted all data on delayed vomiting (for its rather high heterogeneity), overall vomiting data (studies [24, 26, 40, 41] only provided the overall vomiting data were used as an indicator of the delayed phase ones), and one case of delayed nausea (vomiting was not an outcome in that study [23]). Outcomes from acute phase were not considered in view of the limited effect, which might compromise the statistical power. Emetic chemotherapies of the 10 studies were all cisplatin-contained regimens, which was HEC. In those studies, THD was used in the range of 50-200 mg/day, and 100 and 200 mg/day were mostly used. The 95%CI of pooled RR was compared between the effect of 100 mg/day (RR = 1.59, 95%CI 1.36–1.87, P < 0.01; Figure 4) and 200 mg/day (RR = 1.35, 95%CI 1.22–1.50, *P* < 0.01; Figure 4) of THD. The overlapping of 95%CI meant no statistical difference.

#### **Publication bias**

The results for nausea in the three phases and vomiting in the acute and overall phase were regarded as statistically homogeneous ( $I^2 < 50\% P > 0.1$ ). Statistical heterogeneity ( $I^2 = 58.6\% P = 0.02$ ) within the delayed vomiting group was shown by the Egger's test, which was used to evaluate the publication bias (P = 0.01, 95%CI: 1.05–5.23). The adjusted summary estimate was calculated using the Duval and Tweedie trim-and-fill method, the SE hardly changed after three supplementary studies as shown in Figure 5. Therefore, publication bias did not affect the stability of the outcome. The Rosenthal failsafe number 104 was also calculated and outdistanced the suggested criterion: 45 (5K + 10), which testified a robust result.

# Safety of thalidomide

No grade 3 or 4 side effects were reported in the THD group in the 39 studies according to the CTCAE criteria. Sedation was the most common adverse event reported followed by constipation and drowsiness/dizziness. It seemed that THD was relatively safe except that the rate of peripheral neuropathy (P = 0.06) differed significantly between the THD and control groups as shown in Table 2.

# Quality of life (QOL)

The evaluation indexes of patients' QOL were insufficient and non-standard. We pooled six improved rates of KPS scores [14, 21, 24, 25, 42, 43], which were the mostly used standards in our related studies and one ECOG score [44] converted to that. The result was significant (RR = 2.41 95% CI: 1.63–3.56; P < 0.01, Figure 6). Criteria like SAS & SDS [26], QOL questionnaire C30 by European Organization for Research and Treatment of Cancer [20] and CAT [18] also showed statistically better results of the patients' appetite, sleep quality and emotion in the THD group as well as patients' sensation of wellbeing [45].

# Discussion

This meta-analysis investigated the add-on prophylactic treatment potential of THD for CINV. Complete response rates of nausea and vomiting were significantly higher in the THD-treated group in the delayed and overall phases than the acute phase. As for studies were not included in our analysis for comparison with non-blank group (e.g. metoclopramide/dexamethasone) [44, 46-48], the THD group also showed a statistically better control of nausea and emesis in the delayed phase. In most of our included studies, THD was administered at 50-200 mg/day, with 100 mg/day being the most common. Subgroup analysis based on the dosage suggested no statistical significance between the 200 mg/day dose compared with the 100 mg/day dose. We thus suggest the dose of 100 mg/day of THD for prophylaxis of CINV in consideration of adverse events (AEs). Nevertheless, this recommendation is speculative, given an incomprehensive dose gradient and the small number of pooled trials.

| Events Events %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DD (00% Cl) Testeset Costel M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D. Stady                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RR (35% CI) Treatment Control VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ➡ 1.22 (0.99, 1.51) 87/138 66/128 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jiang HR (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Li M (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 106 (0.94, 1.32) 29/60 26/60 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.06 (0.64, 1.33) 36/50 36/50 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Liu +P (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.02 (0.84, 1.22) 34/40 36/43 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Song G (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.72 (0.89, 3.32) 15/30 9/31 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yu YL (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 32 (0 79 2 21) 22/52 16/50 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zhang J (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zhang 0 (2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.05 (0.93, 1.19) 199/317 192/321 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zhang LY (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • 1.14 (0.72, 1.79) 21/41 18/40 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zuo CY (2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.11 (1.02, 1.21) 438/698 393/693 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Subtotal (I-squared = 0.0%, p = 0.678)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Delayed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Delayed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.94 (1.39, 2.70) 71/138 34/128 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jiang HR (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.43 (1.18, 4.99) 17/30 7/30 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Li M (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.43 (1.05, 1.95) 32/40 24/43 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Song G (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2 44 (1 05 11 21) 10/20 2/21 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V. VI (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.44 (1.05, 11.51) 10/50 5/51 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TUTE (2003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.27 (1.39, 3.70) 33/52 14/50 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zhang J (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.42 (1.17, 1.72) 150/317 107/321 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zhang LY (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3,41 (1,23, 9,49) 14/41 4/40 2 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zuo CY (2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Subtotal (Leguared = 42.3% p = 0.100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V 1.03 (1.47, 1.54) 327040 133043 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Subtotal (I-squared = 42.5%, p = 0.105)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Overall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.83 (0.78, 4.32) 11/30 6/30 3 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cao YX (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cap* XX (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.36 (0.37, 30.26) 3/25 1/28 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chen YL (2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.89 (1.31, 2.72) 61/138 30/128 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jiang HR (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Song G (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 20 (1 12 1 72) 120/217 05/221 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zhang L V (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.35 (1.12, 1.12) 130/317 35/321 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.54 (1.31, 1.81) 242/580 157/580 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Subtotal (I-squared = 0.0%, p = 0.658)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 30.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 033 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Events. Events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RR (95% CI) Treatment Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RR (95% CI) Treatment Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RR (95% CI) Treatment Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RR (95% Cl) Treatment Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID Acute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RR (95% Cl) Treatment Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID<br>Acute<br>Li M (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RR (95% Cl)         Treatment         Control           1.09 (0.84, 1.40)         25/30         23/30           1.07 (0.94, 1.21)         47/50         44/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RR (95% Cl) Treatment Control<br>1.09 (0.84, 1.40) 25/30 23/30<br>1.07 (0.94, 1.21) 47/50 44/50<br>1.02 (0.90, 1.16) 37/40 39/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RR (95% Cl)         Treatment         Control           -         1.09 (0.84, 1.40)         25/30         23/30           +         1.07 (0.94, 1.21)         47/50         44/50           1.02 (0.90, 1.16)         37/40         39/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RR (95% Cl)         Treatment         Control           1.09 (0.84, 1.40)         25/30         23/30           1.07 (0.94, 1.21)         47/50         44/50           1.02 (0.90, 1.16)         37/40         39/43           1.12 (0.88, 1.42)         26/30         24/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RR (95% Cl)         Treatment         Control           1.09 (0.84, 1.40)         25/30         23/30           1.07 (0.94, 1.21)         47/50         44/50           1.02 (0.90, 1.16)         37/40         39/43           1.12 (0.88, 1.42)         26/30         24/31           1.60 (0.96, 2.67)         25/52         15/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RR (95% Cl)         Treatment         Control           1.09 (0.84, 1.40)         25/30         23/30           1.07 (0.94, 1.21)         47/50         44/50           1.02 (0.90, 1.16)         37/40         39/43           1.12 (0.88, 1.42)         26/30         24/31           1.60 (0.96, 2.67)         25/52         15/50           1.06 (0.97, 1.16)         24/371         24/321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RR (95% Cl)         Treatment         Control           1.09 (0.84, 1.40)         25/30         23/30           1.07 (0.94, 1.21)         47/50         44/50           1.02 (0.90, 1.16)         37/40         39/43           1.12 (0.88, 1.42)         26/30         24/31           1.60 (0.96, 2.67)         25/52         15/50           1.06 (0.97, 1.16)         245/317         234/321           1.08 (0.82, 1.44)         30/41         274/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Yu C(2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RR (95% Cl)         Treatment         Control           1.09 (0.84, 1.40)         25/30         23/30           1.07 (0.94, 1.21)         47/50         44/50           1.02 (0.90, 1.16)         37/40         39/43           1.12 (0.88, 1.42)         26/30         24/31           1.60 (0.96, 2.67)         25/52         15/50           1.06 (0.97, 1.16)         245/317         24/321           1.06 (0.97, 1.16)         245/317         24/321           1.06 (0.92, 1.44)         30/41         27/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RR (95% Cl)         Treatment         Control           1.09 (0.84, 1.40)         25/30         23/30           1.07 (0.94, 1.21)         47/50         44/50           1.02 (0.90, 1.16)         37/40         39/43           1.12 (0.88, 1.42)         26/30         24/31           1.60 (0.96, 2.67)         25/52         15/50           1.06 (0.97, 1.16)         245/317         23/3/21           1.08 (0.82, 1.44)         30/41         27/40           1.08 (1.02, 1.16)         435/560         406/565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID<br>Acute<br>Li M (2016)<br>Li U YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.60 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       234/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       24/3317       23/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LV (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.60 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       23/3/21         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RR (95% Cl)         Treatment         Control           1.09 (0.84, 1.40)         25/30         23/30           1.07 (0.94, 1.21)         47/50         44/50           1.02 (0.90, 1.16)         37/40         39/43           1.12 (0.88, 1.42)         26/30         24/31           1.60 (0.96, 2.67)         25/52         15/50           1.06 (0.97, 1.16)         245/317         23/321           1.08 (0.82, 1.44)         30/41         27/40           1.08 (1.02, 1.16)         435/560         406/565           1.40 (0.96, 2.04)         28/40         19/38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtolal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.97, 1.16)       24/51       15/50         1.06 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       234/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LV (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.60 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       23/321         1.06 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       35/560       406/565         1.08 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       24/3717       23/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtolal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       234/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (41.94, 41.55)       20/52       10/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LV (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       23/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.97, 1.16)       25/52       15/50         1.06 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       243/317       234/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         4.12 (1.2, 1.39)       243/316       198/321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2017)<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.60 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       234/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.95 (1.09, 3.48)       22/211       11/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang L2 (2017)<br>Zuo CY (2014)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Li M (2016)<br>Li M (2016)<br>Li M (2016)<br>Li M (2016)<br>Zhang J (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2017)<br>Zuo CY (2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.60 (0.96, 2.67)       25/52       15/50         1.06 (0.96, 2.67)       25/52       15/50         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.95 (1.09, 3.48)       22/41       11/40         1.95 (1.51)       339/549       28/553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtolal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtolal (I-squared = 58.6%, p = 0.024)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.97, 1.16)       245/317       234/321         1.66 (0.97, 1.16)       245/317       234/321         1.06 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       234/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.95 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       3393/549       288/553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.60 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       23/30/11         1.80 (8.2, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       35/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.55 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.9, 6, 2.67)       25/52       15/50         1.06 (0.9, 7, 16)       245/317       234/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.38 (1.26, 1.51)       393/549       288/553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)<br>Overall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.96, 2.67)       25/52       15/50         1.06 (0.96, 2.67)       25/52       15/50         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       24/3316       198/321         1.95 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)       12/30       7/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang L2 (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Charge J (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)<br>Overall<br>Cao YX (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.96, 2.67)       25/52       15/50         1.06 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       23/4/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/550       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.95 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)       12/30       7/30         2.00 (0.67, 5.94)       8/30       4/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)<br>Overall<br>Cao YX (2016)<br>Cao YX (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.97, 1.16)       245/317       244/321         1.66 (0.97, 1.16)       245/317       244/321         1.06 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       244/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.49)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.59 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)       12/30       7/30         2.00 (0.67, 5.94)       8/30       4/30         3.06 (0.67, 0.57) <td>ID<br/>Acute<br/>Li M (2016)<br/>Liu YP (2009)<br/>Song G (2017)<br/>Yu YL (2009)<br/>Zhang J (2016)<br/>Zhang LY (2017)<br/>Zuo CY (2014)<br/>Subtotal (I-squared = 0.0%, p = 0.745)<br/>Delayed<br/>Han ZX (2016)<br/>Li M (2016)<br/>Song G (2017)<br/>Yu YL (2009)<br/>Zhang J (2016)<br/>Zhang LY (2017)<br/>Zuo CY (2014)<br/>Subtotal (I-squared = 58.6%, p = 0.024)<br/>Overall<br/>Cao YX (2016)<br/>Cao YX (2016)<br/>Cao YX (2016)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)<br>Overall<br>Cao YX (2016)<br>Cao YX (2016)<br>Cao YX (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.60 (0.96, 2.67)       25/52       15/50         1.06 (0.97, 1.16)       245/317       23/4321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.88 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.95 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)       12/30       7/30         2.00 (0.67, 5.94)       8/30       4/30         3.36 (0.37, 30.26)       3/25       1/28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)<br>Overall<br>Cao YX (2016)<br>Chen YL (2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.9, 6, 2.67)       25/52       15/50         1.06 (0.9, 7, 16)       24/317       24/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.55 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)       12/30       7/30         2.00 (0.67, 5.94)       8/30       4/30         3.36 (0.37, 0.26)       32/5       1/28         1.36 (0.95, 1.93)       29/38       18/32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)<br>Overall<br>Cao YX (2016)<br>Chen YL (2012)<br>Han ZX (2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.96, 2.67)       25/52       15/50         1.06 (0.96, 2.67)       25/52       15/50         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       24/3/316       198/321         1.95 (1.09, 3.48)       22/41       11/40         1.36 (0.95, 1.93)       29/38       18/32         1.71 (0.78, 3.75)       12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ID         Acute         Li M (2016)         Liu YP (2009)         Song G (2017)         Yu YL (2009)         Zhang J (2016)         Zhang J (2016)         Subtotal (I-squared = 0.0%, p = 0.745)         Delayed         Han ZX (2016)         Zhang J (2017)         Yu YL (2009)         Zhang J (2016)         Cao YX (2016)         Cao YX (2016)         Cao YX (2016)         Cher YL (2017)         Yu YL (2017)         Subtotal (I-squared = 58.6%, p = 0.024)         ·         ·         Overall         Cao YX (2016)         Cher YL (2012)         Han ZX (2014)         Song G (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.9, 6, 2.67)       25/52       15/50         1.06 (0.9, 7, 16)       245/317       234/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.94, 1.48)       34/40       31/43         2.30 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.49)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)       12/30       7/30         2.00 (0.67, 5.94)       8/30       4/30         3.36 (0.37, 30.26)       325       1/28         1.36 (0.95, 1.93)       29/38       18/32         1.71 (0.78, 3.70)       12/30       7/30         2.00 (0.67, 5.94)       8/30       4/30         3.36 (0.37, 30.26)       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)<br>Overall<br>Cao' YX (2016)<br>Chen YL (2012)<br>Han ZX (2014)<br>Song G (2017)<br>Wan SK (2014)<br>Song G (2017)<br>Han ZX (2014)<br>Han ZX (2 |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.97, 1.16)       245/317       234/321         1.66 (0.97, 1.16)       245/317       234/321         1.06 (0.96, 2.67)       25/52       15/50         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.95 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75) <td>ID<br/>Acute<br/>Li M (2016)<br/>Liu YP (2009)<br/>Song G (2017)<br/>Yu YL (2009)<br/>Zhang J (2016)<br/>Zhang LY (2017)<br/>Zuo CY (2014)<br/>Subtotal (I-squared = 0.0%, p = 0.745)<br/>Delayed<br/>Han ZX (2016)<br/>Li M (2016)<br/>Song G (2017)<br/>Yu YL (2009)<br/>Zhang J (2016)<br/>Zhang J (2016)<br/>Zhang J (2016)<br/>Zhang J (2017)<br/>Yu YL (2009)<br/>Zhang J (2016)<br/>Cao' YX (2017)<br/>Wang SX (2018)</td> | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Cao' YX (2017)<br>Wang SX (2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.96, 2.67)       25/52       15/50         1.06 (0.96, 2.67)       25/56       15/50         1.06 (0.97, 1.16)       245/317       224/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       24/316       198/321         1.95 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)       12/30       7/30         2.00 (0.67, 5.94)       8/30       4/30         3.36 (0.95, 1.93)       29/38       18/32         1.18 (0.94, 1.48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)<br>Overall<br>Cao YX (2016)<br>Chen YL (2012)<br>Han ZX (2014)<br>Song G (2017)<br>Wang SX (2018)<br>Zhang LY (2017)<br>Wang SX (2018)<br>Zhang LY (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.9, 6, 2.67)       25/52       15/50         1.06 (0.9, 7, 16)       245/317       234/321         1.06 (0.9, 7, 16)       245/317       234/321         1.06 (0.9, 7, 16)       245/317       234/321         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.55 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)       12/30       7/30         2.00 (0.67, 5.94)       8/30       4/30         3.36 (0.37, 30.26)       3/25       1/28         1.36 (0.95, 1.93)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = $0.0\%$ , p = $0.745$ )<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = $58.6\%$ , p = $0.024$ )<br>Overall<br>Cao' YX (2016)<br>Chen YL (2012)<br>Han ZX (2014)<br>Song G (2017)<br>Wang SX (2018)<br>Zhang LY (2017)<br>Subtotal (I-squared = $0.0\%$ , p = $0.479$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.97, 1.16)       24/317       254/317         1.06 (0.96, 2.67)       25/52       15/50         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       24/3316       198/321         1.95 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)       12/30       7/30         2.00 (0.67, 5.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ID         Acute         LI M (2016)         Liu YP (2009)         Song G (2017)         Yu YL (2009)         Zhang J (2016)         Zhang J (2016)         Zubtotal (I-squared = 0.0%, p = 0.745)         Delayed         Han ZX (2016)         Zhang J (2017)         Yu YL (2009)         Zhang J (2016)         Zhang J (2016)         Cao YX (2016)         Cherrall         Cao YX (2016)         Cao YX (2017)         Wang SX (2018)         Zhang LY (2017)         Wang SX (2018)         Zhang LY (2017)         Subtotal (I-squared = 0.0%, p = 0.479)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.96, 2.67)       25/52       15/50         1.06 (0.96, 2.67)       25/56       15/50         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/550       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.49)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.95 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)       12/30       7/30         2.00 (0.67, 5.94)       8/30       4/30         3.36 (0.37, 30.26)       3/25       1/28         1.36 (0.95, 1.93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)<br>Overall<br>Cao YX (2016)<br>Chen YL (2012)<br>Han ZX (2014)<br>Subtotal (I-squared = 0.0%, p = 0.479)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.9, 6, 2.67)       25/52       15/50         1.06 (0.9, 1.16)       435/560       406/565         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.94, 1.45)       34/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.55 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)       12/30       7/30         2.00 (0.67, 5.94)       8/30       4/30         3.36 (0.37, 30.26)       3/25       1/28         1.36 (0.95, 1.93)       29/38       18/32         1.18 (0.94, 1.48)       34/40       31/43         1.92 (1.16, 3.19) <t< td=""><td>ID<br/>Acute<br/>Li M (2016)<br/>Liu YP (2009)<br/>Song G (2017)<br/>Yu YL (2009)<br/>Zhang J (2016)<br/>Zhang LY (2017)<br/>Zuo CY (2014)<br/>Subtotal (I-squared = 0.0%, p = 0.745)<br/>Delayed<br/>Han ZX (2016)<br/>Li M (2016)<br/>Song G (2017)<br/>Yu YL (2009)<br/>Zhang J (2016)<br/>Zhang LY (2017)<br/>Zuo CY (2014)<br/>Subtotal (I-squared = 58.6%, p = 0.024)<br/>Overall<br/>Cao' YX (2016)<br/>Cao' YX (2016)<br/>Chen YL (2012)<br/>Han ZX (2014)<br/>Song G (2017)<br/>Wang SX (2018)<br/>Zhang LY (2017)<br/>Subtotal (I-squared = 0.0%, p = 0.479)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                            | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 0.0%, p = 0.745)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang LY (2017)<br>Zuo CY (2014)<br>Subtotal (I-squared = 58.6%, p = 0.024)<br>Overall<br>Cao' YX (2016)<br>Cao' YX (2016)<br>Chen YL (2012)<br>Han ZX (2014)<br>Song G (2017)<br>Wang SX (2018)<br>Zhang LY (2017)<br>Subtotal (I-squared = 0.0%, p = 0.479)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RR (95% Cl)       Treatment       Control         1.09 (0.84, 1.40)       25/30       23/30         1.07 (0.94, 1.21)       47/50       44/50         1.02 (0.90, 1.16)       37/40       39/43         1.12 (0.88, 1.42)       26/30       24/31         1.66 (0.97, 1.16)       24/517       23/32         1.66 (0.97, 1.16)       24/517       23/4/321         1.06 (0.96, 2.67)       25/52       15/50         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (0.82, 1.44)       30/41       27/40         1.08 (1.02, 1.16)       435/560       406/565         1.40 (0.96, 2.04)       28/40       19/38         2.00 (1.14, 3.52)       20/30       10/30         1.18 (0.94, 1.48)       34/40       31/43         2.36 (1.14, 4.91)       16/30       7/31         2.40 (1.39, 4.15)       30/52       12/50         1.25 (1.12, 1.39)       243/316       198/321         1.95 (1.09, 3.48)       22/41       11/40         1.38 (1.26, 1.51)       393/549       288/553         1.71 (0.78, 3.75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ID<br>Acute<br>Li M (2016)<br>Liu YP (2009)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Delayed<br>Han ZX (2016)<br>Li M (2016)<br>Song G (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2016)<br>Zhang J (2017)<br>Yu YL (2009)<br>Zhang J (2016)<br>Cao'YX (2016)<br>Cao'YX (2016)<br>Cao'YX (2016)<br>Cao'YX (2016)<br>Cao'YX (2016)<br>Cao'YX (2016)<br>Cao'YX (2016)<br>Chen YL (2017)<br>Wang SX (2018)<br>Zhang LY (2017)<br>Subtotal (I-squared = 0.0%, p = 0.479)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Figure 3. A. Forest plot of effect sizes for effects of thalidomide on anti-chemotherapy induced nausea in the three phases (acute, delayed and overall). B. Forest plot of effect sizes for effects of thalidomide on anti-chemotherapy induced vomiting in the three phases (acute, delayed and overall).







Figure 5. Publication bias after Duval and Tweedie trim-and-fill method. Abbreviations: Est: estimates

**Table 2.** Adverse events comparison between thalidomide and control group

| Adverse Effects       | Included studies | T+C | T+C  |     |      | Heterogeneity analysis |        | Statistical analysis model | Statistical analysis |        |
|-----------------------|------------------|-----|------|-----|------|------------------------|--------|----------------------------|----------------------|--------|
|                       |                  | n   | Ν    | n   | Ν    | I <sup>2</sup>         | p      |                            | OR(95%CI)            | Р      |
| Myelosuppression      | 8                | 110 | 297  | 115 | 304  | 0.00%                  | 0.94   | Fixed effect model         | 0.98(0.69-1.39)      | 0.89   |
| Constipation          | 27               | 547 | 1288 | 366 | 1246 | 36.20%                 | 0.06   | Fixed effect model         | 1.84(1.54-2.19)      | < 0.01 |
| Drowsiness/Dizziness  | 21               | 324 | 938  | 151 | 861  | 66.80%                 | < 0.01 | Fixed effect model         | 2.67(2.14-3.34)      | < 0.01 |
| Sedation              | 4                | 81  | 437  | 29  | 443  | 21.20%                 | 0.28   | Fixed effect model         | 3.37(2.15-5.31)      | < 0.01 |
| Rash                  | 14               | 76  | 595  | 55  | 527  | 55.60%                 | 0.02   | Fixed effect model         | 1.31(0.91-1.89)      | 0.15   |
| Diarrhea              | 6                | 60  | 606  | 41  | 589  | 0.00%                  | 0.85   | Fixed effect model         | 1.44(0.94-2.19)      | 0.09   |
| Peripheral neuropathy | 14               | 85  | 531  | 55  | 504  | 0.00%                  | 0.58   | Fixed effect model         | 1.58(1.14-2.18)      | 0.06   |
| Hepatorenal damage    | 10               | 64  | 358  | 59  | 354  | 0.00%                  | 0.97   | Fixed effect model         | 1.07(0.72-1.58)      | 0.74   |

Abbreviations:

T+C: Thalidomide group; C: Control group; n: number of patients have adverse events; N: number of patients allocated to the two groups



Essentially, risks related to THD today remain the same as those when it was originally produced and marketed in more than 45 countries, nearly 70 years ago. The overall side effects of THD are well understood as different patient populations have been exposed for decades of clinical application. However, chemotherapy patients do not bear the risk of birth defects. Other common AEs of THD were estimated by pooled OR in a fixed-effect model. Sedation, constipation, and dizziness/drowsiness were the most common side effects (Table 2). Nevertheless, AEs did not bring about level 3 or 4 toxicity and could be tolerated by patients. No other THD-related AEs were suggested in our analysis. However, the P value (0.06) of peripheral neuropathy should be noted. This complication may be associated with cumulative dosage, emphasizing the requirement of defined recommendations for monitoring, tapering, and discontinuation. Though 18 studies we totally collected specifically targeted on the investigation of THD on CINV, there were no high quality RCTs further comparing THD and some regular drugs such as: NK1-RA, Olanzapine or Dexamethasone recommended in the Guidelines of American Society of Clinical Oncology (ASCO) and National Comprehensive Cancer Network (NCCN)[9]. Well-designed clinical trials between THD and these anti-CINV drugs are required to line THD up to a waitlist for the antiemetic treatment scenario.

THD, as an antiangiogenic agent, has produced substantial clinical benefits in the treatment of multiple myeloma, and its effects on a host of solid tumors have been quite variable. There seems to be a reasonable consensus that THD has demonstrable tumoristatic effects in renal cell carcinoma [49], hepatocellular carcinoma [50, 51], prostate carcinoma [52], Kaposi's sarcoma [53], melanoma [54], glioma [55], and glioblastoma multiforme [56]. The main pathophysiological features of advanced cancer are insomnia, chronic emesis, nausea, cachexia, metabolic disorders, and tumor-associated pain as well as decreased sensation of wellbeing. Perhaps the most intriguing quality of THD is its underlying value in many of these syndromes, as demonstrated in our analysis, and the fact that it is well tolerated in this very ill patient population in general. Emotional disturbance is quite usual after cancer diagnosis, and it could adversely affect treatment, sleep, and appetite. We observed that THD enhanced the CR of CINV as well as improved the diet and sleep of patients compared to those on a non-THD regimen [20]. Bruera et al. [45] reported a significant increase in caloric intake for 27 patients who were able to complete their food intake, from 1320 calories on day 0 to 1531 calories on day 10 (P = 0.047). In the THD group, 93% of patients hoped to take THD again in the next cycle of chemotherapy. Better chemotherapy compliance was noted in the THD group. The latent role of THD within the field of palliative treatment thus requires further investigation.

Elucidation of the heterogeneity of the effect in the delayed vomiting phase is critical to inform an individualized therapy and precision medicine approach, one that encompasses chemotherapy and patients' characteristics to guide targeted THD prescriptions. For example, when CINV patients also develop insomnia, diarrhea. irritability. or hyperactivity, a corresponding dosage of THD may be a more appropriate choice. THD has synergistic and additive antiemetic, anti-asthenia, and analgesic effects of corticosteroids [57, 58]; it inhibits the expression of cytokines without affecting levels of IL-2, IL-4, and IL-10 [59, 60], thus offering the possibility of steroid-sparing or steroid-replacement therapy. Rigorous examination and enforcement of such an approach pose significant challenges to the field but could hold great promise to improve the safety and efficacy of anti-CINV therapy in the clinical environment.

The strengths of our analysis are as follows. First, the pooled studies were all RCTs that enhanced the evidence grade. Second, the control group were all uniformed to blank controls, which eliminated some confounding factors to an extent. Third, we investigated the safety and QOL outcome as we explored the efficacy of THD. However, objective limitations still exist. Firstly, an insufficient number of studies used moderately emetogenic chemotherapy which limited our further investigation of specifying THD's role in moderate and high categories in anti-CINV. Secondly, one study with 638 patients outnumbered other studies in population may cause some inevitable bias. Lastly, all the included patients generalizability Chinese; thus, of the were recommended dosage to other ethnic groups requires caution.

In conclusion, THD is an effective adjunctive

treatment to improve CINV in patients receiving emetic chemotherapy according to our results. Well-designed clinical trials are required to compare the efficacy and safety between THD and NK1-RA or olanzapine to define the place of THD in therapy for the prophylaxis of CINV, to consider the combination of these medicines as the optimum choice, and to assess the AEs systematically. THD is indeed worth considering for prophylactic antiemetic treatment.

#### Acknowledgements

We thank all members of our study team for their whole-hearted cooperation and the original authors of the included studies for their wonderful work.

# **Competing Interests**

The authors have declared that no competing interest exists.

## References

- Mitchelson F. Pharmacological agents affecting emesis. A review (Part I). Drugs. 1992; 43: 295-315.
- Leslie RA. Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus. Neurochem Int. 1985; 7: 191-211.
- Hesketh PJ. Chemotherapy-induced nausea and vomiting. N Engl J Med. 2008; 358: 2482-94.
- Bountra C, Gale JD, Gardner CJ, Jordan CC, Kilpatrick GJ, Twissell DJ, et al. Towards understanding the aetiology and pathophysiology of the emetic reflex: novel approaches to antiemetic drugs. Oncology. 1996; 53 Suppl 1: 102-9.
- Coates A, Abraham S, Kaye SB, Sowerbutts T, Frewin C, Fox RM, et al. On the receiving end--patient perception of the side-effects of cancer chemotherapy. European journal of cancer & clinical oncology. 1983; 19: 203-8.
- Navari RM. Management of Chemotherapy-Induced Nausea and Vomiting in Pediatric Patients. Paediatric drugs. 2017; 19: 213-22.
- Wood DE, Kazerooni EA, Baum SL, Eapen GA, Ettinger DS, Hou LF, et al. Lung Cancer Screening, Version 3.2018. Journal of the National Comprehensive Cancer Network. 2018; 16: 412-41.
- Hesketh PJ, Kris MG, Basch E, Bohlke K, Barbour SY, Clark-Snow RA, et al. Antiemetics: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol. 2017; 35: 3240-61.
- Natale JJ. Overview of the prevention and management of CINV. The American journal of managed care. 2018; 24: S391-s7.
- Han ZX, Xu J, Wang HM, Ma J, Sun X, Du XP. Antiemetic role of thalidomide in a rat model of cisplatin-induced emesis. Cell Biochem Biophys. 2014; 70: 361-5.
- Liu Y, Zhang J, Teng Y, Zhang L, Yu P, Jin B, et al. Thalidomide improves prevention of chemotherapy-induced gastrointestinal side effects following a modified FOLFOX7 regimen: results of a prospective randomized crossover study. Tumori J. 2009; 95: 691-6.
- Lu G, Pan Y, Yu Z, Zhou X, Yuan H. Mechanisms of Thalidomide combined with Epirubicin on the anti-SMMC7721 proliferation. The Journal of Practical Medicine. 2010; 26: 1038-40.
- Zustovich F, Cartei G, Ceravolo R, Zovato S, Della Puppa A, Pastorelli D, et al. A phase I study of cisplatin, temozolomide and thalidomide in patients with malignant brain tumors. Anticancer research. 2007; 27: 1019-24.
- 14. Luo Q. The therapeutic Effect of Thalidomide for advanced NSCLC under GP regimen The Journal of Practical Medicine. 2011; 27: 1080-2.
- Downs LS, Jr., Judson PL, Argenta PA, Ghebre R, Geller MA, Bliss RL, et al. A prospective randomized trial of thalidomide with topotecan compared with topotecan alone in women with recurrent epithelial ovarian carcinoma. Cancer. 2008; 112: 331-9.
- Dowlati A, Subbiah S, Cooney M, Rutherford K, Mekhail T, Fu P, et al. Phase II trial of thalidomide as maintenance therapy for extensive stage small cell lung cancer after response to chemotherapy. Lung cancer (Amsterdam, Netherlands). 2007; 56: 377-81.
- Chiou HE, Wang TE, Wang YY, Liu HW. Efficacy and safety of thalidomide in patients with hepatocellular carcinoma. World journal of gastroenterology. 2006; 12: 6955-60.

- Davis M, Lasheen W, Walsh D, Mahmoud F, Bicanovsky L, Lagman R. A Phase II dose titration study of thalidomide for cancer-associated anorexia. Journal of pain and symptom management. 2012; 43: 78-86.
- Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, 2019.
- Zhang L, Qu X, Teng Y, Shi J, Yu P, Sun T, et al. Efficacy of Thalidomide in Preventing Delayed Nausea and Vomiting Induced by Highly Emetogenic Chemotherapy: A Randomized, Multicenter, Double-Blind, Placebo-Controlled Phase III Trial (CLOG1302 study). Journal of Clinical Oncology. 2017; 35: 3558-+.
- Jing Z, Hong-gang K, Bao-zhong W, Gui-ming SUN. Clinical research of Palonosetron with Thalidomide for the prophylaxis of nausea and vomiting induced by Lung Cancer. The Journal of Chinese Cancer Clinic and Rehabilitation. 2016; 23: 943-6.
- Song G, He Q, Li F, Wang N. Thalidomide for prevention of chemotherapy-induced nausea and vomiting following highly emetogenic chemotherapy. Australasian Medical Journal. 2017; 10: 192-8.
- Jiang H. Clinical Research of Thalidomide for the Prophlaxis of nausea and vomiting induced by Highly Emetic Chemotherapy [post graduate]: China Medical University; 2017.
- Han Z, Sun X, Xu J, Li Y, Du X. Clinical Research of Thalidomide for Perichemotherapy Induced Nausea and Vomiting. Cancer Research and Clinic. 2014; 26: 667-9.
- Han Z, Sun X, Jiang G, Du X. Thalidomide for Control Delayed Vomiting in Cancer Patients Receiving Chemotherapy. Journal of the College of Physicians and Surgeons--Pakistan : JCPSP. 2016; 26: 900-3.
- 26. Cao Y. Therapeutic effect of Thalidomide for Chemotherapy Induced Nausea and Vomiting. Journal of China Prescription Drug. 2017; 15: 72-3.
- Addressing Reporting Biases. Cochrane Handbook for Systematic Reviews of Interventions. p. 297-333.
- Poole C, Greenland S. Random-effects meta-analyses are not always conservative. Am J Epidemiol. 1999; 150: 469-75.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003; 327: 557-60.
- Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. Cmaj. 2007; 176: 1091-6.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997; 315: 629-34.
- Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005; 58: 882-93.
- Copas J, Shi JQ. Meta-analysis, funnel plots and sensitivity analysis. Biostatistics. 2000; 1: 247-62.
- Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000; 56: 455-63.
- Rosenthal R. The file drawer problem and tolerance for null results. Psychological Bulletin. 1979; 86: 638-41.
- Zuo C. Therapeutic Effect of Thalidomide combining Tropisetron hydrochloride for Metastatic breast cancer Induced Nausea and Vomiting under GP regimen. Chinese Journal of Clinical Research. 2014; 27: 1491-3.
- Yu Y, Zhu Z, Li J. Therapeutic Effect of Thalidomide for the Prevention of delayed nausea and vomiting induced by NSCLC under GP regimen. Chinese Journal of Oncology. 2009; 31: 937-40.
- Li M, Gao E, Cui F, Chen L, Zhang F. Clinical Research of Thalidomide combining Ondansetron for the Prophylaxis of Chemotherapy Induced Nausea and Vomiting of Lung Cancer. Journal of Modern Oncology. 2016; 24: 2719-23.
- Chen Y, Luo D, Wang M. Clinical Research of Thalidomide for the Prevention of Chemotherapy Induced Nausea and Vomiting. Modern Prevention Medicine. 2013; 40: 382-3.
- Cao Y, Ren J. Analysis of Therapeutic Effect of Thalidomide for the Prevention of Chemotherapy Induced Nausea and Vomiting. The Journal of Chinese and Foreign Medicine. 2017; 36: 132-4.
- Wang S. Thalidomide combining Palonosetron for the Prevention of Cisplatin-contained Chemotherapy Induced Nausea and Vomiting. Guideline of China Medicine. 2018; 16: 24-5.
- She M-j, Ma Z-s, Li G-z, Wang Q, Shen Y-I. A Randomized Clinical Study on Combination of Concurrent Chemo-Radiotherapy and Thalidomide for Middle-Late Esophageal Cancer. Clinical Oncology and Cancer Research. 2010; 7: 140-5.
- Peng Y, Wang M, Xie N, Li Y, Lu H, Li B. Randomized study of thalidomide in combination with TP chemotherapy for the treatment of advanced non-small-cell lung cancer. Chinese Journal of Clinical Pharmacology and Therapeutics. 2013; 18: 317-21.
- Zhao Y, Sun J, Zhou Q. Effect of thalidomide in Improving Chemotherapeutic patients' Appetites and Life Quality with Lung Cancer. Journal of Mathematical Medicine. 2017; 30: 890-1.
- Bruera E, Neumann CM, Pituskin E, Calder K, Ball G, Hanson J. Thalidomide in patients with cachexia due to terminal cancer: preliminary report. Annals of oncology : official journal of the European Society for Medical Oncology. 1999; 10: 857-9.

- Zhu Z, Li J, Gao Q. Clinical Research of Thalidomide Preventing Cisplatin-contained Chemotherapy Induced Delayed Nausea and Vomiting. Journal Of China Pharmacy. 2010; 21: 2464-6.
- Wang Y, Tang H, Liu N. Clinical Observation of Thalidomide In the Prevention of Chemotherapy Induced Delayed Nausea and Vomiting. China Practical Medicine. 2012; 7: 147-8.
- Cui Y, Li J, Wang W. Effect of Thalidomide combining Tropisetron for Adjuvant Chemotherapy Induced Vomiting of Breast Cancer. The Journal of Practical Medicine. 2011; 27: 3576-8.
- Amato RJ. Thalidomide therapy for renal cell carcinoma. Critical reviews in oncology/hematology. 2003; 46 Suppl: S59-65.
- Patt YZ, Hassan MM, Lozano RD, Nooka AK, Schnirer, II, Zeldis JB, et al. Thalidomide in the treatment of patients with hepatocellular carcinoma: a phase II trial. Cancer. 2005; 103: 749-55.
- Cao DD, Xu HL, Liu L, Zheng YF, Gao SF, Xu XM, et al. Thalidomide combined with transcatheter artierial chemoembolzation for primary hepatocellular carcinoma: a systematic review and meta-analysis. Oncotarget. 2017; 8: 44976-93.
- Figg WD, Dahut W, Duray P, Hamilton M, Tompkins A, Steinberg SM, et al. A randomized phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2001; 7: 1888-93.
- Little RF, Wyvill KM, Pluda JM, Welles L, Marshall V, Figg WD, et al. Activity of thalidomide in AIDS-related Kaposi's sarcoma. J Clin Oncol. 2000; 18: 2593-602.
- Reiriz AB, Richter MF, Fernandes S, Cancela AI, Costa TD, Di Leone LP, et al. Phase II study of thalidomide in patients with metastatic malignant melanoma. Melanoma research. 2004; 14: 527-31.
- Pawlak WZ, Legha SS. Phase II study of thalidomide in patients with metastatic melanoma. Melanoma research. 2004; 14: 57-62.
- Morabito A, Fanelli M, Carillio G, Gattuso D, Sarmiento R, Gasparini G. Thalidomide prolongs disease stabilization after conventional therapy in patients with recurrent glioblastoma. Oncology reports. 2004; 11: 93-5.
- Moertel CG, Schutt AJ, Reitemeier RJ, Hahn RG. Corticosteroid therapy of preterminal gastrointestinal cancer. Cancer. 1974; 33: 1607-9.
- Bruera ED, Roca E, Cedaro L, Chacon R, Estevez R. Improved control of chemotherapy-induced emesis by the addition of dexamethasone to metoclopramide in patients resistant to metoclopramide. Cancer Treat Rep. 1983; 67: 381-3.
- Rowland TL, McHugh SM, Deighton J, Dearman RJ, Ewan PW, Kimber I. Differential regulation by thalidomide and dexamethasone of cytokine expression in human peripheral blood mononuclear cells. Immunopharmacology. 1998; 40: 11-20.
- Moller DR, Wysocka M, Greenlee BM, Ma X, Wahl L, Flockhart DA, et al. Inhibition of IL-12 production by thalidomide. J Immunol. 1997; 159: 5157-61.